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ABSTRACT Lumped-element models (LEMs) provide a compact characterization of numerous real-world
physical systems, including electrical, acoustic, and mechanical systems. However, even when the target
topology is known, deriving model parameters that approximate a possibly distributed system often requires
educated guesses or dedicated optimization routines. This article presents a general framework for the
data-driven estimation of lumped parameters using automatic differentiation. Inspired by recent work on
physical neural networks, we propose to explicitly embed a differentiable LEM in the forward pass of a
learning algorithm and discover its parameters via backpropagation. The same approach could also be applied
to blindly parameterize an approximatingmodel that shares no isomorphismwith the target system, for which
it would be thus challenging to exploit prior knowledge of the underlying physics.We evaluate our framework
on various linear and nonlinear systems, including time- and frequency-domain learning objectives, and
consider real- and complex-valued differentiation strategies. In all our experiments, we were able to achieve
a near-perfect match of the system state measurements and retrieve the true model parameters whenever
possible. Besides its practical interest, the present approach provides a fully interpretable input-output
mapping by exposing the topological structure of the underlying physical model, and it may therefore
constitute an explainable ad-hoc alternative to otherwise black-box methods.

INDEX TERMS Automatic differentiation, backpropagation, lumped-element models, parameter
estimation.

I. INTRODUCTION
Accurate equivalent models of physical systems are highly
sought after across all engineering sectors thanks to
their efficient implementation and mathematical tractability.
In particular, lumped-element models (LEMs) offer a com-
pact and interpretable representation of countless spatially
distributed physical systems and, by reducing a possibly
infinite-dimensional state space to a finite number of
idealized components interconnected by a known topology,
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they enable the application of network analysis methods not
only to electrical circuits but also, e.g., to the mechanical,
biological, thermodynamic, fluid, and acoustic domain.

Moreover, as far as discrete-time simulations are con-
cerned, LEMs tend to be more robust than data-driven and
black-box methods such as Wiener-Hammerstein models [1],
Volterra series [2], and neural networks [3], which risk
producing meaningless and physically inconsistent outputs
when presented with novel and possibly out-of-distribution
inputs [4]. This is due to a desirable characteristic of
white-box models sometimes referred to as inductive bias
in the machine learning community [5]. The topology of the
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LEM, indeed, establishes a set of relations, or biases, between
the model parameters that, in turn, ensure compliance with
the underlying physics laws governing the system.

On the downside, one of the main challenges of LEMs
is the characterization of the lumped elements. Parameter
estimation theory aims to find the parameters of a given
model that best fit a (partial) set of observational data,
possibly by solving a global least squares or maximum
likelihood estimation problem [6]. This task belongs to the
broader family of so-called inverse problems, which are
notoriously difficult to solve when the number of unknown
parameters is large [7].
At the same time, in the past two decades, the sheer

availability of observational data and the increasing ease
of collecting them have led to the development of a vast
array of machine learning techniques. In particular, thanks
to the technological advancements in hardware acceleration,
automatic differentiation (AD) has become a viable and
powerful strategy for large-scale optimization [8], [9], [10].
Ultimately, one could think of the supervised training of
a neural network via backpropagation as the solution to a
classic inverse problem where the hidden layer parameters
(weights and biases) are estimated from a set of observations.
Yet, the promising applications of modern AD tools have
remained mainly confined to the deep learning field, and
backpropagation is arguably most known as an off-the-shelf
method for fitting black-box neural network models.

This is not to say that cross-contamination between
physically consistent models and deep-learning-inspired
optimization never occurred. Analog neural networks have
long explored the possibility of realizing a target input-output
mapping by means of the interconnection of a finite set
of electronic hardware components [11]. More recently,
replacing the multilayered affine transformations paired
with nonlinear activation functions typical of feed-forward
neural networks for full-fledged physical systems has been
investigated by Wright et al. [12]. The inputs to the resulting
models, named physical neural networks, can be trained
via physics-aware backpropagation using the derivatives
estimated by applying AD on a parallel differentiable
digital model. Notably, AD had been previously applied
to electrical circuit modeling. In the early nineties, despite
the limited computational resources available at the time,
Feldmann et al. [13] advocated for the use of AD to evaluate
the Jacobian matrices needed for circuit simulations. In [14],
AD was adopted for optimizing artificial port resistances in
multi-dimensional Wave Digital Filter (WD) structures with
topology-related delay-free-loops; the same approach was
then extended in [15] for the case ofWD structures containing
multiple nonlinearities. Recently, Shintani et al. [16], build-
ing upon [17], showed that AD-based parameter extraction
of a power metal-oxide-semiconductor field-effect transistor
(MOSFET) can be up to 3.5 times faster than a corresponding
numerical differentiation method. Furthermore, inspired by
prior work on differentiable digital signal processing [18],
Esqueda et al. [19] proposed to optimize virtual analog

models using backpropagation to fit measurements of
reference audio circuits.

Building on this promising trend, in this article, we present
a general framework for achieving an explicit and fully
interpretable mapping by incorporating a LEM of the target
physical system into the forward pass of a learning algorithm.
This allows us to train the LEM parameters with stan-
dard gradient-based methods to minimize an arbitrary cost
function between the model outputs and some measurable
quantities of the target system. In fact, akin to traditional neu-
ral networks, the LEM can be optimized via backpropagation
exploiting AD to compute the gradient of one or multiple
loss functions with respect to the trainable model parameters.
Thanks to the inherent inductive biases, the present approach
enforces physical constraints by means of the lumped model
topology and constitutive relations rather than via auxiliary
loss functions or regularizers. Since no bias is imposed
on the learning objective, such a data-driven optimization
framework accounts for both time- and frequency-domain
models and loss functions, interchangeably accommodating
real- and complex-valued formulations. We investigate a
series of illustrative case studies and offer practical solutions
inspired by the best practices of modern neural network
training to problems specific to the use case. Our experiments
show that all models considered in the present work can
achieve a near-perfect match of the target behavior while
consistently retrieving the underlying physical parameters.

The learned model has all the desirable characteristics
of the target lumped system, i.e., it can be implemented
efficiently, the simulation is typically lightweight, the
inference is stable and does not require hardware graphic
acceleration, and model discrepancy can be assessed a priori.
Furthermore, learned parameters may characterize a target
real-life device and can thus be employed both for simulation
purposes, e.g., the design of digital twins [20], or downstream
physics-based digital signal processing tasks, e.g., transducer
virtualization [21].

