
Received 10 November 2023, accepted 28 November 2023, date of publication 5 December 2023,
date of current version 19 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339560

YOLOv5s-CAM: A Deep Learning Model for
Automated Detection and Classification for
Types of Intracranial Hematoma in CT Images
V. VIDHYA 1, U. RAGHAVENDRA 2, ANJAN GUDIGAR 2, SUDIPTA BASAK2,
SANKALP MALLAPPA 2, AJAY HEGDE 3, GIRISH R. MENON 4, PRABAL DATTA BARUA 5,6,7,
MASSIMO SALVI 8,9, EDWARD J. CIACCIO10, FILIPPO MOLINARI 8,9, (Senior Member, IEEE),
AND U. RAJENDRA ACHARYA 11,12, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
2Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104,
India
3Manipal Hospitals, Bengaluru, Karnataka 560102, India
4Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
5Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
6School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
7Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
8Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
9PolitoBIOMed Laboratory, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
10Department of Medicine, Columbia University, New York City, NY 10032, USA
11School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia
12Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Corresponding author: Anjan Gudigar (anjan.gudigar@manipal.edu)

This work was supported by the Open Access funding provided by the Manipal Academy of Higher Education, Manipal.

ABSTRACT Intracranial hematoma due to traumatic brain injury is a serious health concern with rates of
morbidity and mortality that are increasing worldwide. Manual identification is slow, subject to observer
variabilities, and the existing automated techniques for intracranial hematoma detection in non-contrast
computed tomography images cannot effectively detect multiple lesions of irregular sizes and shapes.
Therefore, a computer-aided system using different window settings, YOLOv5s, cascaded attention module,
and spatial pyramid pooling-fast is proposed to detect hematoma types, namely acute intraparenchymal,
intraventricular, subdural, epidural, subarachnoid, and chronic subdural. Firstly, the computed tomography
images are pre-processed using a window-based stacking approach wherein a three-channel image is
generated by stacking grayscale images obtained with the aid of multiple window settings, i.e, brain, bone,
and subdural. Secondly, a cascaded attention module is constructed in the neck of the YOLOv5s model
to improve its detection performance by placing the convolution block attention module in serial with the
efficient channel attention module. The cascaded attention module enriches the feature representation of
various hematoma types in complex backgrounds especially when they are small and inconspicuous. The
spatial pyramid pooling is replaced by a spatial pyramid pooling-fast to reduce the computational parameters
and accelerate the feature fusion ability. The proposed deep learning model is trained, validated, and tested
with 15,921 images from the brain haemorrhage extended dataset and it achieved overall precision, recall,
F1-score, and mean average precision at 0.5, and mean average precision at 0.5:0.95 of 0.935, 0.908, 0.921,
0.943 and 0.65 respectively. The experimental results show that in comparison to the original YOLOv5s
model and state-of-the-art methods, the model was able to localize and classify the acute or chronic instances
of five hematoma subtypes in an individual image with improved precision and recall values. Hence the
proposed system can be used in hospitals for the early and accurate detection of hematoma.

INDEX TERMS Cascaded attentionmodule,medical image processing, intracranial hematoma, TBI, YOLO.
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I. INTRODUCTION
Traumatic Brain Injury (TBI) is a complex medical disorder
that can cause temporary or permanent brain damage and
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dysfunction due to external force [1]. TBI is one of the leading
global health issues with 70 million people suffering from
it annually, resulting in a total of 8.1 million years of life
with disability [2]. The age-standardized frequency of TBI
increased by 8.6% from 1990 to 2016 and the major reasons
can be attributed to road accidents and fall [2]. Due to the
impact of the brain injury, the cerebral blood vessels burst,
and blood accumulates in the intracranial compartments,
leading to Intracranial Hematoma (ICH). ICH is a devastating
health problem with a long-term functional independence
of 12-39% and a 30-day mortality rate of 40% [3]. Early
detection and management of ICH can result in improved
survival and recovery rates of the patients. Hence, prompt
and accurate detection of ICH by clinicians is vital for better
decision-making and patient outcomes. The hematoma can be
classified into five major types which include Subarachnoid
Hematoma (SAH), Subdural Hematoma (SDH), Epidural
Hematoma (EDH), Intraparenchymal Hematoma (IPH) and
Intraventricular Hematoma (IVH). The hematoma can appear
either in an acute or chronic stage. The acute hematoma
manifests rapidly within the first few hours of injury whereas
the chronic hematoma evolves over weeks after the injury.
SDH is the most common hematoma in pediatric and elderly
patients with different phases of manifestations [4], [5].
Non-contrast Computed Tomography (CT) is the gold

standard imaging modality used to assess hematoma after
the incidence of acute TBI. CT imaging is preferred to other
imagingmodalities for the initial diagnosis of ICH as it is fast,
economical, widely available, and highly sensitive to blood
and bone tissues [6], [7], [8]. The hematoma can be observed
as hyperdense regions in the CT images with highly irregular
shapes and sizes, especially during the stage of hematoma
expansion. Further, the hematoma regions can be observed
in a acute or chronic phase. The CT images are inspected
by skilled radiologists to detect and classify the hematoma
regions. However, due to the intrinsic limitations in the
grascale CT images and extreme variabilities with respect
to shape, size, and location, manual hematoma detection is
arduous and requires high expertise [9], [10], [11], [12].
Therefore, Computer-Aided Diagnostic (CAD) techniques
that facilitates fast and accurate detection of hematoma is
essential to provide improved quality care to the patients.

A. LITERATURE REVIEW
Numerous CAD systems have been developed in the last two
decades for the segmentation, classification, and detection of
ICH. The CAD systems are aimed at providing rapid, low-
cost, and reliable detection of hematoma by capturing varying
levels of powerful discerning features in the CT images.
Some of the conventional image processing techniques were
exclusively based on either segmentation or classification
techniques. For example, Shahangian and Pourghassem [13]
applied a modified distance regularized level set evolution
method to initially obtain the hematoma regions and then
applied a hierarchical classifier to segment and categorize

ICH. With the optimal set of shape and texture features, the
classifier achieved an accuracy of 94.13% for the character-
ization of four hematoma types. Kumar et al. [14] integrated
fuzzy c-means clustering, entropy-based thresholding, and
distance-regularized level set methods for the segmentation
of hematoma. The technique attained an accuracy of 99.87%
for a dataset of 35 CT images. Alawad et al. [15] evaluated
the performance of a hematoma classification framework
using Otsu’s thresholding, region growing, genetic algorithm,
and various stacking models. The framework obtained an
accuracy of 99.5% for four-class labelling using a Support
Vector Machine (SVM) classifier.

