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ABSTRACT Electrophysiological source imaging (ESI) technology can map scalp potentials to the cerebral
cortex, effectively address the shortcomings of low spatial resolution and the influence of volume conduction
effects of electroencephalogram (EEG) signals. However, this mapping may lead to a significant increase
in the amount of data, slow down data processing speed, and affect the real-time performance of the
brain-computer interface (BCI) system. To address above issues, this paper proposes a region of interest
(ROI) based ESI technology and applies it to the analysis of motor imagery electroencephalogram (MI-
EEG) Signals. The proposed MI-EEG signal analysis method based on ROI-ESI technology first utilizes
ESI technology to map scalp potential data to the interior of the cerebral cortex and obtain the source time
series; Then, an ROI partitioning rule combining sensor position information is proposed to determine the
ROI; Finally, feature extraction and classification of the source time series in the ROI are performed using
filter bank CSP (FBCSP) and support vector machine (SVM). Experimental results show that the MI-EEG
signal analysis method proposed in this paper can not only obtain accurate brain dipole activity information
through scalp potential mapping, thereby accurately decoding EEG signals, but also eliminate source
sequences unrelated to motor imagination through the division of interest regions, effectively improving
signal processing speed, which makes it more suitable for online BCI applications.

INDEX TERMS Brain-computer interface (BCI), electrophysiological source imaging (ESI), region of
interest (ROI), motor imagery electroencephalogram (MI-EEG).

I. INTRODUCTION
Brain-computer interface (BCI) is a communication sys-
tem that facilitates communication and control between
the brain and external devices bypassing the need for
peripheral nerves and muscles [1]. Initially, the BCI
system utilizes high-performance electrophysiological sig-
nal acquisition equipment to capture electroencephalogram
(EEG) signals in real-time; Subsequently, the collected
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EEG signals are interpreted through various decoding algo-
rithms; The final steps involves transforming the decoded
results into control commands to enable the manipulation
of external devices. As an emerging neural technology,
BCI has demonstrated significant potential in enhancing
the lives of patients with neurological muscle impair-
ments caused by diseases such as stroke and spinal cord
injury [2].

In BCI applications, EEG is increasingly favored by
researchers due to its affordability, portability, and high
temporal resolution. EEG signals are generally classified
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into two categories: evoked brainwaves (like P300 and
steady-state visual evoked potentials) and spontaneous brain
waves (likemotor imagery). Spontaneous brainwaves, in con-
trast to evoked brainwaves, arise without external stimuli
and are voltage changes in the scalp during central nervous
system activity. They can effectively avoid fatigue caused
by external stimuli in practical settings. Motor imagery, spe-
cially, generates different rhythmic changes in the motor
sensory area of the brain by imagining limb movements,
termed the sensorimotor rhythm (SMR) [3]. In SMR, the µ-
rhythm (8-13Hz) and β-rhythm (13-30Hz) are most obvious.
Imagining on the left hand movement results in the decrease
in the µ-rhythm and β-rhythm energy of contralateral motor
sensory area (a phenomenon as event related desynchroniza-
tion or ERD) and an increase in the µ-rhythm and β-rhythm
energy of ipsilateral motor sensory area (termed event related
synchronization or ERS). Identifying these rhythmic changes
using signal processing methods can facilitate the control of
external devices.

The core of analyzing and decoding EEG signals is feature
extraction and classification. Early research in this field pri-
marily focused on applying experience for feature extraction
and utilizing machine learning for classification to enhance
the accuracy of decoding EEG signals. However, in recent
developments, the method based on signal decomposition
in feature extraction has been prevalent in the classification
of motor imagery EEG signals, including empirical wavelet
decomposition, discrete wavelet decomposition, variational
mode decomposition and other types of decomposition
()() [4]. Sadiq et al. [5], [6] furthered the research on
the empirical wavelet decomposition and variational mode
decomposition, and proposed the multivariate empirical
wavelet decomposition (MEWT) algorithm and themultivari-
ate variational mode decomposition (MVMD) algorithm. The
MEWT algorithm showed better classification accuracy and
robustness as well as improved performance in cross-subject
classification. The MVMD algorithm outperformed MEWT
algorithm. Regarding classifier selection, convolutional neu-
ral networks gained prominence in EEG signal classification
due to their excellent performance. In a comparative study
of 11 popular classifiers by Sadiq et al. [7] indicated that the
classification performance of convolutional neural networks
surpassed machine learning algorithms.

Despite the increasing in the research and application of
EEG-based BCI systems, limitations like poor spatial res-
olution and volume conduction effect prevent the current
EEG signal analysis from achieving the necessary accu-
racy for the application of BCI technology [8]. Relevant
studies have shown that increasing the number of scalp
sensors can improve the spatial resolution of EEG signal
but it does not completely address the problem of volume
conduction [9].

Electrophysiological source imaging (ESI) is a method
that deduces neural electrical activity based on non-invasive
measurements such as EEG and magnetoencephalography

(MEG). The fundamental principle of ESI is to counter-
act the effects of volume conduction or field propagation
and reconstruct brain source activity from EEG and MEG
signals [10]. It has been validated that ESI can solve the
problem of poor spatial resolution and volume conduction
of EEG. By establishing an accurate volume conduction
model and mapping limited channel data onto the source
dipoles in the cerebral cortex, more spatial information can be
obtained [11].