Whereas the method inherently requires little to no prior
information other than the LEM constitutive equations, the
convergence rate can be controlled by an educated choice of
the hyperparameters driven by the knowledge of the target
physical system. In this regard, practical applications include
learning the device-specific divergence between nominal and
actual component values due to manufacturing tolerance, and
compensating for both short-term (e.g., changes in operating
temperature) and long-term effects (e.g., device aging and
material degradation) if applied repeatedly over time.

ExistingAD engines enable general-purpose tensormanip-
ulation and constitute a straightforward replacement for
more widespread programming languages and scientific
computing libraries. Hence, the application of the pro-
posed framework entails minimal modifications to existing
LEM implementations, thus making it readily accessible to
researchers and practitioners.

The remainder of the manuscript is organized as follows.
In Section II, we provide an overview of AD. In Section III,
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we outline the methodology and the implementation scheme
of the LEMs under scrutiny. In Sections IV-A and IV-B,
we discuss the use of AD to estimate the parameters of two
linear time-domain systems: a simple Bridged-T network
and a Thiele-Small multiphysics model of an electrodynamic
loudspeaker. In Section IV-D, we match a target transfer
function by means of a lowpass Sallen-Key filter optimized
via complex differentiation. In Section IV-F, by estimating
the circuit parameters of a diode-based dynamic ring
modulator, we show that the present approach is also capable
of dealing with nonlinear time-domain systems. Finally,
Section V concludes this work.

II. BACKGROUND ON AUTOMATIC DIFFERENTIATION
Automatic differentiation (AD) [8], [9], [10] refers to a set of
techniques for algorithmically evaluating the derivatives of
a differentiable function expressed as a computer program.
It differs from, e.g., numerical and symbolic differentiation
methods in that AD involves a non-standard interpretation
of computer programs where each algebraic operation
is augmented with the calculation of the corresponding
derivative. Oftentimes, all computations in an algorithm can
be expressed as a composition of a finite set of J elementary
operations for which derivatives are known. Hence, having
stored the results w1, . . . ,wJ of all intermediate operations
in a data structure known as Wengert list [22], the derivatives
of an arbitrary function y(u) with respect to the input variable
u can be obtained by repeatedly applying the chain rule

∂y
∂u

=
∂y

∂wJ

∂wJ
∂wJ−1

. . .
∂w2

∂w1

∂w1

∂u
. (1)

The way in which the chain rule is traversed determines
the main mode of operation of the AD algorithm. In the
literature, two flavors are typically reported: forward accu-
mulation mode and reverse accumulation mode. In forward
accumulation mode, the chain rule is evaluated from the
inside out, starting from the input variables and computing the
local derivative of the first expression in the program. Each
operation is therefore augmented by extra code returning the
derivative with respect to its input.

Conversely, AD in reverse accumulation mode [23]
corresponds to a generalized backpropagation algorithm [24],
in that derivatives are propagated backward from a given
output. This is done by complementing each intermediate
variable wi with an adjoint ∂yi/∂wi. In practice, reverse-
mode AD relies on building a directed acyclic graph
(DAG) where all data, executed operations, and resulting
tensors are topologically arranged according to the order of
their execution in the program. In this DAG, leaf vertices
correspond to the input tensors, and root vertices to the output
tensors. Hence, the gradient is computed by evaluating the
chain rule by traversing the computational graph from roots
to leaves. This way, reverse-mode AD greatly reduces the
number of operations required for differentiating functions
with many inputs compared to the forward mode [10].

FIGURE 1. Computational graph for the automatic differentiation of
y [k] = ϕ(u[k]; θ) with respect to the parameter θ for k = 1, . . . , K .

FIGURE 2. Sample-wise subgraph for the automatic differentiation of
y [k] = log(θ · u[k]) + θ2 with respect to the parameter θ .

In modern AD engines such as JAX [25], PyTorch [26]
and TensorFlow [27], computational graphs are dynamically
determined at run time. Therefore, a differentiable program
may contain control statements such as if, for, while, and
the gradient can be seamlessly propagated through a possibly
different DAG at every iteration.

In the case of a simple single-input single-output feed-
forward neural network, the DAG consists of one linear
branch obtained by subsequently storing the gradient func-
tions and outputs of all hidden layers. In the case of sample-
by-sample inference, instead, the DAG can be thought of
as a stack of identical subgraphs, as shown in Fig. 1.
Each subgraph is responsible for the instantaneous mapping
between the input u[k] and the corresponding output y[k].
When the computation of the kth subgraph relies on a
set of previous state variables, the computational graph is
dynamically updated, and the gradient is let flow through the
DAG obtained by unfolding all the k−1 previous subgraphs.
In turn, this yields short computational branches associated
with the first few samples and progressively longer branches
as k increases.

An example of a sample-wise subgraph is given in Fig. 2.
In the forward pass, all elementary operations are executed,
and the intermediate variables wi are stored. Simultaneously,
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the DAG is populated with the gradient functions associated
with every primitive. Then, in a backward pass, the gradients
are computed locally and iteratively aggregated all the way
to the leaves. Therefore, unlike numerical differentiation
methods, AD does not incur truncation errors and, for what
concerns real arithmetic, yields exact results accurate to
machine precision.

Reverse-mode AD constitutes the backbone of the classic
backpropagation algorithm, the leading method for training
deep neural networks. In the next section, we describe how it
can be employed for the parameter estimation of LEMs.

III. PARAMETER ESTIMATION VIA AUTOMATIC
DIFFERENTIATION
The proposed framework for LEM parameter estimation
hinges on the idea of recasting the problem into a classic deep
learning (DL) formulation. Feed-forward neural networks
can be described as a cascade of interleaved parametric
affine transformations and static point-wise nonlinearities.
The overall function composition can be thus written as

ŷk = ϕ(uk ; θ ), (2)

where uk ∈ CN is the kth (possibly) complex-valued input
vector taken from a dataset of K samples, and ŷk ∈ CM is
the corresponding output vector, which is conditioned on the
model parameters θ = [θ1, . . . , θP]T. The main task of DL is
that of learning θ such that the resulting output follows some
predetermined criteria. In a typical supervised scenario, this
is achieved by minimizing a target loss function defined on
ŷk and some ground truth data yk for k = 1, . . . ,K .
Likewise, the input-output relationships characterizing a

lumped physical system can also be expressed as in (2), where
yk denotes a snapshot of M observable physical quantities
sampled at time k , and θ indicates the LEM parameters.
Just as in the previous case, our goal is to determine θ so
that the model outputs ŷk match the desired behavior for
k = 1, . . . ,K .

