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ABSTRACT Attribute reduction, often referred to as feature selection, is a vital step in data preprocessing
aimed at eliminating unnecessary attributes and enhancing the efficiency of classification models.
Intuitionistic fuzzy sets are widely acknowledged for their highly effective approach to the attribute reduction
problem in decision tables, especially in the context of noisy decision tables with low classification accuracy.
Nonetheless, the computational complexity of this approach increases significantly due to the additional
incorporation of a non-membership component when calculating the significance measures of each attribute.
Besides, some intuitionistic fuzzy equivalence classes may include objects with relatively low similarity
or high diversity degrees generated from noisy data. Performing calculations on these objects can be
time-consuming and lead to inefficiencies in the attribute reduction process. To address the aforementioned
issue, we first define an α,β-level set. This allows us to eliminate the mentioned noisy objects from the
intuitionistic fuzzy equivalence classes and transform them into α,β-level intuitionistic fuzzy equivalence
classes. Subsequently, we construct a distance measure between two α,β-level intuitionistic fuzzy partitions
and define a new reduct to preserve the distance between two α,β-level intuitionistic fuzzy partitions
generated by the condition attribute set and the decision attribute set. Finally, we propose a novel and
efficient heuristic attribute reduction algorithm to find the new reduct, in which we also use a significance
measure based on the α,β-level intuitionistic fuzzy partition distance to determine the vital attribute at
each step of the algorithm. Obviously, our algorithm is also applied to various benchmark datasets for
comparative analysis against existing algorithms. The experimental results demonstrate that the proposed
algorithm not only improves the accuracy of the classification model but also significantly reduces execution
time when compared to intuitionistic fuzzy rough set-based algorithms applied to noisy datasets with high
dimensionality.

INDEX TERMS Attribute reduction, noisy data, intuitionistic fuzzy sets, α,β-level intuitionistic fuzzy sets,
distance measures.

I. INTRODUCTION
Attribute reduction plays a crucial role in data preprocessing
as it focuses on eliminating redundant and unnecessary
attributes. This process is essential for improving the
performance ofmachine learning and datamining algorithms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

The traditional rough set theory introduced by Pawlak
[1] offers an effective solution for the attribute reduction
problem in complete decision tables. Usually, attribute
reduction approaches have two main directions: methods
based on indiscernibility matrix, such as [2] and [4], and
significance metric functions, such as [5], [6], [7] and
[8]. These approaches are efficient for the decision tables
only containing categorical attributes [9], [10]. However,
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when the decision tables have the numerical value domain,
these methods have to divide the value domain of each
numerical attribute into intervals corresponding to discrete
values. To solve the attribute reduction problem on the
original decision table, Dubois et al. [11], [12] proposed a
fuzzy rough set (FRS) model. Based on the FRS model,
the researchers constructed attribute reduction methods using
different measures on the decision tables that contain numeric
attributes. Some typical methods were proposed based on
fuzzy membership functions [13], fuzzy positive regions
[14], [47], fuzzy information entropy [15], [39], and fuzzy
distance [16]. Jensen and Sen [17] developed the theory of
the dependency function in the traditional rough set model
into the fuzzy occurrence. Then, they designed attribute
reduction algorithms based on the concept of FRS in [5], [9],
[10], [15], [18], [19], [20], [21], [22], [23], [24], [25], [26],
and [27]. One development direction from fuzzy rough set
theory is fuzzy neighborhood rough sets. According to this
approach, Sun [44] built uncertainty measures and designed
a feature selection algorithm based on fuzzy neighborhood
multigranulation rough sets. Zhang [45] defined fuzzy
neighborhood relative decision entropy and proposed an
attribute reduction algorithm. Sun [46] introduced a new
method using multilabel fuzzy neighborhood rough sets and
maximum relevance minimum redundancy. This approach
is considered suitable for multilabel datasets that have
missing labels. Additionally, several studies have expanded
incremental algorithms to solve issues with incomplete
dynamic decision tables. Specifically, Giang et al. proposed
hybrid incremental algorithms for adding and deleting object
sets based on the tolerance rough set [3]. Later, Thang et al.
also formulated incremental algorithms for two cases of
supplementing and removing attribute sets [43]. In general,
their experimental results show that the reduction attribute
algorithms following the fuzzy rough set approach have better
results than traditional algorithms for the decision tables
with continuous and numerical value domains. Unfortunately,
Hung et al. [28] have shown that attribute reduction by the
FRS approach is less effective in noisy or low classification
accuracy data sets.

Recently, some researchers have proposed using the
intuitionistic fuzzy rough set (IFRS) model to solve the
attribute reduction problem. This model has minimized
the noisy information because the added non-membership
function component can adjust the noise objects to the correct
classifier [29]. In the case of noisy or low classification
accuracy data sets, the attribute reduction algorithms based
on the IFRS model have better processing abilities than the
FRS model-based algorithms. Following this approach, the
authors in the work [30] constructed an IFRS model based on
granular structures. Then they proposed a filtering algorithm
(IFPR) to select attributes on the decision table. Experimental
results show that the IFPR algorithm performs superior to
the algorithms [31], [32], [33], [34] according to the FRS
approach. Giang et al. in work [35] recently constructed a

distance measure based on the intuitionistic fuzzy set (IFS)
model and proposed the IFDBAR algorithm to find the
reduct on the decision table. The experimental results of the
algorithm are compared with the algorithm in [16] and have
proven effective on noisy data. However, the disadvantage of
the attribute reduction algorithms based on the IFS according
to the filter approach is the slow computational processing
speed. The addition of non-membership in themodel explains
this. The attribute selection process of the algorithms goes
through each loop and uses the significance measure of
each attribute. The significance measure is determined based
on the cardinality of the intuitionistic fuzzy information
granulations, including the similarity and diversity degrees.
Therefore, the algorithms following this approach must
compute more than those following the FRS approach.
In addition, the IFS model still has some limitations that
need to be improved, as follows: Firstly, some elements in
the intuitionistic fuzzy information granulations with small
similarity degrees will contribute little to the cardinality
calculation process. Therefore, the algorithm will survive
many redundant and unnecessary computations. Secondly,
the information granulations on the noisy data set will contain
much false information that affects the selection process of
necessary attributes. As a result, the attribute subset generated
by the algorithm has low classification accuracy. In this
paper, we propose an attribute reduction algorithm based
on the IFS approach and supplement α,β levels to reduce
the computational redundancy and noise of the intuitionistic
fuzzy information granulations. The main content of the
paper is as follows:

1. In Part II, we summarize some basic concepts of IFS
theory and intuitionistic fuzzy relation.

2. In Part III, we present the α,β-level concept and the
definition of an IFS according to α,β-level.
3. In Part IV, we propose an attribute reduction algorithm

based on the intuitionistic fuzzy partition distance using the
filter approach.