Various deep-learning techniques were successfully app-
lied in recent years for hematoma segmentation/classification/
segmentation and classification. The segmentation tech-
niques enables clinicians to assess the hematoma volume
more accurately and guide towards surgical planning and
better decision-making. Inkaew et al. [16] proposed a
modified DeepMedic architecture which includes multiple
parallel pathways for accurate segmentation of hematoma
regions. The pre-processed CT images using brain window
and subdural window are used to develop themodel, and post-
processing is performed for finer segmentation results. The
method obtained a median Dice coefficient above 0.37 for
hematoma segmentation. However, the model addressed
only three types of hematoma namely SDH, EDH, and
IPH. Phaphuangwittayakul et al. [17] applied an interated
approach using EfficientNetB2, optimal DeepMedic model,
and assessment algorithm for segmentation, classification,
and quantification of hematoma volume. The DICOM images
are scaled to three different windows and the three scaled
images are combined to obtain the three-channel image.
The model achieved a sensitivity, specificity, and accuracy
of 96.01%, 97.55%, and 96.54% respectively. However, the
model can perform only three-class detection and images
with multiple hematoma patterns of various classes are
not considered. Ganeshkumar et al. [18] presented an
ICH diagnosis model based on Residual Neural Network
(ResNet) for detection and Adversarial Network (SegAN) for
segmentation. With the aid of a novel augmentation method
named Cycle Generate Adversarial Network (CycleGAN),
the method obtained an average sensitivity of 0.80 and
specificity of 0.99 for 82 CT scans from the PhysioNet
database. However, CT images with various ICH subtypes
and mixed cases were not taken into account. Ma et al.
[19] focused on evaluating the performance of a modified
U-Net model with an attention mechanism for hematoma
segmentation. To capture the tiny hematoma regions,
Residual Hybrid Atrous Convolution Strategy (RHAC)
modules are included in every stage of the encoder.Moreover,
by introducing feature max-pooling with varied sizes and
an attention mechanism to capture the semantic features
channel-wise and spatial-wise, the model achieved sensitivity
and specificity of 75% and 99% respectively. However, the
hematoma subtype is not taken into account.
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Besides the various classification and segmentation tech-
niques, a few object detection techniques were reported
recently for hematoma diagnosis. Ertugrul et al. [20]
proposed a YOLOv4model for the detection of six hematoma
classes using the BHX dataset. The model was trained
separately with two different datasets - one class label
per image and multiple class labels per image. The model
obtained precision, recall, and mean Average Precision at
0.5 (mAP@0.5) of 93.8%, 91.8%, and 90.6% respectively
for a set of images with one label. But the precision,
recall, and mAP@0.5 values were reduced to 92%, 81%
and 79.6% during training with multiple labels per image.
Kothala et al. [21] proposed a light-weight YOLOv5x-Ghost
Convolution Block(GCB) for hematoma detection using
the BHX dataset. To reduce the computational parameters
and improve the detection performance, all of the CSP
bottleneck structures in YOLOv5x were replaced by a ghost
bottleneck that utilizes ghost convolution. In order to further
enhance the efficiency and speed of ICH detection, the
Spatial Pyramid Pooling-Fast(SPPF) module is utilized in
the proposed scheme. The model was able to detect the
co-existence of multiple hematoma types in a CT image with
precision, recall, and mAP@0.5 of 92.1%, 88.9%, and 93.1%
respectively. However, the inclusion of a ghost module in the
YOLOv5x has brought down the performance of the model.
The precision and recall rates of the model can be further
improved for the detection of mixed images with single or
multiple patterns of hematoma types.

B. LITERATURE GAPS
Based on the above literature review, the literature gaps are
as follows:

a. For Traditional Techniques:
• They uses pre-defined values, and rules, requiring
adjustment of various control parameters, making
them highly unreliable for diverse, real-time clinical
cases.

• They uses limited dataset size and detect few classes
of hematoma.

• They require complicated steps such as spatial image
registration, skull removal, and voxel-level details for
hematoma detection.

• Some are computationally expensive, sensitive to
initialization, and require a large number of iterations
to converge.

• They better detect medium and large hematoma
lesions as compared to small, subtle, and isodense
hematoma regions.

b. For Deep Learning Techniques:
• Most focused on either classification or segmentation
of a few hematoma subtypes. Few works perform
both localization and classification for five hematoma
subtypes.

• The size of data for some ICH subtypes is lim-
ited, thereby reducing the generalizability of the
application.

• Few works have been published to detect acute and
chronic hematoma lesions which requires immediate
surgical intervention.

• Most of the studies are only capable of identifying or
classifying a single type of hematoma in a CT image,
even whenmultiple hematoma subtypes are present in
various sizes and shapes.

C. MOTIVATION
The motivation of the proposed study is outlined as follows:
1) Due to the presence of noise, artefacts, asymmetrical

limits, and similar pixel intensity regions in the CT
images, hematoma detection is a highly challenging and
time-consuming process even for skilled radiologists
[9], [10]. Further, manual examination and estimation
is a highly operator-dependent task and is subjected
to inter- and intra-observer variabilities. Additionally,
such a labour intensive process may introduce faults
and deferments [22], particularly in a large clinical
environment. Moreover, various instances of misdiag-
nosis and clinical consequences were reported by the
junior residents during the absence of skilled experts,
particularly during odd hours [11], [12]. Therefore,
CAD techniques that enable clinicians to perform
prompt and accurate identification and assessment of
hematoma are crucial, especially in remote geographic
locations where expertise is scarce.

2) Most of the traditional CAD techniques suffer from
numerous disadvantages like hardcoded logic, manual
intervention, and reduced performance which makes
them highly unreliable to handle diverse and het-
erogeneous cases in a real-time clinical environment
[13], [14].

3) The standard deep learning-based two-stage object
detection models (Region Based CNN (R-CNN), Fast
R-CNN and Faster R-CNN) have various limitations.
a. The object detection model based on R-CNN uses

a large number of region proposals for accurate
detection thereby increasing the computational and
training times [23], [24].

b. Although Fast R-CNN resulted in improved per-
formance with better speed, its real-time appli-
cation is limited due to poor region selection
techniques [23], [25].

c. Despite the improved detection rates achieved by the
Faster R-CNN, the requirements of high computa-
tional power and larger datasets make it less feasible
for various applications [23], [26].

4) The models which belong to the single-stage YOLO
series can be deployed easily with fewer computational
parameters which makes them more suitable to meet
real-time requirements [23], [27].
a. The Darknet-based YOLOv3 [28] was able to detect

objects of various scales with improved detection
accuracy especially for small objects.
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b. The YOLOv4 model was designed with CSPDarknet-
53, Path Aggregation Network (PANet) and Spatial
Pyramid Pooling (SPP) to obtain greater detection
speed with better detection accuracy [29].

c. As compared to previousYOLOmodels, the inclusion
of Feature Pyramid Network (FPN) and PANet
structures along with CSPDarket-53 enablesYOLOv5
[30] model to achieve higher detection performance
and speed.

d. The YOLOv5 model is implemented using PyTorch
instead of Darknet and hence the model size is very
small as compared to YOLOv4 [23], [30]. Due to
the relatively smaller structure, improved detection
accuracy, and speed, YOLOv5 is chosen as the basic
framework for the hematoma detection model.