Following this analogy, it is therefore natural to think of
a LEM as a parametric mapping ϕ(uk ; θ ) whose trainable
parameters can be optimized drawing from a large corpus of
well-established DL techniques. For instance, we can opti-
mize the LEM using the classic backpropagation algorithm
and avail ourselves of the best practices in neural network
training.

Namely, given a series of K exogenous variables u =

[u1, . . . ,uK ]T, we start by setting the LEM parameters
according to some initial guess, compute the model outputs
ŷ =

[
ŷ1, . . . , ŷK

]T given the current set of parameters
θ , and evaluate an objective function L(y, ŷ), where y =

[y1, . . . , yK ]T. Then, we use reverse-mode AD to compute
∇θL(y, ŷ) and solve the following minimization problem
using either stochastic gradient descent or one of its more
recent adaptive extensions [28], [29], [30], [31]:

θ⋆
= argmin

θ

L(y, ŷ). (3)

The iterative process is repeated multiple times until conver-
gence; borrowing from DL naming conventions, we refer to
each iteration encompassing all K input snapshots in u as an
epoch.

Despite the overarching parallelism, however, the pro-
posed AD-based estimation technique and traditional neural
networks trained with backpropagation are fundamentally
different. Whereas the former yields a physically-consistent
set of lumped parameters thanks to the inductive bias granted
by imposing the LEM topology and constitutive equations
as priors, the latter learn a large number of weights and
biases. Although biologically inspired, weights and biases are
non-semantic and bear no direct physical interpretation for
what concerns the system being modeled unless additional
learning constraints are imposed.

In this work, we assume no learning bias, and loss functions
can be thus defined freely and tailored to the specific learning
task. In fact, various losses can be employed depending on the
use case. These include classic regression objectives, such
as the mean squared error between predicted and measured
time-domain signals, as well as loss functions defined on
complex-valued transfer functions in the frequency domain.

In the literature, regularization is typically enforced by
means of auxiliary losses constraining the ℓp-norm of the
trainable parameters [32]. Due to the gigantic size of modern
neural networks, this is typically performed in a layer-
wise fashion. However, in our case study, one often deals
with a tractable number of lumped elements so dedicated
regularization can be applied to each parameter instead.

Similarly, multiple optimizers can be run sequentially or
alternately. In particular, we found it beneficial to apply
several adaptive gradient-based methods acting on different
subsets of the model parameters. The learning rate can
be independently tuned for each optimizer, and it might
be helpful to inform the decision based on some prior
information about the underlying model. Indeed, governing
laws or expert knowledge often suggest a reasonable range
of values a parameter may take. We observed that setting the
optimizer learning rates in the range of the expected order of
magnitude of the target parameters leads to a faster and more
consistent convergence rate.

Alternatively, such information can also be injected
directly into the LEM implementation. When the expected
order of magnitude is known a priori, one could, in fact,
multiply a certain parameter by that quantity as it enters the
computational flow of the program, effectively incorporating
the operation in the AD graph. As a result, the method learns
a scaled version of the true parameter. This could be exploited
to bring all parameters in a similar range, hence aiding
joint optimization. Whereas the former approach grants more
flexibility in terms of model implementation, the latter allows
one to perform hyperparameter tuning more freely, e.g.,
by choosing the learning rates via a simple grid search.

A similar approach can be used to place hard constraints on
the LEM parameters. For instance, many physical quantities,
such as mass and electrical resistances, are typically required
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to be non-negative. This may be enforced by inserting
a differentiable nonlinearity, such as an exponential or
softplus function, at the program entry point for a given
trainable parameter. This way, one would effectively learn the
arguments of such functions, and the parameter values can be
retrieved by applying the same nonlinearities to the output of
the optimization process. In practice, the requirements can
also be relaxed to include functions that are differentiable
almost everywhere, such as the absolute value and the
well-known rectified linear unit function.

Ultimately, we found that the proposed model-based
learning framework can rely on just a tiny amount of data.
In the following, we use no more than a few milliseconds
of a single set of system-state measurements. This is another
key difference with respect to deep neural networks, whose
training whose training requires extensive datasets collected
for many different types of inputs. This unique characteristic
of our methodology opens the possibility for, e.g., online
learning throughout the lifecycle of a device or otherwise
impractically expensive finite element analyses aimed at
simulating just enough data to fit a lightweight digital twin.

Contrary to expectations, increasing the training data
size beyond a certain limit appears to worsen the model
performance. Feeding the algorithmwith many input samples
would cause the DAG to dynamically grow in size. In turn,
this might lead to critical gradient flow problems. Indeed,
as multiple branches with length proportional to the sample
index k converge at each DAG leaf, one could expect the
aggregated gradients to either explode or start vanishing for
longer input sequences. In principle, one could batch the input
signals and perform multiple gradient updates within one
epoch. In our experiments, however, we did not find it to be
helpful as convergence was always achieved in a small-data
regime, so we opted for a single-batch strategy instead.

AD-based lumped parameter estimation is general and
places no constraint on the LEM topology as long as it can
be characterized in terms of input-output mappings described
by the composition of differentiable tensor primitives.
Hence, the present framework could be seamlessly applied
to countless multiphysics scenarios, including mechanical,
magnetic, acoustic, thermal, and fluid systems. In general,
this holds true also for approximating models for which
there exists no isomorphism with the target physical system.
In the following, however, we focus on electrical equivalent
models since they allow for precise and efficient numerical
simulation and provide exact ground truth for the model
parameters.

A. WHY AUTOMATIC DIFFERENTIATION?
At its core, the proposed framework entails a gradient-based
optimization algorithm. As such, it relies on the gradients
with respect to the stochastic objectives to iteratively update
an initial parameter estimate. In specific cases, it would be
feasible to analytically compute such gradients. However,
in many instances, this may prove hard to set up or even
impossible.

First, analytical and symbolic approaches would require
expressing the system’s characteristics in terms of the
trainable parameters, which can be a daunting task when
dealing with complex high-dimensional models. Moreover,
even if such a function exists and can be derived, it might not
be possible to make it explicit with respect to each parameter
for computing the gradients. AD provides a solution by
allowing for the automatic and efficient computation of
the gradients, relieving the need to manually define such
functions.

Furthermore, in the case of nonlinear systems, functions
can be extremely challenging to differentiate. AD excels in
handling such complexity, as it yields error-free gradients for
even the most intricate nonlinear functions.

Analytical and symbolic differentiation methods are likely
to become unfeasible when working with a large number
of parameters, as they demand the derivation of an equally
large number of gradients. This computational burden can
quickly become overwhelming. AD, on the other hand,
effortlessly manages high-dimensional parameter spaces,
making it a more practical choice for many real-life
LEMs.

