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ABSTRACT The efficiency of the thermal management system of electric vehicles is important because
the thermal management system requires a significant amount of electric energy. Therefore, controllers of
the thermal management system should be designed considering the efficiency. This paper proposes a deep
Q-network-based controller for the thermal management system in electric vehicles. The deep Q-networks
were designed to control each actuator and the observation signals, the action signals, and the reward function
were designed to achieve requirements. The controller regulates cabin and evaporator air temperature by
adjusting the compressor and cooling fan speed while minimizing energy consumption and adhering to sys-
tem constraints. Unlike previous studies, this design process considers practical implementation, including
a high-fidelity plant model, essential constraint conditions, and multiple objectives. Test results show lower
energy consumption and better temperature regulation performance than a heuristically designed rule-based
controller. This method can optimize thermal management system performance in electric vehicles, which
have increased complexity and number of thermal loads that conventional control methods cannot adequately
address.

INDEX TERMS Air conditioning, deep learning, electric vehicles, Q learning, reinforcement learning.

I. INTRODUCTION
The role of the thermal management system (TMS) is more
crucial in electric vehicles (EVs) than in conventional internal
combustion engine vehicles due to the increased number of
thermal loads requiring temperature regulation using refrig-
eration systems. In conventional vehicles, only the passenger
cabin requires a refrigeration system for temperature regu-
lation. However, in EVs, the power electronics, battery, and
passenger cabin all require refrigeration for temperature regu-
lation. As a result, TMS is one of the most power-consuming
systems in EVs. Thus, a well-designed controller for TMS
that minimizes energy consumption canmaximize the driving
range of EVs, given their limited battery capacity.

Conventionally, simple control methods such as
proportional–integral–derivative (PID) control [1], [2], [3],
and thermostat control [4], [5], [6] have been widely used for
TMS in vehicles due to their lightweight, safe, and reliable
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nature, especially for conventional vehicles. However, these
approaches are not sufficient for TMS in EVs due to the
greater complexity involved. Unlike conventional vehicle
refrigeration cycle systems, EV refrigeration cycle systems
should consider the temperatures of battery and power elec-
tronics when the systems control cabin temperature. As a
result, the controllers for TMS in EVs require the capability
to consider complex requirements.

Another noteworthy characteristic of TMS in EVs is their
large heat capacity. For instance, the battery and cabin have
large heat capacities, causing the temperature changes to
be slow. While this property can present a challenge for
high responsive control performance, it can be beneficial
for disturbance attenuation due to large inertia. Additionally,
immediate cooling demand does not need to be met due
to the large heat capacities, allowing for the temporal load
distribution to the cooling supply system.

Considering the characteristics of the TMS in EVs, fuzzy
logic controllers (FLCs) could be a solution. Since FLCs
are highly flexible and easy to utilize knowledge with
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multi-valued logic, many studies about environment condi-
tion control have used FLCs [1], [7], [8], [9], [10], [11].
However, it is hard to consider the trade-off between tem-
perature regulation performance and power consumption of
the TMS explicitly. On the other hand, horizon-based optimal
control methods, which perform optimal planning using sys-
tem dynamics and information on expected disturbances for a
future horizon, are promising candidates for TMS controllers.
For instance, many studies have employed model predictive
control (MPC) [12], [13], [14], [15]. However, since a control
model withmany states leads to high computational loads and
often prevents real-time implementation, simplified control
models are often employed in MPC. Nonetheless, given the
complexity of the TMS, including nonlinearity and numerous
states, usingMPCwith such a simple control model may lead
to performance degradation.

Another horizon-based optimal control method for TMS
controller design is reinforcement learning (RL). RL is a
methodology for designing an optimal policy in a given
Markov decision process, where the optimal policy is com-
puted for the infinite horizon in a stochastic sense. In contrast
to MPC, RL searches for a policy that maximizes the cumu-
lative reward without relying on a control model. This is
achieved by utilizing reward signals extracted directly from
the true plant, making RL less dependent on the complexity
of the plant compared to MPC.