4. Parts V and VI show the results and discussion of the
proposed algorithm. Finally, there are summaries of the paper.

II. PRELIMINARIES
This part will present basic concepts related to the IFS model.
These concepts will be an essential foundation for proposing
an attribute reduction algorithm presented in the third part of
the paper. Some basic concepts can be cited in [3], [31], [35],
[36], [37], and [38].

A. DECISION TABLES AND INTUITIONISTIC FUZZY SETS
Firstly, a decision table is a pair ofDT = (U ,C ∪D), whereU
is a finite nonempty set of objects, also known as the universe,
C and D are finite nonempty sets of attributes such that each
a∈C∪D determines a map a :U →Va, whereVa is the value
set of a. Then, for u ∈U and a ∈ C ∪D, the value of a for u is
written as a(u). Here, we shall call C as condition attributes
and D as decision attributes.
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TABLE 1. An example decision table.

Not losing the comprehensive characteristics, hypothesis
D only has one decision attribute d (if D has many attributes,
a transformation that can be reduced to an attribute [37]).
From this, we consider the decision tableDT = (U ,C ∪{d}).
Example 1: Adecision tableDT = (U ,C ∪{d}) as Table 1

where U = {u1,u2,u3,u4} and C = {c1,c2,c3,c4}.
Definition 1: Given a decision table DT = (U ,C ∪{d}),

an intuitionistic fuzzy set (IFS) P on U has the form P =

{⟨u,µP (u) ,ϑP (u)⟩ |u ∈ U }, with µP (u) : U → [0,1] and
ϑP (u) : U → [0,1] are respectively the membership and
non-membership degrees of u in P such that 0 ≤ µP (u) +

ϑP (u) ≤ 1, ∀u ∈ U .
The hesitant degree of u in P is determined by πP (u) =

1−µP (u)−ϑP (u). When πP (u) = 0,∀u ∈ U , IFS becomes
a traditional fuzzy set. The cardinality of P is denoted as |P|

determined by the formula [40]:

|P| =

∑
u∈U

1+µP (u)−ϑP (u)
2

(1)

Consider two IFSs P and Q on U , we will define several
set operations to compare them as follow [38]:
1) P ⊆ Q iff µP(u) ≤ µQ(u) and ϑP(u) ≥ ϑQ(u) for any

u ∈ U .
2) P= Q iff P⊆ Q and Q⊆ P.
3) P∩Q=

{(
u,min

(
µP(u),µQ(u)

)
,max

(
ϑP(u),ϑQ(u)

))}
.

4) P∪Q=
{(
u,max

(
µP(u),µQ(u)

)
,min

(
ϑP(u),ϑQ(u)

))}
.

To facilitate the deployment of definitions and calculation
formulas later, an IFSPwill sometimes be briefly represented
by two components, membership and non-membership.
Specifically, P= {⟨µP(u),ϑP(u)⟩ |u ∈ U }.

B. INTUITIONISTIC FUZZY EQUIVALENCE CLASSES
Definition 2: Let U be a finite nonempty set of objects.

An intuitionistic fuzzy binary relation R on U×U is defined
as follows:

R= {((u,v),µR(u,v),ϑR(u,v)) |(u,v) ∈ U ×U } (2)

where µR (u,v) ∈ [0,1] and ϑR (u,v) ∈ [0,1] are the
similarity and diversity degrees, respectively. The pair
(µR (u,v) ,ϑR (u,v)) is called an intuitionistic fuzzy number
between two objects u and v, which satisfies 0 ≤ µR (u,v)+

ϑR (u,v) ≤ 1. Then, R is called an intuitionistic fuzzy
equivalence relation (IFER) if R satisfies:

1) Reflexive: µR(u,u) = 1 and ϑR(u,u) = 0, ∀u ∈ U .
2) Symmetric: µR(u,v) = µR(v,u) and ϑR(u,v) =

ϑR(v,u), ∀u,v ∈ U .
3) Transitive:

µR(u,v) ≥ max
t∈U

{min(µR(u, t),µR(t,v))};

ϑR(u,v) ≤ min
t∈U

{max(ϑR(u, t),ϑR(t,v))}, ∀u,v ∈ U .

Given a decision table DT = (U ,C ∪{d}), each attribute
subset A ⊆ C determines an IFER, denoted as RA.
The IFER RA generates an intuitionistic fuzzy partition
(IFP) on U , PA = {RA [u] |u ∈ U }, in which RA [u] ={(
v,µRA[u] (v) ,ϑRA[u] (v)

)
|v ∈ U

}
is an intuitionistic fuzzy

equivalence class (IFEC) of u according to RA and can be
called an information granulation. It is easy to see that each
IFEC RA [u] is an IFS on U . To simplify the denotation, for
each object v, we denote RA [u](v) = (µA [u](v) ,ϑA [u](v)).
For A,B ⊆ C , we have RA [u] = ∩a∈ARa [u] and

RA∪B [u] = RA [u] ∩ RB [u]. This means that RA∪B [u](v) =

(min {µA [u](v) ,µB [u](v)} ,max {ϑA [u](v) ,ϑB [u](v)}) and
PA∪B = PA∩PB.

III. α,βα,βα,β-LEVEL INTUITIONISTIC FUZZY SETS
As mentioned, the fuzzy rough set theory is ineffective in
dealing with decision tables with low initial classification
accuracy, while the IFS theory still has limitations in terms
of processing time as it involves calculations on both
membership and non-membership functions. For addressing
above issues, we shall introduce in this section a new
extension of IFSs, called α,β-level IFSs, to handle the noise
of misclassification and perturbation.