5) The hematoma regions can appear as a mixture of
single or different patterns with highly varying shapes,
sizes, and locations [31], [32]. Hence the automated
detection process is a unique challenge especially when
the hematoma is subtle and small [31], [32], [33].
Therefore, the major motivation of the research work
is to localize and classify a single or combination of
different hematoma patterns with irregular structures in
the CT images. However, increasing the complexity of
the network will make the training process more difficult
and time-consuming. A deep learning network that is
too simple will fail to capture the critical features of
hematoma thereby reducing the detection accuracy. To
solve the above problems and optimize the detection per-
formance while reducing the computational complexity
and detection time, a YOLOv5s- Cascaded Attention
Module (CAM) is proposed.

D. CONTRIBUTIONS
The main contribution of the present work is presented as
follows:

• A window-based stacking approach in the pre-
processing stage incorporates multiple CT windows
to improve detection of subtle hematoma regions and
overall accuracy.

• The SPP in YOLOv5s is replaced by SPPF to enhance
the speed and receptive field of the network for
multiscale detection.

• A Cascaded Attention Module which combines the
Efficient Channel Attention Module (ECA) and Convo-
lution Block Attention Module (CBAM) is included in
each of the feature fusion layers of the YOLOv5s model
to increase the attention to highly significant channels
and the corresponding spatial features. This helps to
reduce the disturbance caused by overlapping regions
and enhances the feature fusion ability to detect small
and subtle hematomas.

• Based on the above improvements, a novel YOLOv5s-
CAM is proposed to a) detect single or multiple
hematoma patterns of the same or different types

b) distinguish acute and chronic instances of SDH,
which outperforms the existing state-of-the-art models.

• Model performance is evaluated using the shuffle
split cross-validation technique, ensuring the ability to
generalize in real-world scenarios.

The paper is structured as follows: Section II presents
the detection principles of YOLOv5 and the enhancements
that are added to improve the performance for hematoma
diagnosis. Section III describes the details of the research
experiment for hematoma detection. Section IV showcases
the results obtained by the proposed model. Section V pro-
vides a comparative discussion of the results, and Section VI
concludes the paper.

II. YOLOv5 DETECTION PRINCIPLES AND IMPROVEMENT
A. YOLOv5
YOLOv5 is the latest in the series of YOLO models which
possess rapid inference time, high accuracy, and fewer
storage requirements as compared to YOLOv4 [30]. The
YOLOv5 can be implemented in five ways: YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [30].
These models vary based on the CSP structures, number of
convolution kernels, and residual blocks in the architecture.
The architecture includes four major units, namely the input,
backbone, neck, and head [30]. The input unit is responsible
for enhancing the input images and optimizing the anchor
boxes. Mosaic data augmentation is applied to input images
where four random images are cropped and combined to
create new images and then they are scaled to a uniform size
[30]. The mosaic augmentation technique enriches the input
feature maps which will make themodel robust for hematoma
detection. The initial size of the anchor boxes is optimized for
the training data by comparing the size of the predicted and
the actual bounding boxes [34].

The backbone acts as a feature extraction unit that collects
meaningful information from various feature maps with
fewer computations and redundancy. The backbone consists
of Focus, Convolution, Batch Normalization and SiLU Acti-
vation function (CBS), Cross-Stage Partial (CSP) networks,
and SPP [34]. The focus layer slices the input image into
four 3 × 128 × 128 images which are further concatenated
to generate 12 × 128 × 128 slices [30], [34]. The CSP1
structure concatenates the feature maps from the multiple
residual blocks and three convolution layers to perform
improved feature extraction. The CSP1 network reduces
the repetitive gradient information to solve the problem of
gradient vanishing, especially for deeper networks [34]. The
CSP structure enhances the inference speed and accuracy
while decreasing the computation parameters and model size.
The SPP layer performs max-pooling operations of four
varied sizes on the input feature maps and concatenates the
outputs from all four units to enhance the receptive field of
the network [23].

The neck is the feature aggregation module which
combines the features from various backbone and prediction
layers. It consists of FPN, PANet, and CSP2 networks [30].

141312 VOLUME 11, 2023



V. Vidhya et al.: YOLOv5s-CAM: A Deep Learning Model for Automated Detection and Classification

The FPN transfers the semantic information from top to
bottom layers whereas PANet propagates the localization
details from bottom to top layers [35]. The PANet and FPN
structures enable multiscale detection of the target regions
by combining strong semantic and localization features from
top-down and bottom-up layers [30]. The CSP2 network
further enhances the feature fusion capability by cascading
X number of CBS operations [23].

TheYOLOheadmakes the final detections by applying 1×
1 convolution to the refined feature maps from the neck [34].
It consists of three convolution layers to detect target objects
of three different scales. The input feature map is divided into
S×S grids and generates B bounding boxes for each grid cell
[36]. Hence the detection result consists of the coordinates
of the bounding box, the predicted class of the target object,
and the confidence score of the predicted class. To remove
multiple bounding boxes predicted around the same object
using the three detection layers, Non-Maximal Suppression
(NMS) is applied with a confidence threshold of 0.25 and IoU
threshold of 0.5 [37]. The loss function of the YOLOv5 is the
summation of the classification loss function, confidence loss
function, and regression loss function [38]. Since the research
study aims to develop a rapid and accurate CNN model
with limited resources for hematoma detection, YOLOv5s
is chosen for further implementation and experimentation.
The hematoma regions in the CT slices can be highly
irregular with varied shapes and sizes. Further, the hematoma
lesions look very similar in texture and shape, and hence
detection of a mixture of single or multiple patterns of ICH
subtypes, particularly in an individual CT image, is a rigorous
problem. Thus, in order to improve the performance of the
YOLOv5 network for better patient outcomes, additional
optimization is required. The architecture of the optimized
YOLOv5s deep learning model with the input of dimensions
256 × 256, backbone, neck, head, and the novel cascaded
attention module (YOLOv5s-CAM) for hematoma detection
is represented in Figure 1.

B. IMPROVED YOLOv5s-CAM FOR ICH DETECTION
Due to the irregular structures and overlapping pixel intensity
values of hematoma regions with the other brain tissues,
detection of hematoma is very challenging even for an expert
radiologist. Therefore, the YOLOv5s model needs to be
improved to focus on essential features for accurate and rapid
detection of diverse hematoma regions in the CT images
especially when subtle multiple hematoma patterns co-exist.
The unique features of the proposed YOLOv5s-CAM model
are as follows: (a) A window-based stacking approach is
employed as a pre-processing technique to enhance the
detection of subtle changes in the input CT images (b) A
cascaded attention module is incorporated in the neck of
YOLOv5s to improve the model’s ability to focus on key
features, minimize the interference due to background objects
and enrich the feature fusion ability to detect small and subtle
hematoma by focusing on highly significant information

from vast amount of data. (c) The SPP module in YOLOv5s
is replaced by SPPF to enhance the efficiency and speed of
the model.