In recent years, ESI technology has been studied in BCI
application from multiple aspects such as complex motion
decoding ability, decoding performance, application poten-
tial, and has shown great potential. Edelman et al. [12]
applied ESI technology to decode wrist operations, categoriz-
ing four complex motion imagination tasks of the right hand.
The results showed that the overall classification accuracy
increased by 12.7% compared with traditional sensor-based
methods. Mammone et al. [13] employed beamforming ESI
and continuous wavelet transform to decode seven more
refined upper limb movements, revealing that ESI technol-
ogy has substantial potential in decoding fine upper limb
movements. Edelman et al. [14] improved the spatial reso-
lution of EEG through ESI, and developed a non-invasive
framework based on EEG, which can continuously track
random targets through brain-controlled robotic arms, and
increase BCI control level by nearly 10%. Fang et al. [15]
integrated ESI with hybrid feature convolutional neural net-
works, extracted features using continuous wavelet transform
and optimal interested time. This integration has improved
classification accuracy by about 2% through selecting the
optimal interested time for each subject.

However, the process of ESI technology mapping scalp
electrode data into the cerebral cortex can negatively increase
the amount of data and reduce the speed of data process-
ing, which will affect the real-time performance of the BCI
system, limiting the application of ESI in BCI technol-
ogy. To mitigate the limitations, Hou et al. [16] integrated
the scout ESI with convolutional neural networks, created
region of interest (ROI) with the help of scouts, extracted
features from the scout’s time series using Morlet wavelet
method, and achieve a 14.4% increase in classification accu-
racy on certain datasets. This method reduces reliance on
dipoles by establishing ROI, but the time for training is
prolonged.

Given the significant potential of the ESI method in EEG
signal analysis and the current existing of high computational
complexity and prolonged computational time, this paper
proposes an ROI based ESI technique and applies it to the
analysis of MI-EEG Signals. The experimental results, both
offline and online, reveal that the ROI partition rule com-
bining sensor position information proposed in this paper
can determine the best ROI on the basis of the analysis
needs, effectively improve the signal processing speed on the
premise of ensuring a high analysis accuracy, and is more
suitable for the application of online BCI systems.

VOLUME 11, 2023 140597



Y. Wang et al.: ROI-Based ESI Technology and Its Applications in Analysis of MI-EEG Signals

The subsequent part of the paper is structured as follows:
Section II introduces the proposed ROI-ESI based MI-EEG
signal analysis method, including the preprocessing of EEG
signal, the forward and inverse problem of ESI, the ROI
partition rule, the feature extraction and the classification.
Section III delves into the experiment and discusses the
results. Section IV concludes the paper.

II. MATERIALS AND METHODS
A. SYSTEM DESIGN
The system diagram of the proposed ROI-ESI based MI EEG
signal analysis method is presented in Figure 1. The method
consists of three components: EEG signal preprocessing, ROI
based ESI technology, and feature extraction and classifi-
cation. The process starts with preprocessing the signal to
eliminate artifacts and noise, thereby improving the quality
and reliability of the signal; Then, ROI-based ESI technology
is used to map the preprocessed EEG signals to the cerebral
cortex and divide the regions of interest, which includes solv-
ing the forward problem (calculating scalp potential from the
cerebral cortex’s dipole distribution based on a head model),
the inverse problem (mapping scalp potential back to the
cerebral cortex to determine dipole positions and numbers),
and dividing the regions of interest. This paper proposes a
ROI partition rule that incorporates sensor position. This rule
divides regions of interest based on sensor position and signal
characteristics. Subsequent analysis will only focus on the
source sequence within the ROI. Therefore, the division of
regions of interest can effectively reduce the amount of data
processing and computational complexity. Finally, feature
extraction and classification are performed on the source
signals within the ROI, and the output of the classification
results can complete the control of external devices. The
following will provide a detailed discussion on each part of
the proposed method in this paper.

B. SIGNAL PREPROCESSING
EEG signal is non-stationary and high susceptible to external
influences. The process of recording EEG signals can result in
a large number of artifacts, such as blink artifacts, electrocar-
diogram (ECG) artifacts, electromyogram (EMG) artifacts,
power frequency interference, etc. For improved analytical
results, it is necessary to perform denoising processing on
the EEG signals. The preprocessing process of this paper
includes bad channel replacement, spatial filtering, frequency
domain filtering, independent component analysis (ICA).

1) BAD CHANNEL REPLACEMENT
In the recording process of EEG signals, the quality of source
imaging can be seriously affected due to the loss or obvious
errors in channel data, which happen because of poor contact
between the EEG cap electrodes and the scalp. Obvious erro-
neous channels can be identified by visualizing the original
EEG signal. To achieve the goal of data repair, interpolation
can be utilized to replace the signal of the erroneous chan-

nel. In this paper, spherical splines interpolation method is
employed to complete bad channel replacement [17]. This
method projects the electrode position onto a unit sphere
and then uses the signal of good channels to interpolate and
replace the signal of faulty ones.