When a program implementing a LEM involves iterative
methods (e.g., fixed-point, Newton-Raphson, etc.), the num-
ber of iterations required to reach convergence is typically
data-dependent. Iterative methods are usually needed for
solving LEMs whose time-derivatives are discretized by
means of implicit methods, or when nonlinear elements
and/or delay-free loops are present [33]. In order to express
the analytic gradients in such cases, the number of iterations
must be decided in advance, degrading the accuracy of the
model, which in some cases may lead to completely wrong
solutions. It is important to stress that for-loops where system
variables depend on the result of previous iterations can be
seen as composite functions; defined I as the number of
iterations, an analytical approach would entail differentiating
an I -composite function, which is known to be challenging
for I ≫ 1. Thus, there is a trade-off between the number of
iterations and the number of derivatives to compute. On the
one hand, if we want to keep the number of iteration low for
easing the differentiation step, the model could not reach con-
vergence and lead towrong solutions. On the other hand, if we
want to ensure convergence, we may opt for a conservatively
high number of iterations but this entails the computation
of the gradients of complex composite functions, which
may be impractical. Dynamic AD circumvents this issue
by seamlessly accommodating loops and the data-dependent
nature of convergence, ensuring that the model reaches an
accurate solution without compromising on computation
efficiency.

Lastly, models incorporating conditional statements, such
as if-else constructs, require the computation of deriva-
tives for all possible branches in advance. AD excels in this
situation, as it dynamically rebuilds the DAG at each step in a
data-dependent fashion, making it feasible for modeling with
conditionals and branching modes of operation.
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Despite these favorable properties, it is worth pointing out
that the proposed AD-based lumped parameter estimation
framework present some limitations. For instance, themethod
may fail to converge in presence of severe signal degradation
due, e.g., to additive noise (see Section IV-A2), and may
exhibit model identifiability problems depending on the
choice of observables (see Section III-B).

B. PARAMETER UNIDENTIFIABILITY
In general, given a LEM, there may exist infinitely many
parameter configurations that produce the same outputs.
Therefore, it is possible for multiple learned models to all
match the same target observables while being described
by widely different sets of parameters depending on the
initialization and training routine. We refer to this property
as parameter unidentifiability.

In many use cases, especially when the goal is to simply
approximate a target physical behavior, parameter unidenti-
fiability is of no practical relevance as any of the infinitely
many equivalent LEMs would fulfill the task. Besides,
a principled choice of initial values and hyperparameters may
still yield a set of physically-consistent parameters.

Parameter identifiability becomes critical when the goal
is to estimate unknown physical quantities, e.g., when
fitting a specific real-life device. For instance, one might
want to quantify the deviation of the electrical elements
in a given circuit from their nominal values. In that case,
the focus is placed on retrieving true component values
by observing, e.g., port voltages and currents, rather than
realizing an equivalent network. Therefore, one must pay
particular attention to which quantities are to be measured.
Indeed, by simultaneously fitting multiple observables, one
could typically restrict the degrees of freedom of the system
and avoid parameter unidentifiability. We will address this
particular scenario in Section IV-A when dealing with the
case of the Bridged-T network.

C. LUMPED-ELEMENT MODEL IMPLEMENTATION
In the literature, the discrete-time implementation of circuits
is addressed following different approaches [34], [35], [36].
In this work, all the considered LEMs make use of Wave
Digital Filters (WDFs) [35] and are implemented in Python
taking advantage of the PyTorch Autograd engine [26].
WDFs are a particular class of digital filters based on
physical modeling principles [35]. The reference circuit (in
our case, the LEM under consideration) is represented as
an interconnection of input-output blocks characterized by
scattering relations. In fact, the so-called Kirchhoff variables
(port voltages and port currents) are substituted with a linear
combination of incident and reflected waves, whose most
spread definition is [35]

a = v+ Zi, b = v− Zi, (4)

where a is the incident wave, b is the reflected wave, whereas
Z is a free parameter called port resistance. Moreover,
in the Wave Digital (WD) domain, the topology and

FIGURE 3. Bridged-T network.

FIGURE 4. Thiele-Small model of an electrodynamic loudspeaker with
linear electromechanical coupling Bl (gyrator).

FIGURE 5. Lowpass Sallen-Key filter.

element descriptions are addressed independently, enabling
an efficient implementation of nonlinear elements [37], [38].
Whereas losses based on wave variables could be defined,

in the following, we minimize objective functions in the
Kirchhoff domain by taking the inverse mapping of (4)
and incorporating such operation in the DAG. In practice,
however, not all M pairs of Kirchhoff variables might be
measurable at every k = 1, . . . ,K . Hence, the observability
of a partial or noisy set of physical quantities can be
accounted for by masking the loss functions with (sparse)
binary matrices, thus zeroing out the gradients associated
with missing or outlier data. Furthermore, we compute the
absolute value as the first operation in the forward AD graph
in order to enforce parameter non-negativity. Finally, since
raw physical parameters may take values well below the
machine precision granted by 32-bits floating-point numbers,
all our implementations use double-precision floating-point
numbers.

IV. EXPERIMENTS
In this section, we provide a series of experiments concerning
the application of the proposed framework to different
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FIGURE 6. Diode-based dynamic ring modulator.

scenarios (linear and nonlinear LEMs, time and frequency
domains, etc.), pointing out its features and wide generality.
In Section IV-A, we test the proposed methodology on a
Bridge-T network (Fig. 3), in Section IV-B on a Thiele-Small
network modeling an electrodynamic loudspeaker (Fig. 4),
in Section IV-D on a lowpass Sallen-Key filter (Fig. 5), and in
Section IV-F on a typical ring modulator circuit (Fig. 6).
In the following, we use the Normalized Mean Squared

Error (NMSE) between the true and estimated parameters as
a metric to assess the performance of the method, i.e.,

ϵ(θ⋆) =
1
P

P∑
p=1

|θp − θ̂p|
2

|θp|2
, (5)

where P is the total number of model parameters.