1) STACKING OF MULTIPLE WINDOWS FOR
PRE-PROCESSING
Pre-processing is applied to the CT images in the digital
imaging and communications in medicine (DICOM) for-
mat to discard the irrelevant details and extract relevant
information. Pre-processing is a crucial step to enhance
various attributes of the input images which further aids
in more accurate and reliable predictions. In CT images,
Hounsfield Units (HU) are used to represent the amount
of X-ray absorption by the brain tissues [39], [40]. As the
intensity range of HU values cannot be completely captured
by the digital monitor, a windowing technique is applied
by the radiologists to highlight the regions of interest in
the CT images. Windowing facilitates the mapping of a
selected interval of HU values into a grayscale range of
0 to 255 [41]. Two parameters that play a major role in
the windowing process are window width and window level
respectively. Window width represents the range of HU
values that need to be converted to an entire grayscale
limit of [0, 255] and window level indicates the middle
value in the range of HU values. Window level (L) allows
highlighting the region of interest in the brain whereas
window width (W) is used to adjust the contrast of the
selected region of interest [39], [42]. The HU values in the
range of [L − 0.5 ×W ,L + 0.5 ×W ] are converted to [0,
255] and the values below L−0.5×W and above L+0.5×W
are assigned black and white respectively [33]. However one
window setting may not be adequate to detect the diverse
abnormalities in the brain, and hence radiologists usemultiple
window settings for better detection and interpretation of CT
images [41], [42]. Therefore, we follow the interpretation
strategy of the radiologists as illustrated in Figure 2. The
DICOM image is scaled to three different windows - bone
window, brain window, and subdural windows with (L, W)
values as (500, 3000), (40, 80), and (175, 50) respectively.
Then the three windowed images are assembled to acquire
a three-channel RGB image [40] of size 256 × 256 × 3.
The creation of this RGB image maximizes the information
provided to the network and ensures that the model can detect
hematoma subtypes accurately. The obtained three-channel
image is further used for training the improved YOLOv5
model.

2) SPATIAL PYRAMID POOLING-FAST
The purpose of SPPF is to enable multiscale fusion by
generating and integrating semantic features from the input
feature maps. Max-pooling is performed multiple times to
realize the feature fusion. The YOLOv5s model uses the SPP
module in the backbone network for the generation and fusion
of features to improve the detection performance as shown in
Figure 3(a). SPP utilizes kernel sizes of 1 × 1, 5 × 5, 9 × 9,
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FIGURE 1. The architecture of the proposed YOLOv5s-CAM model. The input is a DICOM image of size 256 × 256. The CAM module is placed in each
of the three feature fusion layers in the neck. The outputs from the head include the prediction of hematoma with bounding boxes, class labels, and
confidence scores at three different scales.

and 13 × 13 to perform parallel max-pooling which requires
resizing of the imagesmultiple times to generate featuremaps
of fixed dimensions [23], [30], [35]. Further, the resizing
leads to a greater loss of information, especially related
to small target detection with overlapping of surrounding
tissues. Hence the model may miss some of the detections
resulting in reduced accuracy. Therefore, a SPPF structure
which thrice performs pooling operations [35], [43] with a
kernel size of 8 × 8 is used in the proposed model instead
of SPP. As shown in Figure 3(b), SPPF serially applies an
8× 8 max-pooling operation on the input data from the CBS
structure. Hence the SPPF structure reduces computational
parameters, improves the computational speed, and enhances
the prediction accuracy for hematoma [35], [43].

3) CASCADED ATTENTION MODULE (CAM)
The attention mechanism is a strategy to maximize the
performance of the deep learning model while minimizing

the computational complexity of processing the images [44].
Attention mechanisms are widely used in various deep
learning applications due to their ability to provide better
interpretations on complicated information by enabling more
focus to the precise areas of the feature maps [23], [44].

Hematoma detection in CT images is extremely difficult
and complex even for expert clinicians because of the
uneven structures and similar pixel intensities of hematoma
regions with the surrounding regions. Thus, it is necessary
to enhance the YOLOv5s model in order to concentrate on
crucial characteristics for precise and quick identification of
various hematoma locations in the CT scans. The inclusion
of attention modules in the network enables the model to
emphasize the key areas of the image by assigning more
weights as compared to the other regions of the image [45].
Therefore, a cascaded attention mechanism that incorporates
ECA and CBAM attention modules is proposed as depicted
in Figure 4. The ECA attention module [46], [47] is placed
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FIGURE 2. Outline of the windowing technique for pre-processing. Each
DICOM image is scaled to brain window, bone window, and subdural
window and further assembled to generate a 3-channel image.

first to select the key channels from the large volume of
feature information without dimensionality reduction. The
key channels are further amplified using the CBAM attention
module [48]. The channel attention module refines the initial
set of significant channels to obtain more profound and
contributing channels. Then the spatial attention module as
part of CBAM will capture spatial-wise information of the
selected channels to obtain the final weighted feature map
[48], [49]. The weighted feature map is then concatenated
with the input feature maps to obtain the final set of
significant feature maps for accurate multi-scale detection of
hematoma in varied sizes and shapes.

The ECA attention mechanism [46] is included initially
to capture the dependency among the various channels
in the pre-processed CT images with reduced parameters,
complexity and improved performance [34]. The channel

FIGURE 3. (a) Structure of spatial pyramid pooling (b) Structure of spatial
pyramid pooling-fast.

attention module uses a neural network to capture the
cross-channel interactions which will reduce the dimensions
of the model to reduce the complexity. However the dimen-
sionality reduction reduces the ability to capture the cross-
channel interactions effectively [46], [50]. Hence the ECA
[46] module replaces the fully connected neural network with
the fast 1D convolution of adaptive kernel size k to capture the
weights after applying Global Average Pooling (GAP) to the
input feature maps. The adaptive kernel size k enables one to
decide the extent of cross-channel interactions based on the
channel dimension C as given below [46], [47].

k = φ(C) =

∣∣∣∣ log2Cγ
+
b
γ

∣∣∣∣
odd

(1)

where γ = 2, b = 1 and |ν|odd denotes the nearest odd value
to ν. Next, the set of channel weights is produced by further
applying the sigmoid function [51]. Thereafter the channel
weights are multiplied with the input feature maps to obtain
the refined set of feature maps M which will be provided as
input to the next phase of the CAM structure.