We continue to consider an intuitionistic fuzzy equivalence
class RA [u]. Formally, let α and β be two real numbers in the
range [0,1] with α +β ≤ 1. Then, the ordinary set based on
level α,β of the IFS RA [u] is a crisp set and called as an α,β-
level set [32]:

R{α,β}

A [u] = {v ∈ U |µA [u](v) ≥ α ∧ϑA [u](v) ≤ β } (3)

Next, we construct an IFS Rα,β
A [u] by combining each

element R{α,β}

A [u] with the similarity and diversity degrees.
More accurately, Rα,β

A [u] is an IFS in U with the similarity
and diversity degrees of each object v ∈ U as

Rα,β
A [u](v) =

(
µ

α,β
A [u](v) ,ϑα,β

A [u](v)
)

=

{
RA[u](v) if v ∈ R{α,β}

A [u]
(0,1) otherwise

(4)

It is easy to see thatRα,β
A [u] will be formed based on adjust-

ing some intuitionistic fuzzy numbers from the intuitionistic
fuzzy equivalence class RA [u]. These intuitionistic fuzzy
numbers have a similarity degree less than α or a diversity
degree higher than β. Accordingly, if an object is removed, its
similarity and diversity degrees will be represented inRα,β

A [u]
as (0,1).
In this paper, we shall call Rα,β

A [u] as an α,β-level
intuitionistic fuzzy equivalence class of u. Therefore, a family{
Rα,β
A [u] : u ∈ U

}
will generate an intuitionistic fuzzy parti-

tion onU . To ensure clarity, this family will be denotedP
α,β
A

and more specifically called an α,β-level intuitionistic fuzzy
partition.

Suppose we are given two α,β-level intuitionistic fuzzy
partitions P

α,β
A and P

α,β
B . We say that P

α,β
A is finer than

VOLUME 11, 2023 138097
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P
α,β
B , denoted P

α,β
A ⪯ P

α,β
B , if for all u ∈ U , Rα,β

A [u] ⊆

Rα,β
B [u]. Then, we will present some significant properties of

the α,β-level intuitionistic fuzzy equivalence class and the
α,β-level intuitionistic fuzzy partition.
Proposition 1: Let DT = (U ,C ∪{d}) and A,B⊆ C .

1) If A⊆ B, then R{α,β}

B [u] ⊆ R{α,β}

A [u] ⊆ U ,∀u ∈ U .

2) P
α,β
A ⪯ PA.

3) Rα,β
A∪B [u] = Rα,β

A [u]∩Rα,β
B [u] ,∀u ∈ U .

Proof: We will skip the simple proofs of properties 1
and 2. To prove the property 3, we consider the following two
cases:

For any v ∈ Rα,β
A∪B [u], we have µA∪B [u](v) ≥ α and

ϑA∪B [u](v) ≤ β.

⇔

{
min {µA[u](v),µB[u](v)} ≥ α

max {ϑA[u](v),ϑB[u](v)} ≤ β

Hence, v ∈ Rα,β
A [u]∩Rα,β

B [u].
Proved similar to v ∈ Rα,β

A [u]∩Rα,β
B [u], we have

⇔

{
min {µA[u](v),µB[u](v)} ≥ α

max {ϑA[u](v),ϑB[u](v)} ≤ β

⇔

{
µA∪B [u](v) ≥ α

ϑA∪B [u](v) ≤ β
Hence, v ∈ Rα,β

A∪B [u].

From the above two cases, we have Rα,β
A∪B [u] = Rα,β

A [u]∩
Rα,β
B [u]. The Proposition is proved.
Because the α,β-level intuitionistic equivalence class is

also an intuitionistic fuzzy set, its fundamental operations are
similar to an intuitionistic fuzzy set. Consider Rα,β

A [u] and
Rα,β
B [u] are two α,β-level intuitionistic fuzzy equivalence

classes with A,B ⊆ C . Then, we have some fundamental
operations as follows:

1) Rα,β
A [u] ⊆ Rα,β

B [u] iff µ
α,β
A [u](v) ≤ µ

α,β
B [u](v) and

ϑ
α,β
A [u](v) ≥ ϑ

α,β
B [u](v) for any v ∈ U .

2) Rα,β
A [u]= Rα,β

B [u] iff Rα,β
A [u]⊆ Rα,β

B [u] and Rα,β
B [u]⊆

Rα,β
A [u].

3) Rα,β
A [u]∩Rα,β

B [u]=
{
v,min

(
µ

α,β
A [u](v) ,µα,β

B [u](v)
)
,

max
(
ϑ

α,β
A [u](v) ,ϑα,β

B [u](v)
)}

for any v ∈ U .

4) Rα,β
A [u]∪Rα,β

B [u]=
{
v,max

(
µ

α,β
A [u](v) ,µα,β

B [u](v)
)
,

min
(
ϑ

α,β
A [u](v) ,ϑα,β

B [u](v)
)}

for any v ∈ U .

Obviously, P0,1
A = PA. Therefore, from Property 2 we

can see that P
α,β
A is an extension of PA. Information

granulations of P
α,β
A will only be characterized by the

intuitionistic fuzzy numbers that satisfy two conditions of
α,β-level sets. The remaining elements will not contribute
too much to the cardinality calculation process.
Proposition 2: LetDT = (U ,C ∪{d}) be a decision table.

If α1 ≤ α2 and β1 ≥ β2 then P
α2,β2
A ⪯ P

α1,β1
A .

Proof: We found that ∀u ∈U , α1 ≤ α2 and β1 ≥ β2 we always
have R{α2,β2}

A [u] ⊆ R{α1,β1}
A [u]. We consider the following

three cases:
In the case v ∈ R{α2,β2}

A [u] ⇒ v ∈ R{α1,β1}
A [u], then

µ
α1,β1
A [u](v) = µ

α2,β2
A [u](v) = µA [u](v) and ϑ

α1,β1
A [u](v) =

ϑ
α2,β2
A [u](v) = ϑA [u](v).

In the case v ∈ U\R{α1,β1}
A [u] ⇒ v /∈ U\R{α1,β1}

A [u] and
v /∈U\R{α2,β2}

A [u], then µ
α1,β1
A [u](v) = µ

α2,β2
A [u](v) = 0 and

ϑ
α1,β1
A [u](v) = ϑ

α2,β2
A [u](v) = 1.

In the case v ∈ R{α1,β1}
A [u]\R{α2,β2}

A [u], it is easy
to see that R{α2,β2}

A [u](v) = (0,1) and R{α1,β1}
A [u](v) =

RA [u](v) = (µA [u](v) ,ϑA [u](v)). In which, µA [u](v) ≥

0 and ϑA [u](v) ≤ 1.
Thus, for all v ∈ U , µ

α2,β2
A [u](v) ≤ µ

α1,β1
A [u](v) and

ϑ
α2,β2
A [u](v) ≥ ϑ

α1,β1
A [u](v).