Although there have been numerous publications on the
use of RL for controlling building energy systems [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], there are only a
few studies on its application to thermal management con-
trollers of EVs [26], [27], [28], [29], [30]. This is primarily
due to the recent growth in themarket share of EVs, which has
brought about the need for energy-optimal control of TMS.
As a result, the current state of RL research in TMS appli-
cations of EVs is relatively primitive in terms of practicality.
Most papers on RL-based controllers for TMS of EVs have
demonstrated controller designs using a simplified plant [26],
[27], [28], [29] or a reward function that does not consider
practical requirements [26], [27], [28], [29], [30]. To the
authors’ knowledge, there are no robust papers on RL-based
TMS controller design that employ sufficiently complex plant
and reward functions that consider practical constraints.

This study proposes a TMS controller for EVs that utilizes
a deep Q-network (DQN) to minimize energy consump-
tion while maintaining temperature regulation performance
and to consider system constraints to ensure feasibility.
The objective of the controller is to swiftly regulate cabin
and evaporator air temperature to the desired values while
minimizing power consumption and adhering to system con-
straints by controlling the compressor and the cooling fan.

To achieve the objective, we designed a DQN structure
with two separated DQNs to handle the high dimensionality
due to multiple control inputs and the nature of the DQN, the
compressor, and the cooling fan. Also, wemodified theDQNs
to reduce the uncertainty of data and to boost the efficiency

FIGURE 1. TMS of the EV.

of training. In addition, we designed a reward function to
consider the system constraints such as refrigerant pressure
limitation and the boundary of the action signals.

In contrast to existing research on RL-based TMS con-
trollers for EVs [21], [22], [23], [24], [25], this study presents
a comprehensive design that fully considers the feasibility of
practical implementation as mentioned earlier.

II. TMS OF EV
The target plant is a TMS of a medium-sized EV. The TMS
controls the temperatures of the cabin air, battery, and elec-
tronics by transferring heat via refrigerant and coolant. The
TMS has multiple modes for efficient cooling and heating.
In this study, we focus on the air conditioning mode, which is
one of the most power-consuming tasks of the system. Fig. 1
shows the system’s structure with the air conditioning mode.

The TMSwith the air conditioning mode works as follows:
to cool the cabin air, the refrigerant is cooled by controlling
the compressor and the cooling fan speeds. The cooled refrig-
erant cools the evaporator outlet air temperature by absorbing
heat via the evaporator. If the evaporator outlet air is too cold,
the temperature blend door increases the amount of the air
that absorbs heat from the inner condenser to heat the duct
outlet air slightly. If the heat from the inner condenser is not
sufficient, the positive temperature coefficient (PTC) heater
increases the temperature to the appropriate level. To cool the
battery and the electronics, the pump circulates the coolant to
absorb heat and dump the heat at the radiator. If the radiator
is not sufficient to dump the heat, the electronic expansion
valve is opened and the refrigerant absorbs the heat from the
coolant at the battery chiller.

III. CONTROLLER DESIGN
To control the TMS, several actuators must be taken into
consideration. In this study, the proposed controllers regu-
late the compressor and cooling fan speeds, which govern
the refrigeration process. The thermal expansion valve is
excluded from the controllers since it is typically controlled
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FIGURE 2. Controller design framework using RL.

automatically, and the blower speed is not included since it
is typically set by the passengers. Other actuators, such as
the temperature blend door and PTC heater, are controlled by
simple controllers.

The proposed controllers are designed using RL. Fig. 2
illustrates the controller design framework using RL. From
the perspective of RL, the framework consists of an agent and
an environment. The agent learns a policy that is a decision-
making rule and makes decisions to achieve its goal. The
environment is a set of observations, actions, and a reward
function. From the perspective of the controller, the controller
comprises the agent, the state-to-observation converter, and
the action-to-input converter.

The agent sends action signals to the environment, which
determines the control inputs of the plant. However, action
signals may not be equivalent to the physical control inputs,
as they are often designed to improve reinforcement learning
(RL) training. To address this, an action-to-input converter
is used to convert the action signals into the appropriate
control inputs. The states of the plant are then updated, and to
ensure that they are measurable and to improve RL training,
a state-to-observation converter converts states into observa-
tion signals. The reward function calculates the immediate
goal based on the action signals and states. The agent con-
siders the observation signals when giving action signals to
the environment. Finally, the agent learns the optimal policy
from the interaction data, which includes observation signals,
action signals, and rewards.