2) SPATIAL FILTERING
Common average reference (CAR) is a commonly used spa-
tial filtering method has two advantages. Firstly, CAR can
filter out the common mode component of EEG signals
while retaining the characteristic information of each chan-
nel, thereby improving the signal-to-noise ratio; secondly,
CAR shows relatively higher source imaging accuracy com-
pared with single-electrode reference and double-electrode
reference [18]. The calculation formula of the CARmethod is
shown in (1), and the potential of each channel is recalculated
by subtracting the average value of all potentials.

CCAR
i (t) = Ci(t) −

1
n

n∑
i=1

Ci(t) (1)

where Ci(t) represents the original signal, CCAR
i (t) represents

the signal after re-referencing, i represents the channel num-
ber, and n represents the total number of channels.

3) FREQUENCY DOMAIN FILTERING
This research focuses on the motor imagery EEG signals. The
ERS and ERD phenomena related to MI mainly appear in
the frequency band of 8-30Hz. In order to filter out inter-
ference from other frequency bands, this study employs a
4th-order Butterworth bandpass filter to perform frequency
domain filtering on the EEG signals and filter out frequency
components outside of 8-30Hz.

4) INDEPENDENT COMPONENT ANALYSIS (ICA)
Independent Component Analysis (ICA) is a multi-channel
signal analysis method developed with blind source separa-
tion algorithm. ICA can effectively decompose multi-channel
EEG data into spatially fixed and time-independent com-
ponents, and effectively remove component components
unrelated to motor imagery tasks, including blink artifacts,
ECG artifacts, EMG artifacts. In this study, ICA is further
used to remove irrelevant artifacts after filtering. For details
of ICA algorithm, please refer to [19].

C. ESI TECHNOLOGY BASED ON REGIONS OF INTEREST
EEG is a comprehensive recording of the discharge activ-
ity of a large number of neuron clusters in the brain on
the surface of the scalp. Ideally, the scalp electrode records
brain source activity located below the electrode. However,
due to the fact that various parts of the brain tissue (such
as scalp, skull, cerebrospinal fluid, etc.) all have certain
electrical conductivity, the actual source activity inside the
brain will not only be transmitted upwards but also in other
directions. This phenomenon is known as volume conduc-
tion effect [20]. Affected by volume conduction effects, the
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FIGURE 1. System block diagram of ESI-based ROI technology for EEG signal classification.

collected EEG signals are not directly corresponding to the
signal of neuron clusters in the brain under the electrode,
but are superimposed signals from multiple sources in the
brain. Compared with magnetic resonance imaging, EEG
cannot provide high-resolution structural images. Its spatial
resolution is low, which limits the analysis and application
of EEG. To overcome this disadvantage, a feasible method
is to use recorded EEG signals to reconstruct the distri-
bution pattern of signal sources inside the brain, which is
called electrophysiological source imaging technology [21].
The electrophysiological source imaging process is shown
in Figure 2 and includes two important concepts: forward
problem and inverse problem. The forward problem aims to
simulate the process of brain neural activity producing scalp
potential and establish a lead matrix; The inverse problem
aims to invert the activity of neural sources inside the brain to
obtain information on source location, direction and strength.

FIGURE 2. The forward and inverse problem diagrams of ESI technology.

1) FORWARD PROBLEM
The solution of the forward problem involves establishing a
head model to calculate the lead matrix, constructing the rela-
tionship equation between the scalp surface and the source
space, and calculating the scalp surface voltage based on the
internal source signal of the brain. An accurate and effective
head model is the basis for solving the forward problem.
In order to improve the accuracy of solving the forward prob-
lem, the head model should mimic the geometry of the head
as much as possible. At present, various head model schemes
have been proposed, including three-shell concentric spheres
[22], ellipsoids [23], and double concentric spheres [24].With
further research, researchers have found that different head

tissues have different conductivities, and the different thick-
nesses and curvatures of individual skulls have a significant
impact on source imaging. Utilizing a more realistic head
model can result in a more accurate solution to the forward
problem.

In this study, the public MRI template ‘‘fsaverage’’ is used
to construct the head model. The ‘‘fsaverage’’ template is
derived by scanning the real brain 40 times usingMRI, and its
image is shown in Figure 3(a). Then, the FreeSurfer software
and the MNE-Python package are used to process structural
MRI data to generate three-layer boundary element surfaces
[25], including the inner surface of the skull, the outer surface
of the skull, and the outer surface of the skin, as illustrated
in Figure 3(b). The source space defines the position and
direction of candidate sources. This study uses a subsampling
method based on bilateral hemispheres to create a suitable
source space on the white matter surface, as depicted in
Figure 3(c), where purple dots represent candidate sources.

FIGURE 3. The process of solving a forward problem.

After creating the three-layer boundary element surface
and source space, the researchers employ the boundary ele-
ment method (BEM) to generate an isotropic three-shell
realistic geometric head model with a conductivity ratio of
1:1/50:1, solves for the lead matrix, and establishes (2).