Imply, Rα2,β2
A [u] ⊆ Rα1,β1

A [u] for any u ∈ U which means
P

α2,β2
A ⪯P

α1,β1
A . This completes of proof.

We next propose the distance between two α,β-level
intuitionistic fuzzy equivalence classes.

Consider Rα,β
A [u] and Rα,β

B [u] with A,B⊆ C , the distance
between Rα,β

A [u] and Rα,β
B [u] denoted by

D
(
Rα,β
A [u] ,Rα,β

B [u]
)
:

D
(
Rα,β
A [u] ,Rα,β

B [u]
)

=
1
2

∗ sup
v∈U

{∣∣∣µα,β
A [u](v)−µ

α,β
B [u](v)

∣∣∣
+

∣∣∣ϑα,β
A [u](v)−ϑ

α,β
B [u](v)

∣∣∣} (5)

Our proposed distance measure characterizes the degree
of similarity between two α,β-level intuitionistic fuzzy
equivalence classes through the difference of the similarity
and diversity degrees. The following is some important
properties of this distance.
Proposition 3: Given a decision table DT = (U ,C ∪{d}),

A,B ⊆ C and two α,β-level intuitionistic fuzzy equivalence
classes, Rα,β

A [u], Rα,β
B [u], then we have

1) D
(
Rα,β
A [u] ,Rα,β

B [u]
)

≥ 0;D
(
Rα,β
A [u] ,Rα,β

B [u]
)

=

0 iff Rα,β
A [u] = Rα,β

B [u].

2) D
(
Rα,β
A [u] ,Rα,β

B [u]
)

= D
(
Rα,β
B [u] ,Rα,β

A [u]
)

3) D
(
Rα,β
A [u] ,Rα,β

E [u]
)

+D
(
Rα,β
E [u] ,Rα,β

B [u]
)

≥ D
(
Rα,β
A [u] ,Rα,β

B [u]
)

Proof:
1. It is easily provable that D

(
Rα,β
A [u] ,Rα,β

B [u]
)

≥ 0 and

D
(
Rα,β
A [u] ,Rα,β

B [u]
)

= 0 iff Rα,β
A [u] = Rα,β

B [u].
2. We have

D
(
Rα,β
A [u] ,Rα,β

B [u]
)

=
1
2
sup
v∈U

{∣∣∣µα,β
A [u](v)−µ

α,β
B [u](v)

∣∣∣
+

∣∣∣ϑα,β
A [u](v)−ϑ

α,β
B [u](v)

∣∣∣}
=

1
2
sup
v∈U

{∣∣∣µα,β
B [u](v)−µ

α,β
A [u](v)

∣∣∣
+

∣∣∣ϑα,β
B [u](v)−ϑ

α,β
A [u](v)

∣∣∣}
= D

(
Rα,β
B [u] ,Rα,β

A [u]
)

3. Because, we have µ
α,β
A [u](v) is inverse ratio of

ϑ
α,β
A [u](v). Thus, consider v ∈ U , if the maximum
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value of
∣∣∣µα,β

A [u](v)−µ
α,β
E [u](v)

∣∣∣ occurs at v then∣∣∣ϑα,β
A [u](v)−ϑ

α,β
E [u](v)

∣∣∣ also reaches the maximum value
at v. Hence, we have

D
(
Rα,β
A [u] ,Rα,β

E [u]
)

=
1
2
sup
v∈U

∣∣∣µα,β
A [u] (v)−µ

α,β
E [u] (v)

∣∣∣
+

1
2
sup
v∈U

∣∣∣ϑα,β
A [u] (v)−ϑ

α,β
E [u] (v)

∣∣∣ ,
D

(
Rα,β
E [u] ,Rα,β

B [u]
)

=
1
2
sup
v∈U

∣∣∣µα,β
E [u](v)−µ

α,β
B [u](v)

∣∣∣
+

1
2
sup
v∈U

∣∣∣ϑα,β
E [u](v)−ϑ

α,β
B [u](v)

∣∣∣ .
It is not difficult to see that 1

2 sup
v∈U

∣∣∣µα,β
A [u](v)−µ

α,β
E [u](v)

∣∣∣
+

1
2 sup
v∈U

∣∣∣µα,β
E [u](v)−µ

α,β
B [u](v)

∣∣∣
≥

1
2 sup
v∈U

{∣∣∣µα,β
A [u](v)−µ

α,β
E [u](v)

∣∣∣
+

∣∣∣µα,β
E [u](v)−µ

α,β
B [u](v)

∣∣∣}
≥

1
2 sup
v∈U

∣∣∣µα,β
A [u](v)−µ

α,β
E [u](v)

∣∣∣, we similarly have

1
2 sup
v∈U

∣∣∣ϑα,β
A [u](v)−ϑ

α,β
E [u](v)

∣∣∣
+

1
2 sup
v∈U

∣∣∣ϑα,β
E [u](v)−ϑ

α,β
B [u](v)

∣∣∣
≥

1
2 sup
v∈U

∣∣∣ϑα,β
A [u](v)−ϑ

α,β
B [u](v)

∣∣∣.
Therefore D

(
Rα,β
A [u] ,Rα,β

E [u]
)
+D

(
Rα,β
E [u] ,Rα,β

B [u]
)

≥

D
(
Rα,β
A [u] ,Rα,β

B [u]
)
.

From the distance measure built on two α,β-level
intuitionistic fuzzy equivalence classes, we expand on two
α,β-level intuitionistic fuzzy partitions.

D
(
P

α,β
A ,P

α,β
B

)
=

1
|U |

∑
u∈U

D
(
Rα,β
A [u] ,Rα,β

B [u]
)

(6)

It can be easily seen that the distance between two
α,β-level intuitionistic fuzzy partitions is the average
distance measures between α,β-level intuitionistic fuzzy
equivalence classes of all objects in the universe. This mea-
sure will serve as a fundamental foundation for developing
a new criteria to effectively select important attributes in the
next section of the paper.

IV. ATTRIBUTE REDUCTION BASED ON α,βα,βα,β-LEVEL
INTUITIONISTIC FUZZY PARTITION DISTANCE
This part provides an efficient algorithm to find a subset
of critical attributes in decision tables. In particular, main
steps of the algorithm is constructed through two parts. Part I
defines a novel reduct and the significance of attributes based
on the distance measure. Then, Part II presents an algorithm
to extract the new reduct. A specific example of the proposed
algorithm through each calculation step is also shown.