A. AGENT
This study uses the DQN algorithm to control the TMS
for three reasons. First, DQN is an RL algorithm that does
not require a simplified control model for model training.
Second, DQN is flexible in the number of observations
due to its use of deep neural networks (DNNs), which is
important for practical requirements that may require addi-
tional observations. Lastly, DQN is advantageous over policy
gradient-based algorithms such as deep deterministic policy
gradient, as it can avoid local optima due to its discretization

FIGURE 3. Structure of the DNN of the DQNs.

of the action space, which allows for more aggressive policy
updates.

As the proposed controllers have two control inputs, there
exist two independent action spaces. Integrating these into a
single action space that considers all possible cases for the
DQN is impractical due to the high dimensionality of the
resulting action space. Thus, we separated the DQN into a
compressor DQN and a cooling fan DQN. The compressor
DQN handles 7 cases of the compressor’s quantized action
signal, while the cooling fan DQN handles 9 cases of the
cooling fan’s quantized action signal.

Both DQNs use multi-layer perceptron DNNs with a leaky
rectified linear unit activation function for the hidden layers.
Additionally, the dueling network architecture is employed to
improve performance by separating the advantages of each
action from the action value [31]. Fig. 3 shows the detailed
structure of the DNNs using fully connected layers (FCL),
with the compressor DQN having 7 output nodes and the
cooling fan DQN having 9 output nodes.

Algorithm 1 outlines the training process for the separated
DQNs used in TMS. The approach is based on double DQN
[32], which mitigates the problem of overestimation bias.
To handle the separated DQNs, one DQN explores while the
other DQN follows the greedy policy. After each episode, the
two DQNs swap their roles, which helps reduce the uncer-
tainty of the samples and facilitate efficient training. During
training, the DQN with the greedy policy explores with a
minimum exploration rate ϵmin to avoid local optima.

To make the training process more efficient, the DQNs are
updated multiple times in a single step, thereby minimizing
the waiting time for observation signals. However, several
updates at early steps can lead to overfitting. To mitigate this
issue, the DQNs are slowly updated during the initial stages
of training. Specifically, when the replay buffer is less than
5 percent full, the DQNs are updated once every 10 steps.
When the buffer is between 5 and 10 percent full, the DQNs
are updated once per step. Once the buffer is over 10 percent
full, the DQNs are updated four times per step. Note that
Algorithm 1 does not include the slow updates.
When training DQN, the weights of the target action value

functions Q̂ are periodically updated with the weights of
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Algorithm 1 Training DQNs for TMS
Initialize action value functions Qcomp and Qcfan
Initialize target action value functions Q̂comp and Q̂cfan
Initialize experience replay memories Dcomp and Dcfan to
capacity N
Initialize step counter for ϵ − greedy, k = 0
Initialize loss pass filtered losses, Lcomp, Lcfan as 1.0
Set parameter for the ϵ − greedy, ϵmin, ϵupper ,ϵlower ,Kϵ

Set parameters for the adaptive soft target update, ρ0ρL , Kρ ,
ρmin
Set the discount factor γ, the update number Nupt , and the
learning rate α For episode = 1: M do

ϵ = clip
(

1
Kϵ(k−1)+1 ,ϵlower ,ϵupper

)
If mod(episode,2) is 1

ϵcomp= ϵ, ϵcfan=ϵmin
Else

ϵcomp=ϵmin, ϵcfan= ϵ

End
Initialize observation φ

For t =1:T do
acomp= ϵ − greedy

(
Qcomp,ϵcomp

)
,

acfan= ϵ − greedy
(
Qcfan,ϵcfan

)
φ

′

j, r, d, τ = env
(
acomp,acfan

)
Store

(
φ,acomp, r,φ

′

j, d
)
in Dcomp

Store
(
φ,acfan, r,φ

′

j, d
)
in Dcfan

For k=1:Nupt
For n = [comp, cfan]
Sample random minibatch

(
φj,an,j,rj,φ

′

j,dj
)

from Dn
Set yj=rj+(1−dj)γ Q̂n

(
φ

′

j,argmaxA′

(
Qn

(
φ

′

j,A
′
)))

Calculate loss L = mean
((
yj−Qn

(
φj,an,j

))2)
Update Qcomp using gradient descent to
minimize L
Ln=ρLLn+

(
1−ρL

)
L

If Ln> 1
ρ = ρmin

Else
ρ = max

(
ρ0exp

(
−Kρ · Ln

)
,ρmin

)
End

Q̂n← ρQ̂n+(1 − ρ)Qn
End

End
φ = φj

′

k = k + 1
End

End

Q. However, determining the appropriate period for these
updates can be challenging. To address this, we employed the
soft target update method, which gradually updates Q̂ with a
target update rate ρ (similar to a low-pass filter) [33]. Despite
the use of soft target updates, we occasionally observed loss

FIGURE 4. Range indication signals.

divergence. To prevent this, we applied an adaptive target
update rate. Specifically, when the low-pass filtered loss is
high, ρ decreases, and when the low-pass filtered loss is low,
ρ increases. This approach effectively suppressed divergence.