Ei = LSi + N (2)

Ei ∈ Rn×T represents the preprocessed scalp EEG signal,
Si ∈ Rm×T represents the EEG source signal, i represents the

VOLUME 11, 2023 140599



Y. Wang et al.: ROI-Based ESI Technology and Its Applications in Analysis of MI-EEG Signals

number of experiments, L ∈ Rn×m represents the leadmatrix,
and N represents the random noise signal.

2) INVERSE PROBLEM
Due to the fact that the number of scalp electrodes is far less
than the number of EEG source dipoles, the mathematical
problem of inferring the EEG source signal Si from the
scalp EEG data Ei is highly underdetermined. Introducing
Tikhonov regularization is a classic way to solve such prob-
lems [26], which includes the minimum L1 normmethod and
the minimum L2 norm method. The L2 norm least squares
method can be represented by (3) and (4):

min
Si

(∥LSi − Ei∥2 + λ ∥WSi∥2) (3)

Ŝi = LT (LLT + λW )−1Ei (4)

λ is the regularization parameter, and W is the weighting
matrix. There are many methods based on the minimum
L2 norm regularization method, including minimum norm
estimation [27], low-resolution electromagnetic tomography
[28], and standardized low-resolution brain electrical tomog-
raphy [29]. Among them, the standardized low-resolution
brain electrical tomography method considers biological
errors in the actual signal and assumes that biological errors
are uniformly distributed throughout the brain. Therefore,
it has better precise positioning and zero-error positioning
and can obtain more spatial information. This article uses this
method to solve the inverse problem and complete the source
imaging process.

3) DIVISION OF THE ROI
The cerebral cortex is segmented into four lobes: frontal,
temporal, parietal, and occipital, each responsible for various
bodily functions. The parietal lobe, situated at the top of the
head, plays a crucial role in the cerebral cortex, encompassing
both motor and sensory functions. EEG signals related to
motor imagination predominantly originate from the sensory
motor cortex within the parietal lobe. To effectively isolate
the relevant area, a partitioning rule for the ROI has been
developed, which categorizes areas based on the location of
sensors and the characteristics of the signals.

In an ideal scenario, when a scalp electrode is used,
it primarily picks up the brain activity directly beneath it.
However, due to the phenomenon known as volume conduc-
tion, the recorded signals are a mix from various sources.
The influence of these sources on the EEG diminishes with
distance from the electrode. Based on this, the suggested
method for determining the ROI includes these steps:

(a) Pinpoint the exact coordinates of the scalp electrodes;
(b) Identify the brain dipole closest to each electrode;
(c) Expand outward from this dipole to define circular

regions of different radii;
(d) Analyzing the EEG signals using source signals in

regions of interest defined by different radii;
(e) Decide on the most effective ROI based on the out-

comes of these analyses.

The delineation of the ROI is illustrated in Figure 4.
In Figure 4(a), the somatosensory cortex is highlighted in
blue, signifying its status as the primary focus of this study.
Figure 4(b) details the methodology for identifying the dipole
that is closest to the position of the scalp electrode. This
involves calculating the distance between each dipole and
the scalp electrode, followed by selecting the dipole that
is in closest proximity to the electrode as the central point
for outward expansion. Subsequently, Figure 4(c) depicts the
designated ROIs in relation to the C3, Cz, and C4 scalp
electrodes, each encompassing an expansion radius of 5mm.

FIGURE 4. The process of dividing ROI. (a) Division of cerebral cortex
region; (b) Central dipole determination process; (c) Example of ROI.

D. FEATURE EXTRACTION AND CLASSIFICATION
Feature extraction and classification play a crucial role in
the entire BCI system, directly affecting the recognition rate
of the entire BCI system. In 1990, Koles first proposed the
common spatial pattern (CSP) method for EEG signal fea-
ture extraction [30]. Later, Romeser et al. applied the CSP
algorithm to extract multi-channel EEG signal features and
achieved ideal classification results, providing a theoretical
basis for the subsequent application of CSP algorithms to
BCI systems [31]. The CSP algorithm aims to construct an
optimal spatial filter so that after the signal passes through
the CSP filter, one class of signals has the maximum vari-
ance and the other class has the minimum variance, thereby
maximizing the energy difference between the two classes of
signals [32]. However, the CSP algorithm has certain limita-
tions when processing multi-channel EEG signals containing
a large amount of redundant information and noise. The
FBCSP uses a mutual information-based optimal individual
feature selection method on top of CSP to obtain relatively
better classification accuracy [33]. In this study, the FBCSP
algorithm is adopted to fulfill the feature extraction.

The diagram structure of the FBCSP algorithm is shown in
Figure 5. In Figure 5, SROIi represents the source time series
of the ROI, W represents the projection matrix obtained by
FBCSP calculation, fi represents the extracted feature vector,

140600 VOLUME 11, 2023



Y. Wang et al.: ROI-Based ESI Technology and Its Applications in Analysis of MI-EEG Signals

and i represents the number of experiments. The features can
be calculated as (5).{

Zi = W × SROIi

fi = log (var(Zi)/sum(var(Zi)))
(5)

FIGURE 5. Calculation block diagram of FBCSP algorithm.