A. LINEAR TIME-DOMAIN MODELS: BRIDGED-T
NETWORK
As a first case study, let us consider the simple Bridged-T
network shown in Fig. 3 and implemented in the WD domain
as in [39]. Our goal is to estimate all model parameters
starting from some initial guess regarding their values so to
match time-domain system measurements. The ground truth
for the target parameters is as follows: R1 = 2 k�, R2 =

20 k�, R3 = 5 k�, R4 = 3 k�,C1 = 3.2 nF. The input signal
u[k] at a sampling rate of 96 kHz determines the voltage of
the ideal generator Vin for k = 1, . . . ,K . We express u[k]
in tensor notation as u ∈ RK×1. We also define the network
observables y as a tensor of M port voltages and currents.
Namely, y ∈ RK×2M can be written as y = [y1, . . . , yK ]T,
where

yk :=
[
v1[k], . . . , vM [k], i1[k], . . . , iM [k]

]T
. (6)

We optimize the Bridged-T network by minimizing the
following NMSE loss function for a total of 3000 epochs:

LBT(y, ŷ) :=
1

2MK

2M∑
m=1

K∑
k=1

(ym[k] − ŷm[k])2

ym[k]2
. (7)

The objective function in (7) can be thought of as the sum
of the NMSE relative to voltages v1[k], . . . , vM [k] and the

TABLE 1. Bridged-T network (3000 Epochs).

NMSE relative to currents i1[k], . . . , iM [k], i.e.,

LBT(y, ŷ) := NMSEv + NMSEi, (8)

where

NMSEv :=
1
MK

M∑
m=1

K∑
k=1

(vm[k] − v̂m[k])2

vm[k]2
, (9a)

NMSEi :=
1
MK

M∑
m=1

K∑
k=1

(im[k] − îm[k])2

im[k]2
. (9b)

Resistances and capacitances take values in hugely
different ranges spanning several orders of magnitude.
Therefore, we found it beneficial to alternately apply two
optimizers, the first acting only on the resistors and having
a large learning rate, and the second acting on all circuit
elements with a lower learning rate. Specifically, we use
two Adam optimizers [30] with learning rate 103 and 10−10,
respectively. We empirically observed that the algorithm
achieved convergence only if, at every iteration, the global
optimizer step followed the one updating the four resistances.

We fed the Bridged-T network with three different input
signals of a duration of 1.6 ms: a sine and a square wave,
both with unit amplitude and frequency f0 = 3000 Hz, and
white Gaussian noise with zero mean and unit variance. The
results obtained observing all circuit elements are reported
in Table 1 and the corresponding loss functions are depicted
in Fig. 7. After 3000 epochs, the losses read 4.09 × 10−21,
9.09×10−9, and 9.06×10−7 for sine, square, and white noise
inputs, respectively. In turn, this results in ϵ(θ⋆) = 0 for the
sinusoidal input, ϵ(θ⋆) = 8.69 × 10−6 for the square wave
input, and ϵ(θ⋆) = 3.06×10−6 for white noise input. Table 1

VOLUME 11, 2023 143607



A. I. Mezza et al.: Data-Driven Parameter Estimation of Lumped-Element Models via Automatic Differentiation

shows that the minimization procedure yields parameters
matching the ground truth regardless of the input type. In the
worst case, i.e., R2 for the square wave input, the percentage
estimation error falls below 0.3% of the true parameter value.

1) EXAMPLE OF PARAMETER UNIDENTIFIABILITY
Inspecting the network topology, we may notice that R1 and
R4 form a voltage divider characterized by

vR4 [k] =
R4

R1 + R4
Vin[k]. (10)

Therefore, there exist infinitely many combinations of R1 and
R4 resulting in the same voltage across R4. Without observing
either component, we are bound to face parameter unidenti-
fiability when optimizing the network (see Section III-B).

In this regard, we performed two experiments: we trained
the model observing only C1 (triggering unidentifiability)
and observing both C1 and one of the two resistors in the
voltage divider (in this case R4). In both cases, we use the
sinusoidal input detailed in the previous section. The loss
functions are depicted in Fig. 11 and the exploration of the
parameter space is shown in Fig. 8a and 8b, respectively.
As evidenced by the (numerically) zeroed training losses, the
target voltages and currents are perfectly matched in both
cases. However, when observing only the capacitance, the
resistances promptly converge to different minima, as shown
in Fig. 8b, yielding an equivalent model. Notably, C1 is
correctly estimated in both cases, as its value is key for the
correct behavior of the output variables.

2) NOISE ROBUSTNESS
To evaluate the robustness with respect to the presence
of sensor noise, we simulate a more realistic scenario in
which the observations of voltages and currents are corrupted
by additive white Gaussian noise (AWGN). Specifically,
we assume that each measurement is characterized by
a signal-to-noise ratio (SNR) of 20 dB. We repeat the
experiment in Section IV-A1 observing the now corrupted
measurements on C1 and R4. As illustrated in Fig. 9,
the exploration of the parameter space seems not to be
substantially affected by the presence of AWGN. After
3000 epochs, the estimated parameters are R̂1 = 2020.87 �,
R̂2 = 20184.77 �, R̂3 = 5045.27 �, R̂4 = 3001.98 �,
Ĉ1 = 3.22 nF, all within ±1% of the true values
(see Table 1). Remarkably, this range is compatible with
the tolerance of most capacitors and carbon- or metal-film
resistors commercially available. Overall, we report ϵ(θ⋆) =

8.53 × 10−5 for an SNR of 20 dB.
In order to stress the method robustness to noise, we repeat

the same experiment considering an SNR of 6 dB. The
resulting exploration of the parameter space is shown in
Fig. 10, where it can be seen that the estimates rapidly
converge to R̂1 = 10831 �, R̂2 = 3094 �, R̂3 = 11311 �,
R̂4 = 8050 �, Ĉ1 = 8.81 nF, i.e., far off from the ground
truth values. Indeed, this configuration yields ϵ(θ⋆) = 5.54,
i.e., orders of magnitude larger than the NMSE reported for

FIGURE 7. Trend of Bridged-T network loss functions using different input
signals, i.e., a sine wave (solid), a square wave (dotted), and white
Gaussian noise (dashed).

an SNR of 20 dB. Ultimately, such an error indicates limited
noise robustness in the face of a significant degradation of the
observable signals.

B. LINEAR TIME-DOMAIN MODELS: THIELE-SMALL
ELECTRODYNAMIC LOUDSPEAKER MODEL
Let us now consider the Thiele-Small equivalent model of
a boxed dynamic loudspeaker [36], whose circuit schematic
is given in Fig. 4. As opposed to the Bridged-T network
discussed in the previous section, the Thiele-Small model
represents a multiphysics system by means of an electrical
equivalent and contains multiple dynamical elements. The
electromechanical coupling is realized via a gyrator imple-
mented in the WD domain as in [40], whereas the whole
circuit is implemented by making use of linear WDFs [38].
The electrical parameters of the model are Re = 3.33 �

and Le = 0.23 mH, i.e., the resistance and the inductance of
the coil, respectively. The mechanical parameters describing
a dampened harmonic oscillator are characterized by the
capacitance Cms = 490.82 µF modeling a massless ideal
spring, the inductance Lms = 11.012 mH modeling the mass
of the coil and loudspeaker diaphragm, and the resistance
Rms = 1.039 � accounting for frictions and other dissipative
effects. Finally, the magnetic contribution is reduced to a
constant force factor Bl = 4.15 �. In this scenario, we aim to
apply the proposed framework to learn electrical, mechanical,
and magnetic parameters jointly.