B. OBSERVATION SIGNALS
The observation signals in this study comprise three types
of signals: base signals, rate of change (ROC) signals, and
supporting signals. The base signals provide information on
ambient and cabin conditions, refrigerant and coolant states,
and actuator states. These signals are selected based on their
relevance to the TMS and their measurability in a real-world
TMS of an EV. Table 1 lists the 18 base signals (No. 1-18).
As the TMS has slow dynamics and the base signals alone
cannot fully represent the system, the ROC of the base signals
is chosen as the second type of observation signal to support
the notice of system states. Table 1 also lists the 18 ROC
signals (No. 19-36).

The supporting signals are designed signals that consist
of range indication signals and rescaled signals. Range indi-
cation signals indicate the range of three signals with a
desired range, namely, the evaporator air temperature, the
cabin temperature error, and the condenser pressure. These
signals explicitly provide information to DNNs on whether
the signals are in the desired range, as shown in Fig. 4. Table 1
lists the three range indication signals (No. 37-39).

The first range indication signal is generated from the
evaporator air temperature, with a desired range of 2 to 10◦C.
The signal value is 0 if the temperature is lower than the
range, 0.5 if the temperature is within the range, and 1 if
the temperature is higher than the range. The second range
indication signal is similar but for the cabin temperature error,
with a desired range of -0.5 to 0.5◦C.
In contrast, the condenser pressure has a strict upper limit

of 2.7 MPa to prevent leakage, but no lower boundary for the
desired range. The desired range is from negative infinity to
2.7MPa, divided into three sub-ranges to provide information
on the approach to the upper limit. If the pressure is less than
2.3 MPa, the range indication signal value is 0, and if the
pressure is less than 2.5 MPa and greater than or equal to
2.3 MPa, the signal value is 0.33. If the pressure is less than
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TABLE 1. Observation signals.

2.7MPa and greater than or equal to 2.5MPa, the signal value
is 0.67, and if the pressure is greater than or equal to 2.7 MPa,
the signal value is 1.

As DQN uses DNNs, the observation signals are nor-
malized. However, this process can decrease performance
because the magnitude of the desired ranges is reduced.
Therefore, rescaled signals are used to magnify the desired
range for the evaporator air temperature and the cabin temper-
ature error, as shown in Fig. 5. Table 1 lists the two rescaled
signals (No. 40-41).

The first rescaled signal for the evaporator air temperature
has a lower bound of 0◦C and an upper bound of 12◦C, which

FIGURE 5. Temperature signals rescaled based on desired ranges.

are slightly wider than the desired range to ensure the sig-
nal is valid when the evaporator air temperature approaches
the desired range sufficiently. Similarly, the second rescaled
signal for the cabin temperature error has a lower bound of
−2.5◦C and an upper bound of 2.5◦C.
The observation signals are generated from the states by the

state-to-observation converter, which selects the base signals
based on their relevance to the TMS and measurability. The
converter then computes the ROC of the base signals and
extracts supporting signals from them. In total, the observa-
tion signals comprise 41 signals, which include the 18 base
signals, the 18 ROC signals, the 3 range indication signals,
and the 2 rescaled signals.

C. ACTION SIGNALS
The action signals determine the control inputs, which consist
of compressor speed and cooling fan speed. As our proposed
controllers are based on DQN, the action space must be
discrete. However, if we quantize the compressor and cool-
ing fan speeds, handling the rate of change constraints of
the control inputs becomes difficult, and utilizing the whole
continuous space of the control input becomes impossible.
Therefore, we design the action space as the discretized rate
of changes of the compressor and cooling fan speed. This
approach ensures that the constraints of the rate of change are
naturally satisfied, and the controllers can utilize the entire
continuous space of the control inputs.