It is well known that a reduct of a decision table must
preserve both information and consistency. This implies

that the attribute’s evaluative criteria should encompass
both the condition and decision attributes. Hence, to meet
this requirement, the distance measure must incorporate
intuitionistic fuzzy partitions of the decision attributes as
well. We continue to construct Proposition 4 as follows.
Proposition 4: LetDT = (U ,C ∪D) and A⊆C . We have:

D
(
P

α,β
A ,P

α,β

A∪{d}

)
=

1
2 |U |

∑
u∈U

sup
v∈R{α,β}

A [u]

{
1+µ

α,β
A [u](v)−ϑ

α,β
A [u](v)

}
(7)

According to the formula (5):

D
(
P

α,β
A ,P

α,β

A∪{d}

)
=

1
2 |U |

∑
u∈U

sup
v∈U

{∣∣∣µα,β
A [u](v)−µ

α,β

A∪{d}
[u](v)

∣∣∣
+

∣∣∣ϑα,β
A [u](v)−ϑ

α,β

A∪{d}
[u](v)

∣∣∣}
=

1
2 |U |

∑
u∈U

sup
v∈U

{∣∣∣µα,β
A [u](v)

−min
{
µ

α,β
A [u](v) ,µα,β

{d}
[u](v)

}∣∣∣
+

∣∣∣ϑα,β
A [u](v)−max

{
ϑ

α,β
A [u](v) ,ϑα,β

{d}
[u](v)

}∣∣∣}
With v ∈ U\R{α,β}

A [u], we have µ
α,β
A [u](v) = 0 and

ϑ
α,β
A [u](v) = 1, therefore:

∣∣∣µα,β
A [u](v)−min

{
µ

α,β
A [u](v) ,

µ
α,β
{d}

[u](v)
}∣∣∣+∣∣∣ϑα,β

A [u](v)−max
{
ϑ

α,β
A [u](v) ,ϑα,β

{d}
[u](v)

}∣∣∣=0

With v ∈ R{α,β}

A [u], we consider the following two cases:
R{d} [u](v) = (1,0)

⇒

min
{
µ

α,β
RA[u]

(v) ,µR{d}[u] (v)
}

= µRA[u] (v)

max
{
ϑ

β,β
RA[u]

(v) ,ϑR{d}[u] (v)
}

= ϑRA[u] (v)

⇒

∣∣∣µα,β
A [u](v)−min

{
µ

α,β
A [u](v) ,µα,β

{d}
[u](v)

}∣∣∣
+

∣∣∣ϑα,β
A [u](v)−max

{
ϑ

α,β
A [u](v) , ϑ

α,β
{d}

[u](v)
}∣∣∣ = 0

R{d} [u](v) = (0,1)

⇒

min
{
µ

α,β
RA[u]

(v) ,µR{d}[u] (v)
}

= µR{d}[u] (v)

max
{
ϑ

α,β
RA[u]

(v) ,ϑR{d}[u] (v)
}

= ϑR{d}[u] (v)

⇒

∣∣∣µα,β
A [u](v)−min

{
µ

α,β
A [u](v) ,µα,β

{d}
[u](v)

}∣∣∣
+

∣∣∣ϑα,β
A [u](v)−max

{
ϑ

α,β
A [u](v) , ϑ

α,β
{d}

[u](v)
}∣∣∣

=

∣∣∣µα,β
A [u](v)

∣∣∣+ ∣∣∣ϑα,β
A [u](v)−1

∣∣∣ ⇒ D
(
P

α,β
A ,P

α,β

A∪{d}

)
=

1
2|U |

∑
u∈U

sup
v∈R{α,β}

A [u]

{
µ

α,β
A [u](v)+

∣∣∣ϑα,β
A [u](v)−1

∣∣∣}
Because ϑ

α,β
A [u](v) ≤ 1 ⇒

∣∣∣ϑα,β
A [u](v)−1

∣∣∣ = 1 −

ϑ
α,β
A [u](v)⇒ D

(
P

α,β
A ,P

α,β

A∪{d}

)
=

1
2|U |

∑
u∈U

sup
v∈R{α,β}

A [u]

{
1+µ

α,β
A [u](v)−ϑ

α,β
A [u](v)

}
Clearly, formula (7) only calculates with the intuitionistic

fuzzy numbers of objects in the α,β-level set. Therefore,
it leads to a significant reduction in the algorithm’s computa-
tional time.
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Proposition 5: Let DT = (U ,C ∪{d}) and A,B ⊆ C .
If A⊆ B then D

(
P

α,β
A ,P

α,β

A∪{d}

)
≥ D

(
P

α,β
B ,P

α,β

B∪{d}

)
.

Proof: Because A ⊆ B, we have: µ
α,β
A [u](v) ≥

µ
α,β
B [u](v) and ϑ

α,β
A [u](v) ≤ ϑ

α,β
B [u](v) ∀u,v ∈ U , then

1+µ
α,β
A [u](v)−ϑ

β,β
A [u](v) ≥ 1+µ

α,β
B [u](v)−ϑ

α,β
B [u](v).

Thus, D
(
P

α,β
A ,P

α,β

A∪{d}

)
≥ D

(
P

α,β
B ,P

α,β

B∪{d}

)
. The propo-

sition is proved.
Proposition 5 provides the anti-monotone property of the

size of the conditional attribute subset. This means that for
any A⊆ C , the smaller A is, the larger D

(
P

α,β
A ,P

α,β

A∪{d}

)
is.

This is considered as a criterion for selecting atribute in the
attribute reduction algorithm.
Definition 3: Let DT = (U ,C ∪{d}). A subset B ⊆ C is

called a reduct of C if

1) D
(
P

α,β
B ,P

α,β

B∪{d}

)
= D

(
P

α,β
C ,P

α,β

C∪{d}

)
2) ∀B′

⊂ B, D
(
P

α,β

B′ ,P
α,β

B′∪{d}

)
> D

(
P

α,β
B ,P

α,β

B∪{d}

)
This implies that for any a ∈ B, if D

(
P

α,β

B\{a} ,

P
α,β

B\{a}∪{d}

)
̸=D

(
P

α,β
B ,P

α,β

B∪{d}

)
, then we say that a is

indispensable in B. In contrast, a will be called a redundant
attribute in B. The redundant attribute may not provide
more classification information. Moreover, it can confuse the
learning algorithm during training. Therefore, it should be
removed from the condition attribute set before classification
learning.
Definition 4: LetDT = (U ,C ∪{d}), B⊆C and a ∈C/B.