We minimize the NMSE loss function in (7) for 12 000
epochs. We assume to be able to measure only the Kirchhoff
variables on Re and Rms, i.e., one pair for the electrical part,
and one for the mechanical part (M = 4). Hence, the vector
of observables at time k can be expressed as

yk :=
[
vRe [k], vRms [k], iRe [k], iRms [k]

]T
. (11)

As an initial guess for the learnable circuit parameters,
we choose 10� for the resistances, 1 mH for the inductances,
1 µF for the capacitances, and 1 � for the force factor Bl.
We feed the Thiele-Small circuit model with a low-frequency
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FIGURE 8. Exploration of the parameter space of the Bridged-T network (a) observing C1 and R4; (b) observing only C1.

FIGURE 9. Exploration of the parameter space of the Bridged-T network
observing C1 and R4 whose measurements were corrupted by AWGN
taking into account an SNR of 20 dB.

sinusoidal input u[k] = A sin(2π f0k) of duration 1.6 ms,
where A = 1 V, f0 = 50 Hz, and k is the discrete-time
index.

At each iteration, we employ three Adam optimizers
subsequently invoked one at a time. The first updates the
resistances with learning rate αR = 102. The second updates
the force factor Bl with learning rate αBl = 10−2. The third
updates all the parameters with learning rate αall = 5×10−5.
We observed that this learning rate configuration causes
the minimization to become unstable after a few hundred
epochs. The training loss would indeed start to chaotically
oscillate around a steady-state value. One choice was to select
different initialization values for all learning rates. However,
this would have led to an overall slower convergence rate.
As an alternative, we opted for reducing the learning rates by
a factor of ten every time the training loss would not decrease

FIGURE 10. Exploration of the parameter space of the Bridged-T network
observing C1 and R4 whose measurements were corrupted by AWGN
taking into account an SNR of 6 dB.

TABLE 2. Thiele-small model (12000 Epochs).

for ten consecutive epochs. The resulting loss curves can be
seen in Fig. 12, along with the corresponding learning rate
dynamics. The spikes in the loss function occurring roughly
at epochs 4000 and 9000 trigger the learning rate reduction,
thus avoiding entering the aforementioned unstable regime.
The optimization results are summarized in Table 2, which,
overall, correspond to ϵ(θ⋆) = 2.63 × 10−8. Among all
estimates, only Cms presents an appreciable deviation from
the true value (by approximately 4.5%). The initialization
of Cms, however, was the furthest from the ground truth,

VOLUME 11, 2023 143609



A. I. Mezza et al.: Data-Driven Parameter Estimation of Lumped-Element Models via Automatic Differentiation

FIGURE 11. Trend of Bridged-T network loss functions (a) observing
C1 and R4; (b) observing only C1.

requiring to span two orders of magnitude to converge at
the true value. Hence, we expect that longer training and
additional fine-tuning of the learning rates would result in a
perfect match.

C. LINEAR FREQUENCY-DOMAIN MODELS
In Section IV-B, we explored the capability of the proposed
framework to match the multiphysics characteristics of a
target linear time-domain system. However, many real-world
phenomena exhibit frequency-dependent behaviors, which
are best described in the Laplace domain. In this section,
we investigate the use of AD to learn an equivalent LEM
by fitting the complex-valued transfer function H (s) of a
target system. This can be achieved, e.g., by solving (3) with
y = [H (ω1), . . . ,H (ωK )]T and ŷ = [Ĥ (ω1), . . . , Ĥ (ωK )]T,
where H (ω) is the target transfer function evaluated on the
jω axis, and Ĥ (ω) is that of the chosen LEM, which is
determined by the model parameters θ .
In general, when the analytical expression of the frequency

response is known, it can be explicitly included in the forward
pass of the algorithm.Alternatively, one could excite the LEM
with an impulse and compute the Fourier transform of the
observable outputs. In both cases, the proposed framework
entails an optimization based on complex gradients that can
be performed by means of Wirtinger calculus [41]. In the
following, we will consider three different loss functions,
given in (12), (15), and (16), respectively.

First, let us consider

LB := MSE|·| + MSEφ, (12)

where

MSE|·| :=

∑
k

(∣∣H (ωk )
∣∣− ∣∣Ĥ (ωk )]

∣∣)2 , (13)

MSEφ :=

∑
k

(
̸ H (ωk ) − ̸ Ĥ (ωk )

)2
. (14)

In particular, (13) describes the mean squared error (MSE)
between the true and estimated magnitudes, and (14)
describes the MSE between true and estimated phases.

Second, let us consider the logarithmic energy function
proposed in [42]:

Lln :=

∑
k

(
ln Ĥ (ωk ) − lnH (ωk )

)(
ln Ĥ (ωk ) − lnH (ωk )

)∗
=

∑
k

ln

(∣∣Ĥ (ωk )
∣∣∣∣H (ωk )
∣∣
)2

+

(
̸ Ĥ (ωk ) − ̸ H (ωk )

)2
,

(15)

where (·)∗ denotes the complex conjugation operator.
Finally, let us consider the complex mean squared loss

function described in [43]:

Lc :=

∑
k

(
H (ωk ) − Ĥ (ωk )

)(
H (ωk ) − Ĥ (ωk )

)∗
. (16)

It is important to stress that (12), (15), and (16) do not take on
complex values but rather describe real-valued mappings that
tend to zero as themagnitude of the complex errors decreases.
However, since the AD of these losses typically entails the
explicit computation of the complex-valued transfer function
as part of the DAG, it can only be solved bymeans of complex
differentiation.

By exploiting the polar form of H (ω) and Ĥ (ω), both
LB and Lln expose the magnitude and phase quantities.
Therefore, (12) and (15) might not require the explicit
differentiation of the complex-valued transfer function.
Indeed, if the frequency response can be analytically derived,
one might define parallel branches for magnitude/phase or
real/imaginary parts in the control flow of the program.
In such cases, LB and Lln may be preferred over Lc as they
would enable standard real-valued AD. In the next section,
however, we focus on complex gradient-based optimization
as it encompasses the most general use case.