In this phase, we have placed the CBAM attention
module in series with the ECA module to further refine
and strengthen the obtained channel feature maps along
the channel and spatial dimensions simply and effectively.
This serial arrangement of the CBAM module facilitates
more attention to the significant channel maps with reduced
parameters. Thus, a balance can be achieved by the model
between the reduction of complexity, computation, and
resources, and performance improvement. As shown in
Figure 4, CBAM [48] consists of two units in succession –
channel attentionmodule and spatial attentionmodule (SAM)
[48]. The channel attention module executes average pooling
and max pooling globally on the individual feature maps
M of dimension C × H × W where C ,H , and W indicate
the number of channels, height, and width of the feature
maps respectively [48], [49]. The two obtained vectors of size
1×1×C are passed to a two-layered neural network and the
results are added together element-by-element, and the final
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FIGURE 4. The structure of the proposed Cascaded Attention Module. The ECA attention mechanism is applied first and then followed by CBAM
technique.The obtained weighted feature map is concatenated with the input feature map to generate significant set of features.

weighted feature map Fc of size, C × 1 × 1 is obtained after
applying the SiLU activation function [42]. Then the feature
map Fc of size, C × H × W is produced by multiplying Fc
with the input featuremapM , which can be defined as follows
[48], [49]:

Q1 = Fc(M ) ×M (2)

Fc(M ) = SiLU
(
W2(W1(Mavg

c )) +W2(W1(Mmax
c ))

)
(3)

Then Q1 is provided as input to the SAM module. SAM ini-
tially concatenates the feature maps obtained after applying
global maximum pooling and global average pooling to Q1
separately, and then convolution f with kernel size 7 × 7 is
performed to adjust the number of channels. Finally, the SiLU
activation function is used to obtain the feature map Fs of size
1 × H ×W [47], [48]. Then the final feature map Q2 of size
C × H × W is generated by multiplying Fs with the feature
map Q1 which can be stated as follows

Q2 = Fs(Q1) ×M (4)

Fs(Q1) = SiLU
(
f 7×7 [

Qmax1 ;Qavg1

])
(5)

The feature map Q2 is further concatenated with the input of
the cascaded attentionmodule to obtain the final set of refined
feature maps which will be provided to the head for making
the predictions. The head detects the hematoma regions and
outputs three different feature maps of dimensions 8×8×10,
16×16×10, and 32×32×10 respectively which will enable
the detection of hematomas of large, medium, and small sizes.
The detected hematoma regions are marked with bounding
boxes along with the target class label and confidence score.
To remove multiple bounding boxes predicted around the
same object using the three detection layers, NMS is applied
with a confidence threshold of 0.25 and IoU threshold of

0.5 [37]. Then, the bounding box with the highest confidence
score is selected and the IoU of the remaining bounding
boxes is computed with the selected box [38]. All bounding
boxes with an IoU greater than the threshold value of
0.5 are removed. This process is repeated until all overlapping
bounding boxes with a lesser confidence score are eliminated
to obtain the final bounding box with highest confidence
score around the object detected [37], [38].

III. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL DATASET
The publicly available Brain Haemorrhage Extended (BHX)
dataset [52] with bounding box annotations for six hematoma
subtypes is used to perform the research study. BHX is an
extended version of the CQ500 dataset which consists of
491 CT scans with 205 hematoma cases [53]. BHX includes
39,668 bounding box labels for six hematoma types which
include five acute hematoma types namely IPH, IVH, SDH,
SAH, and EDH, and one chronic SDH (CHR) [52]. The
bounding box annotations are done for thick-slice and thin-
slice image series either manually by three experienced
radiologists or using interpolation. BHX is made available
in three versions and the third version is the cleanest one
which includes the bounding box annotations for the selected
thin-slice image series. We have selected 15,921 images
from the cleaner version of the dataset to generate optimal
results. The number of bounding boxes for various hematoma
subtypes is shown in Table 1. As observed in Table 1, the
dataset includes 3672 bounding boxes of chronic SDH out of
the total 27096 bounding boxes for all hematoma subtypes.
Further the number of bounding boxes for acute SDH, SAH,
IPH, IVH, and EDH subtypes in descending order are 7904,
7530, 5248, 2194, and 548 respectively. A set of sample
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images from the BHX dataset indicating various hematoma
subtypes is illustrated in Figure 5. From left to right in the
top row of Figure 5, IPH represents a spherical mass within
the brain parenchyma, SAH is observed as white patches or
tracks at various fissures and cisterns in the cerebral sulci,
and EDH is observed as a lentiform structure between the
skull and dura mater. As shown in the bottom row from left
to right in Figure 5, IVH bleeds within the ventricular system
while SDH bleeds between the arachnoid and pia mater in
crescent form [54], [55]. The acute and the chronic SDH is
identified as hyperdense and hypodense regions in the CT
images respectively [55]. However, the hematoma shapes
vary from its initial shape to a highly irregular shape and
structure during its course of expansion [56].

B. EXPERIMENTAL SETUP
The proposed hematoma detection model was executed using
the Google Colab Pro platform equipped with a Tesla T4
GPU, OpenCV 4.6.0, and PyTorch framework. The entire
dataset was divided in the ratio of 6:2:2 randomly, resulting
in 9552, 3184, and 3185 CT images for training, validation,
and testing respectively. The YOLOv5s-CAM model was
provided with 256 × 256 images which will then pass
through the backbone and neck layers that have learned
features to locate hematoma regions with the appropriate
labels. An image size of 256× 256 is selected to reduce the
computational complexity and training time while preserving
the computational performance of the model [57], [58].
The batch size during training of the model was set to
64 indicating the number of CT images processed by
the model before updation of internal parameters [59].
The training process aids in fine-tuning the initial weights
of the model while minimizing the loss function using
the optimizer. The head of the YOLOv5 model performs
hematoma prediction, including bounding boxes to locate
the hematoma regions and the class label for the predicted
subtype of hematoma along with the confidence score. The
confidence threshold and IoU threshold were set to 0.25 and
0.5 respectively for hematoma prediction [59]. The initial
number of epochs for training the proposed model was set to
50. Figure 6 shows the mAP@0.5 achieved by the proposed
model when the epoch size is gradually increased during
the training phase. It is evident from Figure 6 that the
mAP@0.5 for the proposed model gradually increases with
respect to the number of epochs and achieves the highest mAP
of 94.3% when the epochs are set to 300. Hence the model
was trained for 300 epochs.

The initial learning rate is set to 0.01 and the Stochastic
Gradient Descent (SGD) along with reducing-learning-rate-
on-plateau function [59], [60] are utilized to optimize
the training process. The reducing-learning-rate-on-plateau
function [59] reduces the initial learning rate if the training
loss stops improving after some specific number of epochs.
This will enable the model to move fast in the beginning
and converge slowly in the later stages to obtain the final

learning rate of 1.6×10−4. Table 2 summarizes the various
hyperparameters used for training the model [30].

TABLE 1. Number of bounding boxes for various ICH subtypes.

TABLE 2. Hyperparameters used for training the network.