Then the significance of the attribute a with respect to B,
denoted SIGB (a), is determined by the formula:

SIGB (a) = D
(
P

α,β
B ,P

α,β

B∪{d}

)
−D

(
P

α,β

B∪{a},P
α,β

B∪{a}∪{d}

)
(8)

It can be easily seen that SIGB (a) ≥ 0. Consider any attribute
a∈C , its significance for an attribute subset characterizes the
classification quality of b. We can see the alteration of the
certainty degree. If the value of SIGB (a) is higher, then
the attribute b will be more essential. This measure can be
considered as a criterion for selecting the necessary attributes.
Based on this definition, we design an effective algorithm to
extract an optimal attribute subset from a given decision table.

In the following, we will propose a heuristic algorithm
for selecting a subset of necessary attributes on the decision
table to enhance the efficiency of classification models.
This algorithm comprises two main stages, initialize and
filter. In the first stage of the algorithm, α,β-level intu-
itionistic fuzzy partitions are calculated for each attribute
in the decision table. The algorithm then initializes B
as the set containing the crucial attributes of the table
and starts incorporating attribute a0 into B, ensuring that
D

(
P

α,β
{a0}

,P
α,β
{a0}∪{d}

)
holds the minimum value. In the next

stage, the algorithm continues to add each attribute into the
selected attribute subset B with the maximum significance in
each iteration until the condition stops happening. The stop

condition has to satisfy a given threshold δ. The algorithm is
designed as Algorithm 3.

Algorithm 1 Attribute Reduction Based on the α,β-Level
Intuitionistic Fuzzy Partition Distance (IFPD)
Input: A decision table DT = (U ,C ∪{d}), levels α,β and

a threshold δ.
Output: One reduct B

// Initialize stage
1: Compute P{d}

2: for a ∈ C do
3: if a is a continous numeric value domain attribute

then
4: Compute P

α,β
{a}

5: else
6: P

α,β
{a} = P{a}

7: end if
8: end for
9: Compute P

α,β
C :=

⋂
a∈C

P
α,β
{a}

10: B:={a0} which satisfies:
D

(
P

α,β
{a0}

,P
α,β
{a0}∪{d}

)
=Min
a∈C

{
D

(
P

α,β
{a} ,P

α,β
{a}∪{d}

)}
// Filter stage

11: while D
(
P

α,β
B ,P

α,β

B∪{d}

)
−D

(
P

α,β
C ,P

α,β

C∪{d}

)
> δ do

12: for a ∈ C\B do
13: Compute D

(
P

α,β

B∪{a},P
α,β

B∪{a}∪{d}

)
14: Compute SIGB (a)
15: end for
16: Select a0 which satisfies:

SIGB (a0)=Max
a∈C\B

{SIGB (a)}

17: B := B∪{a0}
18: end while
19: Return B

We now analyze the computational complexity of the
IFPD. Suppose that |C|, |U | are the number of condition
attributes and the number of objects in the decision table
respectively. The complexity of computing the intuitionistic
fuzzy partitionP

α,β
C isO

(
|C| ∗ |U |

2). Hence, the complexity

of computingD
(
P

α,β
C ,P

α,β

C∪{d}

)
in line 11 isO

(
|C| ∗ |U |

2).
In the loop While (from line 11 to line 18), the complex-
ity of computing D

(
P

α,β

B∪{a},P
α,β

B∪{a}∪{d}

)
is O

(
|U |

2), the
complexity of SIGB (a) in line 14 is O

(
|U |

2). Besides, the
complexity of the loop For (from line 12 to line 15) is
O

(
|C| ∗ |U |

2). Thus, the complexity of the loop While is
O

(
|C|

2
∗ |U |

2). The overall time complexity of the algorithm
isO

(
|C|

2
∗ |U |

2). Let us employ an example to show the idea
of the new algorithm.
Example 2: Adecision tableDT = (U ,C ∪{d}) as Table 1

with α = 0.45,β = 0.4 and δ = 0.0.
Implement the steps of the algorithm IFPD:
Step 1: Initialize:
For each attribute c ∈ C , the similarity degree of u

and v according to the relation Rc is determined by
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the formula: µRc (u,v) = 1 − |c(u)− c(v)|. The diversity
degree according to the relation Rc is determined by the
formula: ϑRc (u,v) =

(
1−µRc (u,v)

)
/
(
1−λ∗µRc (u,v)

)
with λ = 1. Using α = 0.45,β = 0.4 to compute the
partitions P

α,β
{c} ,∀c ∈ C and P{d}, thereby we have:

P
α,β
C =


(1.00,0.00) (0.00,1.00) (0.60,0.25) (0.00,1.00)
(0.00,1.00) (1.00,0.00) (0.00,1.00) (0.00,1.00)
(0.60,0.25) (0.00,1.00) (1.00,0.00) (0.00,1.00)
(0.00,1.00) (0.00,1.00) (0.00,1.00) (1.00,0.00)


According to Proposition 4, we have D

(
P

α,β
C ,P

α,β

C∪{d}

)
=0,

D
(
P

α,β
{c1}

,P
α,β
{c1}∪{d}

)
= 0.71,D

(
P

α,β
{c2}

,P
α,β
{c2}∪{d}

)
= 0.71,

D
(
P

α,β
{c3}

,P
α,β
{c3}∪{d}

)
= 0.34,D

(
P

α,β
{c4}

,P
α,β
{c4}∪{d}

)
= 0.34.

Because D
(
P

α,β
{c3}

,P
α,β
{c3}∪{d}

)
is the smallest, so add c3 into

the set B. Then B= {c3}.
Step 2: Compute in the filter stage

Consider remaining attributes:
D

(
P

α,β

B∪{c1}
,P

α,β

B∪{c1}∪{d}

)
= 0.34

D
(
P

α,β

B∪{c2}
,P

α,β

B∪{c2}∪{d}

)
= 0

D
(
P

α,β

B∪{c4}
,P

α,β

B∪{c4}∪{d}

)
= 0.34.

Therefore c2 is selected because SIGB (B∪{c2}) = 0.34 and
holds the maximum value. Then B = B ∪ {c2} = {c3,c2}.
Because D

(
P

α,β

B∪{c2}
,P

α,β

B∪{c2}∪{d}

)
= D

(
P

α,β
C ,P

α,β

C∪{d}

)
=

0 the algorithm stops. Thus, the reduct of the given decision
table is B= {c3,c2}.