In this study, the support vector machine (SVM) algorithm
is adopted to fulfill the classification. The SVM algorithm
is a classification method that emerged in the 1990s. This
method takes into account both empirical risk and structural
risk minimization, making it possible to achieve better results
when dealing with small sample training data and is widely
used in EEG signal classification.

III. EXPERIMENTS AND DISCUSSION
A. OFFLINE EXPERIMENT
In order to verify the performance of the proposed method,
the 4a dataset of the third BCI competition is selected for
offline analysis. The 4a dataset contained two classes of
motor imagery tasks: right hand movement imagination and
right foot movement imagination. Subjects were required to
sit in comfortable chair to complete the experiment. One
motor imagery trial lasted for 3.5 seconds with a rest interval
of 1.75-2.25 seconds between each trial during which the
participants can relax. Five subjects were involved in this
experiment labeled as aa, al, av, aw and ay. The EEG sig-
nals were recorded using a 118-channel electrode cap with
a sampling frequency of 100Hz. Each subject performed
280 trials of motor imagery, in which 140 trials for right hand
movement imagination and 140 trials for right foot movement
imagination. The training and test data sizes of varied for
each subject. The training data of five subjects are 168, 224,
84, 56, and 28 respectively, and the remaining data is used
for testing.

1) DIVISION OF ROI
The study utilized two sets of ROI. The first set was delin-
eated beginning at the scalp electrode and extending outward
in a radius of 5mm, as depicted in Figure 6. The second set
commenced at the scalp electrode as well, but expanded to
a 10mm radius to define the ROI, as illustrated in Figure 7.

Table 1 lists the electrodes’ names and numbers correspond-
ing to these two ROI groups. In both Figure 6 and Figure 7,
Figures (a) and (b) each represent a single scalp electrode.
Starting with Figure (c), there is a progressive increase in
the number of electrodes, culminating in Figure (h), which
represents a cluster of seven scalp electrodes.

FIGURE 6. Division of ROI with an expansion radius of 5mm.

FIGURE 7. Division of ROI with an expansion radius of 10mm.

TABLE 1. Electrode descriptions corresponding to different ROI.

2) ACCURACY OF DIFFERENT ROI
Building on the two sets of regions of interest discussed
earlier, this study conducts offline experiments using the 4a
dataset from the third BCI competition. Figure 8 illustrates
the analysis accuracy for eight ROIs divided by a 5mm
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FIGURE 8. Classification accuracy of ROI with an expansion radius of 5mm.

FIGURE 9. Classification accuracy of ROI with an expansion radius of 10mm.

expansion radius, as depicted in Figure 6. Similarly, Figure 9
presents the analysis accuracy for eight ROIs, each divided
by a 10mm expansion radius, as shown in Figure 7. In both
Figure 8 and Figure 9, the horizontal axis, labeled aa-ay,
represents five participants, while ‘Avg’ denotes the average
value. The vertical axis indicates the classification accuracy.
Below the x-axis, there is a detailed data table corresponding
to the histograms. This table’s first five columns show the
classification accuracy for each participant (aa-ay) across the

eight regions of interest (a)-(h), and the final column displays
the average classification accuracy. The legend’s (a) to (h)
correlate with the division of the eight regions of interest as
outlined in Figures 6 and 7.

By analyzing the relationship between the accuracy
and 8 ROIs (a-h) in Figure 8, following phenomenon can be
seen: (1) Analysis accuracy of 5 subjects showed an overall
increasing trend from ROI a to ROI h. (2) ROI a and ROI
b have the lowest analysis accuracy among all regions of
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interest, and ROI b is lower than ROI a; (3) The analysis
accuracy tends to be stable from ROI f to ROI h, which is
around 95%; (4) the ROI f has the highest average accuracy
95.92%.

The above phenomena show that:
(a) The expansion radius of 5mm is relatively small, less

ROI contains less effective information. With the expansion
of ROI and the increase of effective information, the analysis
accuracy is gradually improved, which is also the reason of
phenomenon (1) above.

(b) Since ROI a and ROI b both contain only one single
electrode on one side of the brain (for example, a contains
only C3 electrode and is located on the left side of the brain,
b contains only C4 electrode and is located on the right
side of the brain), and motor imagination, particularly the
motor imagination of the left and right limbs, unilateral EEG
signal cannot contain all the effective signals. Therefore, the
analysis accuracies of ROI a and ROI b are low. Since the
motor imagination of this dataset is right hand movement and
right foot movement, due to the ERD phenomenon, it is easier
to detect the feature changes of contralateral EEG signals,
so the analysis accuracy of ROI a located on the left side of
the brain is higher than that of ROI b located on the right side
of the brain.

(c) When the ROI is extended to a certain extent (most
useful information has been included), the analysis accu-
racy will plateau with the expansion of ROI, indicating that
the ROI containing effective information has the best value.
When ROI is too large, too much redundant information will
affect the accuracy of signal analysis, resulting in a decline
in analysis accuracy. This is also the significance of the ROI
division proposed in this study.

Figure 9 is the analysis accuracy under 8 ROI divided by
10mm expansion radius, compared with Figure 8, Figure 9
depicts that:

(a) The analysis accuracy of all subjects showed a trend
of an increase and then a decrease as the ROI changes. The
highest analysis accuracy for all five subjects occurred in ROI
d and ROI e.