Figure 7 displays three distinct forms of loss curves for
the training and validation set of ICH images based on
the improved YOLOv5s-CAM model: box loss, object loss,
and classication loss. Box loss indicates how effective the
algorithm is in determining the centre of the object as well
as the coverage of the predicted bounding boxes [23], [35].
Object loss denotes the capability of algorithm to detect
an object in the selected area of interest. Classification
loss represents the ability of the algorithm to predict the
appropriate class of the target object. The x and y axes
indicate the epochs and the corresponding loss values
respectively [23], [35]. The total loss is the sum of box loss,
classification loss, and object loss respectively [23], [35].
From the training and validation loss curves in Figure 7(a)
and Figure 7(b), it can be observed that the loss values of the
network are initially large, then experience a sharp decrease
and gradually achieve stability after 50 epochs. Figure 7(c)
shows the performance of the model by testing the validation
set after each stage of training and the mAP@0.5 and
mAP@0.5:0.95 values are recorded for every epoch. It can be
observed from Figure 7(c) that the model achieved maximum
mAP@0.5 and mAP@0.5:0.95 values of 94% and 64.93%
once the network became stable. Therefore, we can further
use the trained model which has achieved optimal mAP
values for the validation set. Once the training and the
validation steps were completed, the inferences are made
using the best-trained weights on the test images for real-time
hematoma detection.

C. EVALUATION METRICS
The performance of the proposed hematoma detection
model is evaluated using precision, recall, mAP@0.5,
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FIGURE 5. Sample set of CT images from the BHX dataset. Top row from left to right - IPH as spherical mass within
brain parenchyma, SAH as tracks in the cerebral sulci, EDH in lentiform shape between the skull and duramater. Bottom
Row from left to right - IVH in the shape of ventricles within brain parenchyma, and acute SDH and chronic SDH as
hyperdense and hypodense regions in crescent shape between arachnoid and pia mater.

FIGURE 6. Trend of mAP@0.5 during the training of the proposed model.

mAP@0.5:0.95 and F1-score which is computed based on
the intersection over union (IoU) [23], [61]. IoU indi-
cates the ratio of overlap between the predicted bounding box
and the ground truth box. Then a detection can be considered
as true positive (TP) if the predicted and the ground truth class
labels match and the IoU threshold is above 50% [34], [62].
Conversely, if the class labels are matching but the threshold
is less than 50%, then the detection is false positive (FP).
But if the bounding box is not detected for the corresponding
ground truth box, then the detection is false negative (FN)
[49], [62].

Precision (P) can be defined as the ratio of correctly predicted
detections to the total detections by the model [23], [62].

Precision =
TP

TP+ FP
(6)

Recall (R) is the ratio of detections that are predicted
correctly out of all the ground truth samples [21], [23], [62].

Recall =
TP

TP+ FN
(7)

F1-score is a metric which uses precision and recall values to
assess the performance of the model [21], [23].

F1 − score =
2 × Precision× Recall
Precision+ Recall

(8)

The Precision- recall curve can be obtained by plotting
the recall and precision values for each class in the x
and y axes respectively [23], [62]. The area under the
precision-recall curve is the average precision (AP) for that
class.mAP@0.5 is the average of the AP values of each class
which is computed with an IoU threshold of 0.5 [20], [23],
[62]. mAP@0.5:0.95 denotes the mean of mAP@0.5 values
obtained by using the IoU threshold range of 0.5 to 0.95 with
an increment of 0.05 at each step.
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FIGURE 7. Comparison curves of loss functions (box loss, object loss,
classification loss, and total loss) and mAP (a) Loss Curves for the training
dataset. (b) Loss Curves for the validation dataset. (c) Test Curve for
mAP@0.5 and mAP@0.5:0.95 with respect to epochs for the validation
dataset.

IV. EXPERIMENTAL RESULTS
The proposed model is developed using 15,921 CT images
from the BHXdataset in theDICOM format of size 256×256,
resulting in 27,096 bounding boxes for six different subtypes
of ICH. An analysis of various categories of hematoma
and their bounding box information in the training dataset
is illustrated in Figure 8. Figure 8(a) shows the class-wise
distribution of hematoma subtypes with a relatively higher

representation of SDH instances and a lower representation
of EDH instances based on the inherent limitation of EDH
cases in the BHX dataset. Figure 8(b) depicts the actual shape
and size of bounding boxes in the training set based on the
ground truth information. It can be seen from Figure 8(b) that
the target hematoma regions in the training dataset are mainly
medium to small-sized objects which indicates the need for
proper detection approaches.

FIGURE 8. Analysis of data in the training set (a) Plot showing the
distribution of each category of ICH (b) Aspect ratios and dimensions of
the ICH bounding boxes.

The CT images in the DICOM format are pre-processed
initially to improve the overall performance of the system.
The brain, bone, and subdural window settings are applied
to the DICOM images to obtain the three grayscale images.
Then the obtained grayscale images are stacked to generate
the three-channel image of size 256 × 256 × 3. The sample
set of pre-processed images of six ICH subtypes is shown
in Figure 9. It can be observed from Figure 9 that the
pre-processed images provide better information about the
subtle abnormalities which are unable to be distinguished
from normal images by using a single window.

A. DETECTION RESULTS ON THE TEST DATA
The proposed model is trained to detect six different
classes of hematoma. Figure 10 shows the results of the
prediction by the proposed model on the test data. The
predicted hematoma regions in the CT images are localized
by bounding boxes of various colors indicating each ICH
subtype. Further, the prediction results include the class label
of the detected hematoma region with the confidence score.
The confidence score indicates the probability of correctly
predicting bounding boxes around objects, and how accurate
the predicted bounding boxes are. Figure 10(a) and 10(e)
show predicted instances of a mixture of single or multiple
patterns of SAH, IVH, IPH and SAH respectively with
improved confidence scores. Figure 10(b) and Figure 10(f)
illustrate multiple chronic subdural types predicted by the
model with confidence scores of 0.9, 0.9 and 0.94, and
0.95 respectively. Figure 10(c) and (d) depicts the predicted
co-existence of IPH, SAH, and SDH, SAH with confidence
scores of 0.9, 0.8, and 0.8, 0.8 respectively.

It can be observed from Figure 10 that the model
was able to predict the various classes of hematoma.
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FIGURE 9. Sample set of pre-processed images obtained by integrating
the scaled DICOM images using brain window, bone window and
subdural window.

It is evident from 10(a)-(e) that the model can detect
the various hematoma subtypes present in a single CT
image. Figure 10(f) shows that the model is capable of
distinguishing the acute and chronic cases of SDH. Further,
the model can detect the presence of multiple instances of
a single hematoma as shown in Figures 10(a) and 10(b).
The performance of the model to detect the six classes of
hematoma is shown in Table 3. The precision, recall, and
mAP@0.5 values range from 0 to 1. It is evident from the
Table 3 that the proposed model was successful in detecting
all six classes of hematoma with an overall precision, recall,
and mAP value of 0.935, 0.908, and 0.943 respectively.
Further, the model achieved the highest mAP of 0.994 for
the detection of EDH with precision and recall values of
0.99 and 0.976 respectively. The model obtained the lowest
mAP of 0.896 for the detection of IVH with precision and
recall values of 0.888 and 0.846 respectively. As compared to
EDH, the detection of IVH is complicated due to the presence
of surrounding brain tissues which are of similar intensity,
size, and shape. Moreover, the model was able to clearly
distinguish the chronic and acute cases of SDHwith precision
and recall values of 0.93, 0.916, and 0.947, 0.943 respectively.