D. LINEAR FREQUENCY-DOMAIN MODELS: LOWPASS
SALLEN-KEY FILTER
Let us consider the Bode plots in Fig. 13 describing the
transfer functionH (s) of a target linear time-invariant system.
H (s) is characterized by a lowpass frequency response with
a −40 dB/decade roll-off rate in the audio bandwidth.
Therefore, we could think of approximating it with a
second-order active filter. In this example, we consider the
lowpass Sallen-Key topology [44] depicted in Fig. 5, i.e.,
a simple two-pole voltage-controlled voltage source filter.
The transfer function of the Sallen-Key filter is given by

Ĥ (s) =
1 +

R4
R3

s2 (R1R2C1C2) + s
(
(R1 + R2)C2 −

R1R4C1
R3

)
+ 1

.

(17)

Our objective is to learn the parameters R1, R2, R3, R4,
C1, C2 so that the estimated Ĥ (s) matches the observable
H (s). To this end, we initialize the resistances to 1 k�
and the capacitances to 1 nF. We train for 3000 epochs
using two Adam optimizers with learning rates 103 and
10−10, respectively. The first optimizer acts on the four
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FIGURE 12. Thiele-Small model observing Re and Rms. (a) Loss and learning rate dynamics; (b) exploration of the parameter space of the model.

FIGURE 13. Target (in blue) and estimated (in orange) Bode plots of the
complex-valued transfer function H(s).

resistors, whereas the second updates all circuit elements at
the same time. Throughout the epochs, both learning rates are
decreased according to a cosine annealing schedule (without
restarts) [45], as it was observed to provide increased stability
during late training. As a loss function, we choose either
LB (12), Lln (15), or Lc (16). The comparison between the
three losses is shown in Fig. 14: Lln plateaus at around
4× 10−12, whereas both LB and Lc reach values well below
practical machine precision. Among the three, Lc appears
to achieve faster convergence. Ultimately, these results
suggest that complex differentiation may be regarded as a
particularly suitable strategy for frequency-domain learning
objectives. Notably, there exist infinitely many parameter
configurations of a Sallen-Key topology yielding a perfect
match of the target transfer function. Therefore, the method
would converge to a different equivalent circuit depending on
the loss function and the chosen parameter initialization. The
Bode plots of the filter learned using Lc as the loss function
are displayed in Fig. 13 against the ground truth, pointing out
the accuracy of the estimated response.

FIGURE 14. Comparison among different loss functions for the parameter
estimation of the lowpass Sallen-Key filter.

E. NONLINEAR TIME-DOMAIN MODELS
In the previous sections, we focused on linear systems. How-
ever, many interesting physical systems exhibit nonlinear
characteristics. In this section, we show that the proposed
framework can be seamlessly applied to the estimation
of both the electrical and constructive parameters of the
elements of a target nonlinear circuit.

In the WD domain, circuit elements are modeled by
separate input/output blocks. This makes WDFs a suitable
framework for dealing with nonlinearities as they can be
typically handled locally. In particular, the waves reflected
from all individual elements can be computed through
parallel one-dimensional nonlinear solvers, such as the
Newton-Raphson (NR) algorithm, as done in [37]. In our case
study, however, this has the unwanted side effect of enlarging
the AD graph as the number of iterations increases. In fact,
the gradient with respect to the nonlinear element parameters
would have to be backpropagated through the unfolding of
every iteration cycle of the NR algorithm. In turn, this may
lead to a dramatic increase in training time and result in
well-known gradient flow pathologies.
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FIGURE 15. Comparison between LCPWL and LNR having fixed
Vt = 26 mV.

An alternative approach is to find explicit wave map-
pings for the target nonlinearities such as, e.g., Canonical
PieceWise Linear (CPWL) representations [46]. In fact,
despite not circumventing the use of global iterative methods,
CPWL functions eliminate the need for a dedicated solver for
each nonlinear element. In the following, we base our CPWL
implementation on [47], [48].

F. NONLINEAR TIME-DOMAIN MODELS: DYNAMIC RING
MODULATOR
As an illustrative example, let us consider the dynamic ring
modulator depicted in Fig. 6 containing multiple dynamic
elements and nonlinear diodes [38]. We assume all four
diodes D1,D2,D3,D4 to be characterized by the extended
Shockley diode model described by the nonlinear implicit
equation [38]

g(v, i) = Is

(
exp

(
v− Rsi

ηVt

)
− 1
)

+
v− Rsi
Rp

−i = 0,

(18)

where Is is the saturation current, η is the ideality factor, Vt is
the thermal voltage, and Rs and Rp are the series resistance
and the shunt resistance of the p-n junction, respectively.
Our implementation refers to the RFN5BM6S silicon diode.
Namely, we set Is = 1.186 nA, η = 1.7549, Vt = 26 mV,
Rs = 1 m�, and Rp = 100 k�. The other parameters of the
circuit are Rin = 80 �, Rout = 600 �, Rc = 1 �, Rd = 50 �,
La = Lb = 0.8 H, and Ca = Cb = Cd = 1 nF. The turn ratios
of all ideal transformers are set to 1/2. The given circuit is
fed with two inputs: a carrier signal, modeled by the voltage
source Vc, and a modulating signal, modeled by the generator
Vin. Here, we use two sine waves with a duration of 1 ms at
a sampling rate of 44.1 kHz and frequencies fc = 50 Hz and
fin = 150 Hz, respectively.

Considering the extended Shockley equation in (18),
we can readily notice that the product of the ideality factor
η and the thermal current Vt appears in the argument
of the exponential function. Therefore, it is impossible to
unambiguously determine both parameters at the same time,
as any scalar multiplier in one term can be canceled out by

FIGURE 16. Exploration of the parameter space of the CPWL-based
implementation of the dynamic ring modulator circuit with Vt = 26 mV.

multiplying the other by the reciprocal. A principled choice
for the initial values of η and Vt may lead to discovering
physically meaningful values, even if the problem remains
undeterminable. Alternatively, one might assume to know
the operating temperature T of the device. In this case,
the thermal voltage can be set to Vt = kBT/q, where kB
is the Boltzmann constant and q is the elementary charge,
thus making the problem converge to a unique solution.
In the following, we consider this latter case by fixing Vt =

26 mV (corresponding to a temperature of approximately
28.6 ◦C) and observing port voltages and currents as done
in Section IV-A. Specifically, the loss function is formulated
as in (7) with M = 13. The initial guess for the circuit
parameters is as follows: 100 � for all resistances, 1 H for
all inductances, 10 pF for all capacitances, 10 nA for the
saturation current, and 2 for the ideality factor. We implement
the circuit in the WD domain considering, as far as the
modeling of the four diodes is concerned, both the approach
based on CPWL functions [47] and NR solvers [38]. We refer
to the corresponding loss functions as LCPWL and LNR,
respectively.