V. NUMERICAL EXPERIMENT
In the previous sections, we presented a promising attribute
reduction method based on the α,β-level intuitionistic
fuzzy sets approach. In this section, we demonstrate
some experiments to prove the efficiency of the proposed
method (IFPD) based on the comparison process with some
state-of-the-art methods. Algorithms include the distance
between two intuitionistic fuzzy partitions-based algorithm
(IFDAR) [35], the intuitionistic fuzzy positive region-based
algorithm (IFPR) [30], the intuitionistic fuzzy information
entropy-based algorithm (IFIE) [33] and the algorithm of
fitting model based on IFS feature selection (FMIF) [34].

A. EXPERIMENT GOALS AND PLANS
As mentioned above, we will present the results of five
algorithms based on attribute subset search strategies of
the decision table. The evaluation process will focus on
the criteria of classification accuracy, size of reduct and
computational time.
Experimental environment: All algorithms are coded

by Python programming languages and implemented in
a computer with a Windows 10 operating system, Xeon
processor, and 16GB of memory. The main goal of the
experiment is to illustrate the classification efficiency of
algorithms on reduced data sets. We use two classification
models: K-nearest-neighbor (K-NN, K=10) and support

TABLE 2. Decription of data sets.

vector machine (SVM). The classification results are given
out by a tenfold cross-validation, where each part will be
used for the algorithms to find the reduct and check the
classification accuracy.

Experimental data: The data sets during the experiment
are presented in Table 2, downloaded from the UCI machine
learning repository [41]. To demonstrate the efficiency of the
algorithm, we will show datasets with diverse characteristics
in attribute domains, the number of decision classes and the
number of data dimensions. Five illustrated datasets with low
initial classification accuracy (< 85%) are Vehicle, Robot,
Sona,Movement, Triazines, four datasets with a large number
of objects are Qsar, Ozone, Satimage, Agnostic and six
datasets with a large number of attributes are Tecator, LSVT,
PD, warpAR10P, Tumors, Leukemia.

Before reduction, we construct intuitionistic fuzzy equiva-
lence relations including the similarity and diversity degrees
between two objects u and v of attribute a.

If the value of attribute a is a continuous value type, then:

µ{a} [u](v) = 1−
a(u)−a(v)

max(a)−min(a)
(9)

The above formula determines the similarity degree of
object u with object v, in which max(a) and min(a) are
maximal and minimal values corresponding to attribute a.
In essence, the denominator component of the formula above
is the process of min-max data normalizing to ensure that the
values in the decision table are in the range [0,1]. Finally,
we base on the formula of Sugeno and Terano [42] to calculate
the diversity degree.

ϑ{a} [u](v) =
1−µ{a} [u](v)

1+λa ∗µ{a} [u](v)
with λa > 0 (10)

Clearly, if value λa = 0, will becomes a traditional fuzzy
set. With λa > 0, we can see that similarity and diversity
degrees are inversely proportional to each other and satisfy
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the properties of a intuitionistic fuzzy number in IFS:
0 ≤ µ{a} [u](v) + ϑ{a} [u](v) ≤ 1. We recommend the value
λa of attribute a according to the following formula:

λa =

{
1 if σa = 0
βa/σa if σa > 0

(11)

in which, σa =

√
1

|U |−1

∑
u∈U

(a(u)− ā)2 is the standard

deviation of the value domain of the attribute a, βa =∣∣∣PF
{a}∪{d}

∣∣∣/∣∣∣PF
{d}

∣∣∣ is the consistency of attribute a in the

decision table, PF
{a}∪{d}

is a fuzzy partition of {a} ∪ {d} and
PF

{d}
is the fuzzy partition of the decision attribute d . Clearly,

when µ{a} [u](v) has a small value which will lead to a
small consistency of the attribute a and ϑ{a} [u](v) has a big
value. It is emphasized that the elements with relatively low
similarity degrees will be removed easily in the intuitionistic
fuzzy equivalence classes based on the condition of α,β-level
IFSs. In contrast, the elements have a low ability to remove
when µ{a} [u](v) is large. Therefore, these elements will be
kept and used in the next computation.

If the value of a is a categorical value, then:

µ{a}[u](v) =

{
1,a(u) = a(v)
0,a(u) ̸= a(v)

(12)

ϑ{a} [u](v) = 1−µ{a} [u](v) (13)

B. EVALUATION OF THE REDUCT
Table 3 records the average size of reducts obtained from
five algorithms when running ten times for each dataset.
Obviously, on the datasets, the reduct size of the five
algorithms is all smaller than the original set of attributes.
For example, on the Sona dataset, the number of attributes is
reduced by 64.83% from the IFBR algorithm and the number
of attributes is reduced by 90.33% from the IFPD algorithm
compared to the original set of attributes. Regarding data
Ozone, the size of attributes obtained by the algorithm FMIF
and the algorithm IFPD decreased to 92.22% and 94.02%,
respectively.

The methods show very effective processing ability with
high dimensional data sets when removing hundreds or even
thousands of attributes on the original datasets is possible.
It can be easily seen that the reducts obtained by algorithms
IFPD and IFIE often have the smallest size for almost all
data sets, while the reducts of algorithm IFBDAR is higher
than that of other algorithms. It should be emphasized that
algorithm IFDBARdeals ineffectively with high-dimensional
datasets, such as LSVT, PD, and warpAR10P. The average
size of reducts obtained by the IFPD algorithm is the
best when reducing to 98.85% the number of attributes.
Thus, concerning the sizes of reducts, the proposed method
reduced very effectively, especially for high-dimensional data
sets.

Next, we analyze the execution time of five algorithms
IFPD, IFDBAR, IFBR, IFIE and FMIF. For small and
medium-dimensional datasets, all five algorithms are high-
speed. For example, on the Robot dataset, the execution time

TABLE 3. Number of selected attributes of diffirent algorithms.