To determine the compressor speed, we quantize the rate
of change of the compressor speed into −500, −375, −250,
−125, 0, 125, and 250 RPM/s. Similarly, to determine the
cooling fan speed, we quantize the rate of change of the
cooling fan speed into −1000, −750, −500, −250, 0, 250,
500, 750, and 1000 RPM/s. Finally, the action-to-input con-
verter computes integrals of the action signals to convert these
action signals into control inputs.

D. REWARD FUNCTION
The reward function was designed to achieve the objective of
controlling the cabin and evaporator temperatures to desired
ranges as quickly as possible while minimizing power con-
sumption and satisfying constraints. The reward function
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consists of seven terms, as shown in (1).

r = fcab (ecab) + fevap
(
Tevap

)
+ fcond (pcond )

+ fbnd (u, a) − α1P− α2

∑
abs (a) − α3

∑
abs (ȧ)

(1)

In (1) r represents reward, α1, α2, and α3 are weighting
parameters, fcab calculates the reward for the cabin temper-
ature error, ecab, fevap calculates the reward related to the
evaporator air temperature, Tevap, fcond calculates the reward
consider the condenser pressure, pcond , and P is the sum of
the power consumption of the compressor, PTC heater, and
cooling fan. Additionally, fbnd gives a reward related to the
control inputs, u, and ais a vector of the normalized action
signals (from -1.0 to 1.0), with ȧ being the rate of change
vector of a.

The first term of the reward function, fcab (ecab), was
designed to control the cabin temperature error to 0. As the
absolute error becomes smaller, the reward increases linearly.
When the absolute error is within 0.5◦C, an additional reward
is given to encourage controllers to regulate the absolute error
in a sufficiently small range. The second term, fevap

(
Tevap

)
,

was designed to control the evaporator air temperature within
the desired range of 2 to 10◦C. As the evaporator air temper-
ature gets closer to the desired range, the reward increases
linearly. When the temperature is within the desired range,
the reward is a constant positive value. If the temperature is
less than 2◦C, an additional negative reward is given to pre-
vent water vapor from freezing. The third term, fcond (pcond ),
is related to the upper limit of the condenser pressure to avoid
refrigerant leakage. This term is normally 0, but when the
pressure approaches the upper limit, the reward decreases dra-
matically. The fourth term, fbnd (u, a), is related to the lower
and upper limits of the control inputs. This term normally
returns 0 but returns a negative reward that is proportional to
the number of control inputs that exceed the limits. The fifth
term, −α1P, is related to power consumption. The reward
decreases linearly as power consumption increases to min-
imize power consumption. The sixth term, −α2

∑
abs (a),

decreases linearly as the magnitude of each action signal
increases to reduce the magnitudes of the action signals.
Finally, the seventh term, −α3

∑
abs (ȧ), decreases linearly

as the magnitude of the rate of change signals of the action
signals increases to reduce the chattering of the action signals.

The first four terms of the reward function are visualized
in Fig. 6. The fourth term is visualized for one actuator with a
normalized action signal a and a normalized control input u.
With the reward function, the RL algorithm learns the policy
to maximize performance while considering the constraints
implicitly.

E. TRAINING AND RESULTS
A high-fidelity Simulink model of the TMS of a medium-
sized EV, shown in Fig. 7, was used to train the DQNs through
simulation. This model accounts for driving conditions such

FIGURE 6. Graphs of the reward function terms.

FIGURE 7. Training and validation platform in Simulink.

TABLE 2. Driving conditions for training.

as the driving cycle, ambient air temperature and relative
humidity, solar intensity, and desired cabin temperature.

For the implementation of the DQNs, Python and Ten-
sorflow are employed. Additionally, the MATLAB engine is
used to manage the Simulink model and TCP/IP is used to
acquire the experience data and determine the actions.

To efficiently train the DQNs, driving conditions were
randomly initialized at the beginning of each episode. One
of the US06 and SC03 driving cycles was randomly selected,
and the ambient temperature, ambient relative humidity, solar
intensity, and target cabin temperature were initialized using
the uniform random distribution U . The details of the driving
conditions are presented in Table 2.

VOLUME 11, 2023 137279



W. Choi, C. Ahn: Deep Q-Network-Based Controller for Cabin Cooling System of Electric Vehicles

FIGURE 8. Loss graphs of the compressor DQN and cooling fan DQN and
average reward graph for each episode.