In this example, instead of tuning the learning rates
according to prior assumptions on the orders of magnitude of
the circuit parameters, we incorporate this knowledge directly
into the model. We assume that every capacitance will be in
the range of a few nanofarads and that the saturation current
will be in the range of a few nanoamperes. Therefore, Ca, Cb,
Cd, and Is are multiplied by 10−9 as they enter the execution
flow of the program. This means that we are, in fact, learning
a scaled version of those parameters that takes value in a range
comparable to that of the other circuit parameters. Ultimately,
this gave us more freedom in choosing the hyperparameters.
We train both models by means of two Adam optimizers, one
updating the resistances with learning rate αR = 10, and
the other updating all circuit elements with a learning rate
αall = 0.1. We empirically observed that the optimization
of the NR-based model enters an unstable regime after a
few hundred epochs. Instead of reducing the learning rates
globally, we introduce a policy for dynamically decreasing
the learning rates when hitting a plateau as described in
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TABLE 3. Dynamic Ring Modulator (1500 Epochs); NR (Newton-Raphson) and CPWL (Canonical PieceWise Linear) indicate two different implementations
of nonlinear elements in the Wave Digital domain.

TABLE 4. NMSE between true and estimated parameters of the
diode-based Dynamic Ring Modulator model.

Section IV-B. Conversely, no learning rate schedule was
applied to the CPWL-based model as it proved to needlessly
slow down the learning process.

Fig. 15 shows the ensuing behavior of LCPWL and LNR
over 1500 epochs. On the one hand, LNR rapidly decreases in
the first few epochs. Then, the chaotic oscillation noticeable
around epoch 500 triggers the learning rate reduction by a
factor ten. Afterward, the loss decreases at a steady pace
reaching 6.61 × 10−10. On the other hand, LCPWL appears
to decrease slower than LNR during early training. However,
after such an initial phase, the loss of the CPWL-based
model exponentially drops before settling at around
5.08 × 10−15. Table 3 summarizes the estimated parameters
in the two cases. Arguably, both the NR- and CPWL-based
implementations allow one to fit the true circuit with
negligible deviation from the ground truth values, yielding
remarkably small values of ϵ(θ⋆) in both cases, as shown
in Table 4. The exploration of the parameter space of the
CPWL-based model is depicted in Fig. 16, wherein, after
1000 epochs, all the parameters have reached the respective
ground-truth values.

For completeness, let us now include Vt among the
trainable parameters and choose 25 mV as an initial guess.
Similar to what was done for the capacitances and the
saturation current, the thermal voltage estimate is multiplied
by 10−3 to scale it in the same range of the other parameters.
Thus, the learning algorithm described above is run again
for 1500 epochs. The results in Table 3 show that the only
indeterminate predictions are those relative to η and Vt,
as expected. Notably, the values of all the remaining passive
and dynamic elements are almost perfectly retrieved.

G. COMPUTATIONAL TIME
In Table 5, we report the time-per-epoch measured for every
LEM considered in the present study. These figures are
obtained by averaging the elapsed time of 1000 single-batch

TABLE 5. Average time-per-epoch (± standard deviation) of every model
considered in the present study.

epochs run on a Intel Xeon E5-2687W v4. The time-per-
epoch of each LEM depends on several factors including the
number of input samples, the number of trainable parame-
ters, and the program efficiency in terms of differentiable
operations. Unsurprisingly, the slowest model to fit is the
diode-based dynamic ringmodulator, whose solution requires
the application of a global iterative method (Scattering
Iterative Method [37], in our case) due to presence of
nonlinear elements. As a result, the number of differentiable
operations involved in the AD backward pass increases with
every iteration. In addition, the computational time increases
further when nonlinearities are implemented using dedicated
NR solvers, whose iterations adds even more operations
to the DAG. Indeed, the NR-based implementation of the
dynamic ring modulator takes, on average, 1.41 s per epoch,
whereas the CPWL-based implementation only takes 1.05 s.
Conversely, that of the lowpass Sallen-Key filter stands out
as the quickest optimization routine, with training epochs
clocking in at under 2 milliseconds when employing the
complex mean squared loss function Lc. This efficiency is
a result of the filter operating in the frequency domain,
where it can produce the transfer function estimate in a
single forward pass, unlike time-domain models that rely on
a sample-by-sample simulation mechanism.

V. CONCLUSION
In this article, we presented a general data-driven framework
for estimating the parameters of physical systems that can be
characterized as lumped-elementmodels. Our approach relies
on automatic differentiation, a well-understood technique
for the error-free gradient evaluation of functions expressed
as non-standard computer programs, which, to date, has
received relatively little attention outside of off-the-shelf
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deep learning applications. We argued that the input-output
mappings characterizing LEMs could be learned via the
backpropagation of some error metric between target and
observable physical quantities. Unlike neural networks,
though, the proposed model-based paradigm is explicit and
fully interpretable as it exposes the underlying topology
of the system and learns a physically-consistent set of
parameters. Moreover, since the forward architecture incor-
porates the model in full, inference is unlikely to suffer
from out-of-distribution and generalization problems. In all
the experiments conducted on several linear and nonlinear
systems, both in the time and frequency domain, we reported
a near-perfect match of the desired behavior, and, when
considering the right set of observables, we were able to
retrieve the true lumped-parameter values with a remarkable
degree of accuracy. We showed that a principled choice of
the hyperparameters informed by the underlying physical
constraints and best practices borrowed from the deep
learning field ensure reliable and fast convergence rates.

Optimal results were achieved using just a few
milliseconds of system measurements. Therefore, the present
approach appears very promising in all those scenarios in
which extensive domain knowledge exists, and yet data are
inherently scarce or too expensive to simulate using, e.g.,
finite element methods (FEM). Mechanics, vibroacoustics,
and fluid dynamics, to name a few, often rely on accurate but
lengthy multiphysics solvers that are unsuitable for real-time
simulation. Researchers and practitioners in those fields may
thus benefit from the adoption of the present framework by
using existing FEM models to generate the minimal amount
of training data needed to learn an equivalent LEM via
AD. Furthermore, such a data-driven optimization scheme
may allow one to compensate for the long- and short-term
deviations in operating conditions that may naturally occur
during the lifecycle of a device by correcting the initial
parameter estimates according to online measurements.
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