TABLE 4. Computational time of difference algorithms.

of five algorithms is 0.019, 0.013, 0.579, 0.023, 0.074 (s).
On the Qsar dataset, the running times are 0.058, 0.151,
0.548, 0.217, and 0.226 (s) respectively. However, the IFPR
algorithm takes longer than other algorithms to process on
large dimensional datasets. For example, on the warpAR10P
dataset, the processing time of the IFPR algorithm is
up to 61.72s

Table 4 shows that the execution time of the proposed
IFPD algorithm is the fastest on 13 datasets. It reveals our
method based on the α,β-level IFSs approach improved the
computational time. The proposed algorithm is capable of
working with datasets that have different features. It is easy to
see that the larger the value of α, the shorter the computational
time. The IFPD algorithm only computes intuitionistic fuzzy
information granulations containing elements that contribute
mainly to the calculation. In Table 4, the proposed method
has superior time performance over IFSs-based methods for
multidimensional data sets, such as warpAR10P, Leukemia,
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TABLE 5. Comparison on classification accuracies of reduced data with SVM.

TABLE 6. Comparison on classification accuracies of reduced data with KNN.

PD, and Satimage. In addition, the proposed distance has
an improvement compared to the IFDBAR algorithm when
eliminating the process of calculating the union of the
partitions of the conditional attribute set with the decision
attribute d .

Finally, we will analyze the classification ability of reducts
returned from the methods through two classifiers: SVM
(kernel = ‘‘RBF’’) and KNN (K=10). Tables 5 and 6 present
the classification results from the reducts of five algorithms,
where ‘‘Raw’’ is the classification accuracy class of the
original data. It can be confirmed that the proposed IFPD
algorithm selected important attributes very efficiently for
all data sets. In particular, when comparing the raw data in
30 cases of 15 data sets for two classifiers (Tab. 5, 6), there

are only 2 cases that our reduct accuracy is slightly lower than
the raw data.

There are 26 cases, the IFPD algorithm has higher
classification accuracy than the original data set and 2 cases
have the same accuracy as the original data. The average
classification accuracy of the IFPD algorithm is the highest
among five algorithms. The improvement is most shown in
noise datasets with low initial classification accuracy. For
example, on the Leukemia dataset, the SVM classification
accuracy of the reduct obtained from the FMIF and IFPD
algorithms increased by 4.4% and 6.28% respectively. The
accuracy of the LSVT dataset with KNN classifier increased
significantly from 77% to 88.1%, 82.6%, 84.9%, and 86.6%
on four algorithms IFPD, IFPR, IFIE and FMIF.
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FIGURE 1. Classification accuracy and size of reduct of the proposed algorithm varying in the level ααα with
the SVM classifier.

The average classification accuracy of the IFPD algorithm
is the highest of the two classifiers. According to Table 5 and
Table 6, mostly, IFPD algorithms have better classification
results than the remaining four algorithms. Compared with
the original data, the average classification accuracy of
IFPD is improved by 2.7% and 5.8% on SVM and KNN,
respectively. In addition, the average standard deviation of
the IFPD algorithm is also approximately the same as other
algorithms. It is easy to see that the α,β-level set restricts the
influence of objects in the information granulation that have
low similarity or high diversity degrees. Intuitively, these
objects might be generated by noise and could be the reason
for the diminished effectiveness of the classification models.
Furthermore, our proposed measure is especially well-suited
for α,β-level intuitionistic fuzzy partitions, emphasizing

calculations exclusively on objects that play a significant role
in the attribute evaluation process. Therefore, this indicates
the stability of the algorithm’s efficiency compared to the
rest, particularly on datasets with low initial classification
rates, such as Vehicle, Robot, Movement and Tumors. This
stability comes from the fact that the information granulations
created from the proposed algorithm contain beneficial
information-carrying objects that increase the efficiency of
the attribute evaluation measure and contribute to improving
the classification accuracy as well as the computational time.

C. THE EFFECT OF THE PARAMETERS ON THE EFFICIENCY
OF THE ALGORITHM
For the proposed method, there are three parameters for the
model. The first and second parameters are the value α,β
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FIGURE 2. Classification accuracy and size of reduct of the proposed algorithm varying in the level
ααα with the KNN classifier.

TABLE 7. Model parameter value.

to adjust the α,β-level when construct α,β-sets. Different
values of α,β can lead to the selection of different subsets
of attributes. If the value α is higher, the minor β, the

more elements in the intuitionistic information granulation
are removed. This makes the distance measure value smaller
and gradually converges to the stopping condition of the
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algorithm. When the algorithm converges fast, the number of
attributes decreases, the accuracy efficiency can be affected.
However, we just traverse the parameter α in computing
α,β-level intuitionistic fuzzy partitions. For the compute of
β, we also base on the formula in [42] with (1−α)/(1+α).
For each data set, we traverse the values α and select a
set of parameters to obtain the reduct with high efficiency.
We gradually adjust the value of α from 0 to 1 with each step
of 0.05 and are shown in Figure 1, 2.

The third parameter is the value δ is the stopping threshold
of the proposed algorithm. Value δ also affects the size
of the reduct; more particularly, value δ with the larger
the number, the smaller the number of selected attributes,
and vice versa. However, this parameter does not affect the
selection of attributes. For datasets with large dimensionality,
we set the threshold δ as 0.05. We set threshold δ on the
small and medium-sized datasets as 0.01 and 0, respectively.
Table 7 gives the model’s parameter values on 15 datasets and
compares them with the FMIF algorithm.

VI. CONCLUSION
Attribute reduction is a pivotal problem in the data prepro-
cessing step to reduce the number of redundant attributes
and improve the classification ability. According to the
intuitionistic fuzzy sets approach, this paper first builds
an α,β-level to eliminate objects with small similarity or
high diversity degrees in the intuitionistic fuzzy equivalence
class to transform them into α,β-level intuitionistic fuzzy
equivalence classes. These objects cause computational
redundancy and can be created by noisy data. In other
words, the α,β-level intuitionistic fuzzy set has removed
the impact of noisy objects in the decision table. This not
only helps determine crucial attributes but also accelerates
the computation process. After that, this paper constructed
the suitable distance between two α,β-level intuitionistic
fuzzy partitions and proposed a novel algorithm by using
intuitionistic fuzzy partition distance to find an optimal
attribute subset in the decision table. The experimental results
indicate that our method can reduce computational time and
enhance classification accuracy, particularly when dealing
with datasets containing numerical values and a large number
of objects. Additionally, our algorithm demonstrates superior
performance when compared to algorithms based on the
intuitionistic fuzzy set approach. In the future, we will
continue to expand the properties of α,β-level intuitionistic
fuzzy sets to apply for discrete, categorical value datasets.
In particular, we will build some calculation techniques α,β

level on each attribute to get better results for the method.
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