The training process proceeded as follows: First, the DQNs
and model parameters, including the driving conditions,
were initialized, and the model simulation was started using
Python. Subsequently, the model transmitted initial observa-
tion via TCP/IP to Python, which calculated the action signals
using the DQNs and observation signals and then transmitted
them back to the model. The model performed a one-step
simulation using the received action signals and sent the next
observation signals to Python. After that, Python updates
the DQNs as introduced in Algorithm 1. This process was
repeated until the training was completed.

The DQNs were trained 3000 episodes, and the loss and
moving average of the expected reward are presented in
Fig. 8. The loss graph shows occasional rapid increases in
the loss, but it did not diverge due to the soft target update
with the adaptive target update rate. The mean reward, which
is the average of the reward values in the experience replay
buffer, increased until the episode number reached around
1500. After that, the mean reward slightly oscillated.

IV. CONTROLLER VALIDATION
A. VALIDATION ENVIRONMENT
To validate the effectiveness of the proposed controller,
we used the same platform for training as a validation plat-
form, but with a different driving cycle and specified ambient
conditions. The validation platform’s driving conditions are
outlined in TABLE 3. Fig. 9 shows the driving cycle for
testing that influences power usage and temperature rise.
To evaluate the performance of the proposed controller,
a heuristically designed rule-based controller composed of
several PID controllers is employed as a baseline controller.

B. TEST RESULTS
Fig. 10, 11, and 12 depict the results obtained from Test 1,
Test 2, and Test 3, respectively. The blue lines in each figure
represent the outcomes of the rule-based controllers, whereas
the red lines represent those of the RL-based controllers.

In the results of Test 1, the compressor speed was rapidly
increased to reach the desired temperature level, which is a
smart decision to increase the total reward. This is because

FIGURE 9. UDDS driving cycle used for controller validation.

TABLE 3. Driving conditions for controller validation.

FIGURE 10. Test 1 result (Ambient air temperature: 24 ◦C).

FIGURE 11. Test 2 result (Ambient air temperature: 32 ◦C).

most of the power consumption occurs during the transient
phase and keeping the temperature level uses less power.
Because of the low ambient air temperature, the evaporator
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FIGURE 12. Test 3 result (Ambient air temperature: 40 ◦C).

FIGURE 13. Test 4 result (Rainy Tropics).

air temperature could be easily lowered with smaller power
consumption than in higher ambient air temperature cases.

In the results of Test 2, the characteristics were similar to
those of Test 1, but the ambient air temperature was higher,
requiring more energy to reduce the cabin temperature to the
desired value than in Test 1. However, keeping the tempera-
ture at the desired range in Test 2 did not require much more
energy than in Test 1. This indicates that most of the energy
in the TMS is used during the transient phase.

In Test 3, the ambient air temperature was extremely
high, resulting in slightly different behaviors from the lower
ambient temperature cases. Because of the high ambient tem-
perature, the condenser pressure was high to dump the heat
from the system to the outside of the vehicle.

Fig. 13 and Fig.14 preset results from Test 4 and Test
5 which were conducted to test the controller with specific
weather conditions. Test 4 emulates weather conditions when
it rains in the tropics, while Test 5 emulates very hot and
humid summer weather. Test 4 and Test 5 show similar results
to Test 2 and Test 3.

The proposed controller does not violate the signifi-
cant constraint of the condenser pressure. Additionally, the
proposed controller is able to control the evaporator air tem-
perature within the desired range most of the time, but it
also adaptively handles the boundary of the evaporator air
temperature to acquire future rewards.

FIGURE 14. Test 5 result (Very hot and humid summer).

FIGURE 15. Performance of the RL-based controllers compared with the
rule-based controllers.

In summary, the RL-based controllers exhibit similar pat-
terns for each test scenario. Initially, the compressor speed
rises rapidly, causing the cabin temperature to drop quickly
to the target value. Once the evaporator temperature reaches
a suitable level, the compressor speed slows down, leading to
reduced power consumption. Additionally, to ensure efficient
operation and prevent refrigerant leakage, the cooling fan
speed increases when the pressure in the refrigeration system
rises to ensure sufficient removal of latent heat.

In terms of both temperature tracking performance and
energy consumption, the RL-based controller outperforms
the rule-based controllers, as illustrated in Fig. 15 and Fig. 16.
The horizontal axis represents the temperature regulation
performance, and the vertical axis represents the energy con-
sumption. In the figures, the lower left corner indicates higher
performance. The marker of the RL-based controller was
located closer to the lower left corner than the rule-based
controller marker, indicating better performance in terms of
both temperature tracking and energy consumption.