FIGURE 10. Sample set of detected images by the proposed model with
predicted class label, confidence score, and bounding boxes around
detected objects. (a) Multiple patterns of SAH and IVH with confidence
score of 0.9, 0.8 and 0.7 (b)Multiple patterns of Chronic SDH with
confidence score of 0.9 and 0.9 (c) IPH and SAH with confidence scores of
0.9 and 0.8 (d) SDH and SAH with confidence scores of 0.8 and 0.8 (e) IPH
and SAH with confidence scores of 0.94, and 0.93 (f)Multiple patterns of
Chronic SDH with confidence score of 0.95 and 0.94.

Despite the class imbalance shown in Table 1, the model was
able to achieve remarkable and stable performance for all
hematoma subtypes. The proposed model was able to detect
the hematoma regions with an inference time of 1.2 ms per
image.

The detection results for the six different classes are
illustrated in Figure 11 using a confusion matrix. As shown
in Figure 11, the accuracy of target detection rates of each
type of hematoma is comparatively high while the miss
rates are relatively low. The total number of TP for each
hematoma subtype which can be observed on the diagonal of
the confusion matrix in Figure 11 are as follows: 90% of all
acute hematoma regions in the SAH subtype, 92% of
all acute hematoma regions in the SDH subtype, 88%
of all acute hematoma regions in the IVH subtype, 88%
of all acute hematoma regions in the IPH subtype, 98% of all
acute hematoma regions in the EDH subtype, and 86% of all
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hematoma regions in the chronic SDH type were correctly
detected and classified by the model. Further, 2% of all the
SAH instances were misclassified as IPH, and 8% were not
classified into any of the subtypes. 1% of all acute SDH
instances were wrongly predicted as chronic SDH and 7%
were not categorized into any hematoma subtypes. 2% of
all IPH instances were incorrectly classified as SAH while
10% were not classified/identified by the model. 1% of all
IVH instances were miscategorized as IPH and 10% were
unrecognized. 2% of all EDH instances were unclassified by
the model. 8% of all chronic SDH instances were mistakenly
categorized as acute SDHwhile 6%were not categorized into
any ICH subtype. Further, the background(BG) FP indicates
the regions in CT images that does not belong to any of
the six classes and detected as one of the ICH subtpes. The
background FN indicates the regions not detected by the
model and considered as non-hematoma regions.

FIGURE 11. Performance evaluation of the proposed model using
confusion matrix.

TABLE 3. Class-wise performance of the YOLOv5 model during detection.

Figure 12 illustrates the various curves which are obtained
based on the confidence scores, precision, and recall values.
Figure 12(a) and (b) shows that the proposed model was able
to detect the six classes of hematoma with higher precision
values while maintaining better recall values. Figure 12(c)
clearly illustrates that the area under the curves for each of

the classes is greater, and EDH has the greatest area under
the curve resulting in a mAP of 0.994. Further, the model
was able to make significant predictions with an overall mAP
of 0.943.

FIGURE 12. Curves that are plotted based on the confidence score and
performance indicators. (a) Precision- confidence curve, (b) Recall-
confidence curve, and (c) Precision-recall curve.

V. DISCUSSION
The research study offers a robust deep-learning model
that can rapidly and effectively localize and categorize six
hematoma subtypes present in a single CT image or multiple
CT images with precision, recall, and mAP values of 0.935,
0.908, and 0.943 respectively. Additionally, the proposed
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model can discern the acute and chronic instances of subdural
hematoma, which is one of the most frequent sequelae of TBI
that requires immediate surgical intervention. The proposed
model was developed using a comparatively larger dataset
and was able to detect hematoma subtypes using fewer
computational resources.

A. COMPARISON OF SINGLE WINDOW AND STACKED
WINDOW APPROACHES
The proposed model uses a stacked window approach for the
accurate detection of hematoma regions of various shapes and
sizes. Initially, the single window setting was used to detect
the hematoma regions in the CT images. Three different
window settings, namely: brain window, bone window, and
subdural window, were applied to the input CT images.
To evaluate the impact of pre-processing, the YOLOv5s-
CAM model is separately trained using single and combined
window settings. The performance of the model is evaluated
using the single window setting, by training and testing
it with the three sets of windowed images separately. The
three windowed images from each CT image are combined
together to form a 3-channel RGB image (Figure 2) that is
further utilized to assess the performance of the proposed
hematoma detection model. The experimental results are
shown in Table 4. The proposed model with the default
brain window had the best mAP@0.5 of 0.933 as compared
to the bone window (mAP@0.5 of 0.909) and subdural
window(mAP@0.5 of 0.903) settings. However, as shown in
Table 4, the mAP was further increased to 0.943 when the
three different windowed images are combined. Therefore,
we can conclude that the stacked window approach which
mimics the radiologist mode of analyzing brain CT images,
can be useful for efficient and accurate detection of subtle and
inconspicuous hematoma regions.

TABLE 4. Performance of the YOLOv5s-CAM model using single window
and stacked window approaches.

B. ABLATION STUDY
Various improvements were incorporated into the basic
YOLOv5s model, and to study the effect of these improve-
ments on the performance of the hematoma detection model,
ablation studies were conducted. Table 5 summarizes the
results of the ablation experiments on the YOLOv5 model
using the test data.

The baseline version of the YOLOv5s model with SPP
is compared initially with SPPF to identify the model that
can generate a powerful set of refined features for hematoma

detection. However, the inclusion of SPPF in the network
structure improves the mAP@0.5 and F1-score to 0.20% and
0.50% respectively as compared to SPP. Further experiments
were carried out to enhance the model by focusing more on
the target areas and suppressing irrelevant details with the
aid of attention modules. The ECA attention module was
incorporated in the neck of the YOLOv5smodel, and it can be
observed that the performance of the network with ECA and
SPPF is higher than the ECA and SPP network, by improving
precision, recall, mAP@0.5, and F1-score by 0.1%, 0.1%,
0.2%, and 0.10% respectively. This experiment indicates the
effectiveness of the inclusion of ECA and SPPF modules
in the proposed network. Further, to enrich the feature
fusion capability, experiments were performed to analyze the
performance of the YOLOv5s with the ECA model along
with SAM and CBAM attention modules. The comparison
results of these experiments were shown in (5), (6), (7),
and (12) which shows that placement of the CBAM module
as compared to SAM in series with ECA module achieved
an improvement of precision and mAP@0.5 by 0.6%, and
0.6% respectively. Hence the CBAMmodule is also included
along with the ECA module for strengthening the feature
aggregation capability, which resulted in an improvedmAP of
94.3%, thereby enhancing the performance of the YOLOv5s
with SPPF network to 0.4%. Experiments (8-11) were carried
out to further improve the model with the introduction of the
microscale head [47] and the Double ECA attention module
[63]. However, it can be concluded that the YOLOv5s model
with the combination of SPPF, ECA, and CBAM can perform
optimized hematoma detection as compared to experiments
(9) and (11) with an increase in mAP of 0.2% and 0.3%
respectively.