(b) The analysis accuracies of ROI a-e are generally higher
than that of ROI f-g.

(c) In Figure 9, the highest average accuracy was 96.71%,
and the ROI at this time was ROI d, corresponding to three
scalp electrodes (C3, Cz, C4); the highest average accuracy
in Figure 8 was 95.92%, and the ROI at this time was ROI f,
corresponding to five scalp electrodes (C3, C1, Cz, C2 and
C4).

The three phenomena mentioned above indicate that when
dividing the ROI with a 10mm expansion radius, as long
as the electrode positions cover the left and right brains,
the division of the ROI based on fewer electrodes can also
contain most of the valid information. In this case, increasing
the ROI will increase the redundant information contained
in the source space, resulting in a decrease in classification
accuracy. Therefore, the classification accuracy in Figure 9
shows an initial increase followed by a decrease with the

highest classification accuracy appears in ROI d. The highest
average classification accuracy in Figure 9 is 96.71%, which
is 1 percentage point higher than that in Figure 8, indicating
that using a 10mm expansion radius for ROI division has
a slight advantage over using a 5mm expansion radius, and
there is no order of magnitude difference between the two.
At the same time, when using a 5mm expansion radius for
ROI division, the highest classification accuracy appears in
ROI f, corresponding to 5 scalp electrodes, while when using
a 10mm expansion radius for ROI division, the highest classi-
fication accuracy appears in ROI d, corresponding to 3 scalp
electrodes. This indicates that when dividing ROIs with a
smaller radius expansion, more scalp electrode information
is needed to obtain satisfactory classification results.

3) RESPONSE TIME OF DIFFERENT ROI
Response time can effectively reflect the communication effi-
ciency of BCI system, and is also the core key to reflecting
the smoothness of human-computer interaction. For high-
real-time electrical signal acquisition systems such as EEG,
the ideal response time is not more than 1 second in neu-
roregulatory scenarios and external interaction scenarios. The
main function of the ROI division proposed in this study is to
reduce the number of source signals, reduce the calculation
amount, and improve the response time. In order to verify the
influence of different ROIs on response time in this study, the
motor imagination EEG signals of 5 subjects were analyzed
and the average response time of 5 subjects was calculated
based on the 16 ROIs divided by the previous two extended
radii, as shown in Figure 10. During the response time testing,
the test data for all subjects is independent of the training
data. It can be seen from Figure 10 that whether the radius
of expansion is 5mm or 10mm, from ROI a to ROI h, the
response time increases rapidly with the expansion of ROI.
The response time of ROI with an extended radius of 5mm
increases from 0.504s to 1.007s, while the response time of
ROI with an extended radius of 10mm increases from 0.810s
to 1.365s. The ROI response time with an extended radius
of 5mm is significantly lower than that with an extended
radius of 10mm, with a reduction of 26%-37% in response
time. In ROIs with extended radius of 10mm, only ROI a,
b, and c have response times less than 1 second, while in
ROIs with extended radius of 5mm, only ROI h has response
times greater than 1 second. Obviously, for response time,
the expansion radius of 5mm for the division of ROI is more
advantageous. The above analysis shows that when designing
brain-computer interface systems with high response time
requirements, ROI f with an extended radius of 5mm can be
selected as the ROI, while ROI d or ROI e with an extended
radius of 10mm can be selected as the ROI for systems with
high accuracy requirements.

4) PERFORMANCE COMPARISON BETWEEN THE PROPOSED
METHOD AND THE CONTEMPORANEOUS METHODS
This study proposes a method that reduces the number of
source signals by selecting ROIs to reduce computation and
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FIGURE 10. Average response time for different ROIs.

TABLE 2. Comparison of accuracy and response time of part ROIs.

achieve fast response and high accuracy. To verify the effec-
tiveness of the method, it has been compared with four
other methods that are currently performing well. The four
comparison methods are as follows: Peterson et al. [34]
proposed the penalized time-frequency band common spa-
tial patterns method (PTFBCSP) in 2019; Sadiq et al. [4]
proposed the empirical wavelet transform-based imaginary
amplitude and frequency component combined with least
squares support vector machine method (EWT-IA-LS-SVM)
in 2019; Molla et al. [35] proposed the neighborhood com-
ponent analysis-based feature selection method (NCFS) in
2020; Fang et al. [15] proposed the ESI, continuous wavelet
transform, and hybrid feature CNN-based method (ESI-
CWT-CNN) in 2022. The comparative experiments were
conducted using the third BCI competition 4a dataset. The
experimental results are shown in Tables 3 and 4.
From Table 3, it can be observed that the average accuracy

and standard deviation precision of the method proposed in
this study outperforms the other four methods. For subject aa,
the accuracy of all three ROI methods proposed in this article
is higher than that of the other four methods, with a max-
imum accuracy of 97.65%. For subject av, whose accuracy
is generally lower, the method proposed in this article can
achieve a classification accuracy of 96%, slightly lower than
that of the EWT-IA-LS-SVMmethod. From Table 4, it can be
seen that the response time of ROI f with a 5mm expansion
radius proposed in this article is much smaller than that of the
other four methods. The response time of the two ROIs with
a 10mm expansion radius is similar to that of the PTFBCSP
method. It can also be seen that the response time of the two

methods using EWT and CWT is much higher than that of
the other two methods.