V. CONCLUSION
This study proposed an RL-based TMS controller for EVs
that minimizes energy consumption while maintaining tem-
perature regulation performance. Unlike existing research on
RL-based TMS controllers for EVs, this study presents a
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comprehensive design process that fully considers the fea-
sibility of practical implementation by using a high-fidelity
plant model that accurately represents the high nonlinearity
and complexity of the TMS of EVs and considering essential
constraints such as refrigerant pressure limit, speed limit of
the actuators, acceleration limit of the actuators, and temper-
ature limit. Multiple objectives were considered by adding
rewards for cabin and evaporator temperatures as well as
energy consumption.

The proposed controller has limitations. The controller
needs to be trained again when the target TMS is changed,
and the action space should be discretized since the controller
is based on DQN. Furthermore, the training result could
be unstable due to uncertainties arising from the separated
DQNs. Nevertheless, the simulation results show that the
proposed controller outperforms the rule-based controller in
terms of energy consumption and temperature regulation per-
formance. The proposed controller can swiftly regulate the
cabin and evaporator air temperature to the desired values
while minimizing power consumption and adhering to system
constraints. The proposed controller also exhibits robustness
to uncertainties such as changing driving conditions.

In conclusion, the proposed RL-based TMS controller for
EVs can significantly improve the energy efficiency of TMS
while maintaining temperature regulation performance. The
comprehensive design process ensures practical feasibility,
making the proposed controller a promising candidate for
future TMS implementations in EVs.

The application of the proposed RL-based TMS controller
for EVs can lead to significant energy savings and increased
driving range, which can improve the EV’s overall efficiency
and reduce its environmental impact. The results of this
study can be expanded upon by exploring the use of RL-
based controllers for other components of the EV, such as
the powertrain and battery management systems, to further
optimize the energy consumption and overall performance of
the vehicle. Additionally, the design process presented in this
study, which considers practical constraints and objectives,
can serve as a framework for future research on RL-based
controllers for TMS and other applications in EVs.

APPENDIX A
DETAILS OF THE TMS OF EV
The target plant of this paper is the TMS of the EV. Although
this paper has worked with the Simulink model, we present
wiring diagrams to give a further understanding of the TMS.
Fig. 17, 18, and 19 display the wiring diagrams we supposed.
All components are powered by direct current (DC) from the
battery. The main controller acquires information about the
TMS and determines the actuators’ target via a control area
network (CAN) bus as shown in Fig. 17. The wiring diagram
of the actuators is shown in Fig. 18. The compressor operates
with a brushless DC (BLDC) motor that requires 360V . The
controller measures the current of each phase to estimate
the rotation speed and power consumption and controls the
rotation speed to the desired speed. The PTC heater requires

FIGURE 16. Performance of the RL-based controllers compared with the
rule-based controllers at specific weather conditions.

FIGURE 17. Wiring diagram of the main controller.

FIGURE 18. Wiring diagram of the actuator controllers.

FIGURE 19. Wiring diagram of the sensors.

360V to operate. The controller measures the current to the
PTC heater to estimate the power consumption and controls
heat generation. The cooling fan and blower operate using
DC motors without any sensors. As a result, the controller
approximates the rotational speed and current using look-
up tables and determines the motor inputs. The electronic
expansion valve (EXV) uses a stepper motor to control the
pressure drop of the refrigerant. The controller controls the
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TABLE 4. Parameters of the algorithm.

EXV to reach the desired level of superheat. The temperature
blend door changes its angle using a DC motor and measures
its angle using a potentiometer. The controller determines
the motor input to control the door to the desired position.
The pump operates with a BLDC motor, and its controller
functions similarly to the compressor’s controller, except it
requires a 12V. Fig. 19 shows the wiring diagram for the
sensors. The refrigerant pressure sensors are pressure trans-
ducers, converting pressure into voltage, and it is measured
via the analog-digital converter (ADC). Similarly, the tem-
perature sensors use thermistors where sensing resistors are
connected in series and the circuit measures voltage between
the thermistor and the resistor through the ADC.

APPENDIX B
PARAMETERS OF THE ALGORITHM
The parameters of the algorithm that we used are shown in
Table 4. The reward function is scaled by a factor of 0.05 to
improve the training process.
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