To further show the statistical significance of the proposed
YOLOv5s-CAM model among the other models in the
ablation study, One-Way Analysis of Variance (ANOVA)
[64] is utilized. Firstly, the top three models such as
YOLOv5s with SPP, YOLOv5s with ECA, CBAM and
SPP, and YOLOv5s with ECA, CBAM, and SPPF are
initially selected based on their performance (please refer
to Table 5). Secondly, these three models are trained and
tested five times each, and then mean values of obtained
performance measures namely precision, recall, F1-score,
and mAP@0.5 are calculated. Finally, One-Way ANOVA
is applied to rank the mean performance measures of the
selected three models. The proposed YOLOv5s-CAMmodel
achieved a higher ranking than the other two, which indicates
the statistical superiority of the model.

C. PERFORMANCE COMPARISON WITH CONTEMPORARY
MODELS IN THE YOLO SERIES
For further quantitative analysis and performance assessment
of hematoma detection, the proposed YOLOv5s-CAMmodel
is compared with the YOLOv5s, YOLOv6s, and YOLOv7
algorithms, and the results are shown in Table 6.It can be
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TABLE 5. Results of the ablation experiments.

TABLE 6. Performance comparison with contemporary models in the YOLO series.

observed from Table 6 that the mAP@0.5 of the proposed
YOLOv5s-CAM model is 0.6% higher than that of the
YOLOv5s model and superior to the other contemporary
object detection algorithms in the YOLO series. Even though
the precision of YOLOv6 is improved, the rate of false detec-
tion is still high. Further the mAP@0.5, mAP@0.5:0.95 and
F1-score values of YOLOv5s-CAM are 5.2%, 3.9%, and
4.53% higher than for the YOLOv6s model. On the other
hand, the performance of YOLOv7 model is relatively lower,
indicating the need for further improvement to achieve
more accurate detection of hematoma regions. These results
demonstrate the superiority of the YOLOv5s-CAM model
among contemporary YOLO models for accurate hematoma
detection.

D. PERFORMANCE COMPARISON WITH OTHER MODELS
USING THE BHX DATASET
To further validate the efficiency of the proposed model,
we have compared its performance with other deep learning
methods, using the BHX dataset for hematoma detection.
The performance analysis of the proposed and the other
existing methods are provided in Table 7. It can be seen
from Table 7 that the proposed method outperformed the
existing models by achieving a higher mAP@0.5 value
of 0.943 using the BHX dataset. Further, the comparison
results show that the proposed YOLOv5s-CAM model can
detect the presence of multiple hematoma subtypes in an
individual CT image, with maximum precision and recall
values of 0.935 and 0.908. This issue is rarely addressed
by previous studies. Further, we have employed ghost

convolution to verify the performance of the YOLOv5s
model using ghost convolution for hematoma detection [21].
However, in comparison with the performance of the baseline
models as shown in (1) and (2) of Table 5, the mAP@0.5 of
the ghost convolution- based YOLOv5s models with SPP
and SPPF has dropped down to 0.921 and 0.924 respectively.
Moreover, as compared to the YOLOv5x-GCB model [21],
the proposed model performs better capture of single or
multiple hematoma regions of various subtypes in CT images
with an improved mAP@0.5 value of 0.943. In addition, the
proposed model was able to perform better discernment of
acute and chronic instances of SDH with high precision and
recall values as shown in Table 3. Furthermore, the model
was able to achieve the highest mAP of 0.943 by splitting
the input dataset into the ratio of 60:20:20 for training,
validation, and testing. To further validate the performance
of the proposed model, the images randomly partitioned in
the ratio of 60:20:20 for training, validation, and testing
were shuffled to generate three sets of data. Then the mAP
achieved by the model using three sets are 0.947, 0.944, and
0.937 respectively and hence the average mAP of the model
is 0.9426 ± 0.0026.
The advantages of the proposed YOLOv5s-CAM model

are as follows:

• A deep learning model with cascaded attention modules
is developed to detect diverse hematoma lesions of
irregular size and shape.

• The model can localize and categorize various
hematoma subtypes which include IVH, IPH, EDH,
SAH, and SDH respectively.
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TABLE 7. Performance comparison with recent methods.

• The model can discern the acute and chronic cases
of SDH, which enables clinicians to perform early
interventions and improve patient outcomes.

• The model can localize and categorize multiple
hematoma subtypes in a single CT image with
the corresponding bounding boxes, class labels, and
confidence scores.

• The integration of the stackedwindow approachwith the
YOLOv5s-CAMmodel facilitates better discernment of
hematoma regions with improved precision and recall
values.

VI. CONCLUSION
The major objective of the proposed work is to develop
a simple, fast, and accurate model to detect single or
multiple hematoma regions of irregular size and structure.
To balance computational complexity and performance, the
standard YOLOv5s model was enhanced by (i) Stack-
ing three grayscale images scaled to different windows
in the pre-processing stage to improve the detection of
subtle hematoma regions (ii) Integrating cascaded atten-
tion module in the neck to strengthen the feature fusion
ability and enable better discrimination of ICH subtypes
(iii) Replacing SPP with SPPF to improve the receptive

field and multiscale detection. The research study was
performed using 15,921 images from the BHX dataset.
The experimental results demonstrate that the proposed
YOLOv5s-CAM model reached overall precision, recall,
F1-score, mAP@0.5 and mAP@0.5:0.95 of 0.935, 0.908,
0.921, 0.943, and 0.65 respectively. Further, the experimental
results show that the proposed model improves the recall,
mAP@0.5 and mAP@0.5:0.95 by 0.019%, 0.012%, and
0.026% as compared to the YOLOv5x-GCB model.

Limitations are cross-misclassifications between similar-
appearing subtypes, and difficulty with accurate detection
when hematomas are overlapped by surrounding tissues.
The model is implemented using the BHX dataset which
consists of a smaller number of positive instances for a few
of the hematoma subtypes. Hence, further improvements are
required to generalize the performance of the model using
other independent datasets. Currently, the model localizes
the hematoma regions using the bounding boxes, which
are limited to typical rectangular shapes. Hence the model
needs further refinement for clinical utilization to estimate
hematoma volumes that require precise demarcation of the
hematoma regions.

Thus, future research work will focus on enhancing the
proposed model by incorporating feature layers in various
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locations of the network, optimizing various layers of the
YOLOv5s backbone structure, and adopting new feature
fusion mechanisms to expand and strengthen the feature
information. Further, the model will be trained and tested on
other open source datasets to enhance the generalizability and
robustness of the model. Moreover, various contour-based
models can be applied to generate precise demarcation of the
hematoma regions and perform accurate hematoma volume
computation.
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