Based on the analysis of accuracy and response time, it can
be concluded that the method proposed in this article has
a similar response time to the PTFBCSP method, but the
accuracy is improved by 5.5%-6.3%. Compared with the
ESI-CWT-CNN method, which also uses ESI technology,
the response time of the method proposed in this article is
reduced by 67%-75%, indicating that the method proposed
in this article can effectively reduce ESI calculation time and
improve the real-time performance of BCI systems.

Nevertheless, some areas in this study need to be improved.
First, the number of offline data sets utilized in this study is
limited. In order to further verify the generalization ability
of the proposed method, the offline analysis data needs to
be expanded in the future research. For example, in order
to verify the proposed multi-functional brain-computer inter-
face framework, Sadiq et al. [36] used the BCI GigaDB
dataset of large subjects, which contains motor imagery EEG
recordings of 52 subjects. Stieger et al. [37] published a
large-scale continuousMI-EEG dataset, which contains more
than 600 hours of EEG recordings of 62 subjects. Secondly,
good denoising effect is the key to improving the recogni-
tion accuracy. The denoising algorithm used in this paper is
relatively traditional. At present, researchers have proposed a
betterMSPCAdenoising algorithm. This algorithm combines
wavelet with PCA, and the denoising effect is better than
the original PCA algorithm. Thirdly, the feature extraction
used in this paper is only for the time series of source space,
which does not reflect the spatial characteristics of source
imaging technology. At present, graphic features and geo-
metric features are used in depression detection and epilepsy
recognition, which is the focus of our follow-up research [38],
[39].

B. ONLINE EXPERIMENT
In order to verify the online performance of the proposed
method, the corresponding online experiments were con-
ducted. The online experiments took place in the Laboratory
of Novel Human-Machine Cooperative Intelligent Technol-
ogy and Robot System of Shandong Jianzhu University,
China. The acquisition of EEG signals was completed by the
Neuracle NueSenW series 32-channel wireless EEG acquisi-
tion equipment. The electrode position is arranged according
to the international 10-20 system, and the sampling frequency
is 250Hz. A total of four subjects (labeled as s1, s2, s3, s4
in this paper) participated in the online experiments, all of
whom were male students aged 20-26 years old of Shandong
Jianzhu University. The online experiments were divided into
two stages: training stage and testing stage. The training
stage includes subjects getting familiar with the experimental
process, motor imagination data collection, division of ROI
and the training of classifier. And in testing stage, the subjects
need to perform the virtual cursor online control experiment
to test the online performance of the proposed method.
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TABLE 3. Comparison of experimental accuracy (%) results.

TABLE 4. Comparison of experimental average accuracy and response
time.

1) TRAINING STAGE
The training stage includes subjects getting familiar with
the experimental process, motor imagination data collection,
division of ROI and the training of classifier.

In the process of data collection, subjects were equipped
with electrode caps and seated in a comfortable seat in
front of a computer screen placed 50cm away, and then
were instructed to perform corresponding motor imagination
according to the screen prompts. Every subject performed
motor imagination task 100 times, including 50 times left
hand movement imagination and 50 times right hand move-
ment imagination. Each MI process includes three stages:
preparation stage, the motor imagination stage and the
rest stage. The time flow of one MI process is shown in
Figure 11(a). In preparation stage, a white cross appears in
the center of the screen, signaling the subject to be prepare for
motor imagination, which lasts for 2 seconds; In the motor
imagination stage, the white cross was replaced by a white
arrow to the left or right, and the subjects need to imagine
left hand movement or right hand movement according to
the arrow direction, which lasts for 4 seconds; In rest stage,
the white cross disappeared and the screen appeared black,
which is 4 seconds which provided the subjects a period to
relax. Figure 11 (b) shows the real scene capture of the motor
imagination stage.

The offline experimental analysis results in section III-A of
this article show that the ROIs with better analysis accuracy
are ROI c, d, e with 10mm expansion radii and ROI e, f, g,
h with 5mm expansion radii. Therefore, in the online exper-
iment, the above ROIs were selected as candidate ROIs for
analysis. The analysis accuracy obtained by the four subjects
under the above seven ROI divisions is shown in Figure 12.

FIGURE 11. EEG data acquisition process.

The left ordinate represents the accuracy, and its size is repre-
sented by a color histogram and the specific values are listed
at the top of the histogram. The ordinate on the right side
represents the average response time, which is represented
by a black dot, and the specific number is presented above
the black dot. From the figure, it can be seen that subject
s1’s highest analysis accuracy appears in ROI e-10mm, with
a response time of 1.23 seconds. The second highest analysis
accuracy appears in ROI g-5mm, with a response time of
0.95 seconds. Subject s2’s highest analysis accuracy is ROI
f-5mm, with a response time of 0.82 seconds. Subject s3’s
analysis accuracy is generally high, and the analysis accuracy
reaches 94% in all three ROI cases. Among them, the shortest
response time is ROI f-5mm. Subject s4 has the same highest
analysis accuracy as s2, which appears in ROI f-5mm, with
a response time of 0.81 seconds. Analyzing the accuracy and
response time of the four subjects shows that the ROIs with
high analysis accuracy and short response time all appear in
the ROIs divided with a 5mm expansion radius. The reason
may be attributed to more noise interference in laboratory
data comparedwith that in BCI competition datasets selecting
ROIs with smaller expansion radii can reduce noise inter-
ference and facilitate feature extraction and classification.
Based on the analysis of accuracy and response time, the ROIs
selected by the four subjects are: s1-ROI g-5mm, s2-ROI f-
5mm, s3-ROI f-5mm, s4-ROI f-5mm.

2) TESTING STAGE
An online virtual cursor control experiment was used to
conduct the online testing experiment, designed and com-
pleted by the researchers of the study. Python programming
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FIGURE 12. Analysis results of four subjects with different ROIs.

language was used to complete the software, and PyQt5 was
used to complete the control interface.

The virtual cursor control interface is shown in Figure 13.
In order to facilitate the observation of the subjects, the virtual
cursor was replaced with a red ball. At the beginning of the
experiment, a black rectangular object will randomly appear
on left or right side of the screen, and the opposite side will
be a dashed rectangle, as shown in Figure. 13 (a)(b). After
the experiment starts, a red ball will drop in the middle top of
the screen, and the ball will drop down at the default speed (1
s/grid). If the ball received instructions to move left or right,
it moved one space to left or right, and if it did not receive
instructions, it will continue drop. If the ball touches the black
rectangular target on the left or right before falling to the
bottom of the screen, it is marked as a success. Conversely,
if the red ball touches the opposite dashed rectangle or falls
to the bottom of the screen, it is marked as a failure.

FIGURE 13. The interface of the online virtual cursor control experiment.

In this paper, the online virtual cursor control experiment
is conducted on subject s3, which demonstrated the highest
analysis accuracy in the training stage. The experiment is
conducted in three separate rounds, with 20 ball touch exper-
iments in each round, and the success rate of each round is
calculated separately. The success rates of the three rounds
for subject s3 were 90%, 85% and 90% respectively, with
an average success rate of 88.33%. The shortest and longest
time for the ball touching the rectangle was 7.2s and 14.8s
respectively.

The success rates of online virtual cursor control experi-
ments conducted in this paper are quite promising, with the
success rate reaching above 88% and the control time remain-
ing less than 15s. The results indicate that the ROI-based ESI
technology proposed in this paper can effectively analyze and
obtain the source signals that most relevant to scalp EEG, and
through the analysis of source signals within ROI, a higher
analysis accuracy can be obtained in a short response time.
The success rate of online experiment is slightly lower than
that of offline experiment because the real experiment process
is easily affected by factors such as the concentration of
subjects and external interference.

IV. CONCLUSION
This paper proposes a ROI-based ESI technique and applies it
to the analysis of MI-EEG signals. The method encompasses
several key steps. The initial step involves mapping the scalp
electrode data to the cerebral cortex using the ESI technique,
obtaining the source time series; then it proposes a ROI parti-
tioning rule that combines sensor position information for the
source space; finally, it uses FBCSP and SVM to complete
feature extraction and classification. In order to verify the
feasibility and effectiveness of the proposed method, a series
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of offline and online experiments were carried out in this
study.

The offline experiments were conducted on BCI Com-
petition III 4a dataset and 5 subjects were involved in the
experiments. The corresponding experiments were conducted
from the aspects of ROI division, the impact of different
ROI divisions on analysis accuracy, response time and system
performance. The experimental results show that the method
proposed in this paper can achieve a relatively high analy-
sis accuracy (>95%) whether 5mm is used as the extended
radius or 10mm is used as the extended radius to divide
the ROI. If considering the response time at the same time,
the balance between the analysis accuracy and the response
time can be achieved by dividing the ROI with the extended
radius of 5mm (accuracy>95%, response time<1s). At this
time, at least 5 electrodes on both sides of the brain must
be considered when dividing the ROI with 5mm radii. The
online experiment was conducted in the Laboratory of New
Human-Computer Cooperative Intelligent Technology and
Robot System of Shandong Jianzhu University. After the data
training stage, subject s3 (who has the best analysis effect)
was selected for the virtual cursor control online experiment.
The accuracies of three rounds online experiments were all
higher than 88%, and the time of each cursor touching exper-
iment was between 7.2s-14.8s.

Offline and online experimental results show that the
proposedmethod can not only accurately map low spatial res-
olution EEG signals to the cerebral cortex by ESI technology,
but also can partition the most effective regions of interest,
eliminate irrelevant source information, effectively reduce
data processing and reduce response time by using the ROI
partitioning rules proposed in this paper. The higher accuracy
and lower response time make the method proposed in this
paper more suitable for online experiments. Our subsequent
work is to apply the method proposed in this paper to the con-
trol of actual equipment, such as manipulators, wheelchairs,
etc.
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