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ABSTRACT Recently, accident prediction models, which predict the occurrence of traffic accidents through
deep learning algorithms have been proposed. The application of these models demands both high precision
and visualization of the decision basis applied. Current models use the motion features of objects in the
surrounding environment, but they do not predict well when the motion feature of the risk factor is small.
Meanwhile, drivers can avoid accidents because they utilize visual attention functions. This study focuses
on the divergence between visual attention and focus of expansion (FOE), which are highly correlated in
normal driving situations, as the basis for an accident prediction method. The proposed model can visualize
decision basis with high accuracy, even when the motion feature of the risk factors is small, by combining
it with Dynamic-Spatial-Attention, a deep-learning-based accident prediction method. In this experiment,
we classified data from the Dashcam Accident Dataset, a widely used accident dataset, into categories of
accidents. Using the Dashcam Accident Dataset, the proposed method achieves higher accident prediction
performance in categories for which the motion feature of risk factors tends to be small while maintaining
the same accident prediction performance as achieved by the baseline Dynamic-Spatial-Attention method
in categories for which the motion feature of risk factors tends to be large. In addition, the proposed method
visualizes the risk factors using visual attention and FOE to provide a visual explanation of the decision
basis.

INDEX TERMS Deep learning, driver visual attention, focus of expansion, traffic accident prediction.

I. INTRODUCTION
Systems that improve driving safety are essential for drivers
and automated driving technology. In automated driving
technology, accurately and swiftly predicting the occurrence
of future traffic accidents as well as explaining the decision
basis to users, contribute to assisting drivers and promoting
the practical application of automatic driving. Recently, deep
learning has demonstrated great results in various fields such
as image recognition. Therefore, accident prediction models
that acquire images from widely used in vehicle-mounted
cameras and use deep learning to predict the occurrence of
accidents have been studied [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
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[19], [20], [21], [22], [23], [24], [25], [26], [27]. Fig. 1
shows an overview of accident prediction tasks using accident
prediction models. Here, the occurrence probability of an
accident is estimated by an accident prediction model using
images from in-vehicle cameras as inputs. Many recent
high-precision accident prediction models utilize both object
and motion features [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16]. These methods
extract object features limited to pedestrians and vehicles,
which are the main candidates for risk factors through
object detection. Then, the accident probability is estimated
by evaluating the abnormal motion from motion features
using optical flow and Long Short Term Memory(LSTM)
neural networks [28]. In addition, some models such as
Dynamic-Spatial-Attention(DSA) [1], [5], [6], [7], [8], [9],
[12], [13], [14] explain the decision basis of the occurrence of
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FIGURE 1. Overview of accident prediction task. The accident prediction
model takes in vehicle-mounted camera images as input and outputs the
accident probability for each frame. The vertical axis of the graph shows
the accident probability Pt estimated by the model, and the horizontal
axis shows the frame number. The horizontal dotted line shows a
threshold value of 0.5. Frames with a probability of accident occurrence
higher than the threshold are shown in red.

an accident by calculating the hazard level for each bounding
box and visualizing the risk factors. However, these methods
are difficult to estimate when the risk factor is an unexpected
object that is in an unknown class for object detection, such as
a falling object from a vehicle in front. In addition, a motion
feature is not valid if the motion feature of the corresponding
risk factor is difficult to obtain. For example, in the collision
course phenomenon [29], [30], the apparent movement of the
risk factor is affected by relative factors between vehicles,
such as angle and speed. As similar phenomena can occur
in crossing collision and curve scenes, models that evaluate
the danger from such motion features cannot predict well [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23]. Therefore,
it is not possible to encourage drivers and automatic controls
to take actions to prevent extensive damage.

Meanwhile, the visual attention of the driver is focused on
the risk factor when the motion feature is small, regardless
of whether or not the class of object detection is known [31],
[32], [33]. This is because, unlike bottom-up current models
based on low-dimensional image features, driver visual
attention has top-down properties that are based on driving
experiences. This visual function makes avoiding accidents
possible, suggesting that driver visual attention is useful for
accident prediction tasks. When using visual attention for
accident prediction tasks, it is difficult to measure the driver
visual attention in real-time with an eye tracker because of
the adaptation to automated driving and the cost of installing
an eye tracker. Therefore, we use a visual attention model
that can estimate the driver visual attention from in-vehicle
camera images by using actual driver gaze data for training.
Estimated driver visual attention is strongly correlated with
the focus of expansion (FOE) during normal driving [34],
[35], [36]. However, during abnormal events, visual attention
is likely to diverge from FOE because visual attention is
directed toward risk factors.

FIGURE 2. Overview of the proposed method. The proposed method
incorporates a visual attention module consisting of visual attention and
FOE into the base accident prediction model. The driver visual attention
can be estimated by a visual attention model trained using eye tracking
data measured by an eye tracker.

In this study, we propose an accident prediction model that
incorporates visual attention and FOE divergence as shown
in Fig. 2. Furthermore, even in a highly accurate and open-
source DRIVE [27] model, such as that based on the saliency
map, it is impossible to explicitly show the risk factors as the
predicted saliency map itself is used. However, the proposed
model visualizes the risk factors by using visual attention
and FOE, enabling the visual explanation of the decision
basis of the model. Visualization of the decision basis is an
important element for the practical application of accident
prediction models because it reduces the black box behavior
of deep learning models. The contributions of this study are
as follows.

1) By a visual attention model learned with driver gaze
data, top-down knowledge of the driver is utilized in an
accident prediction model.

2) An accident prediction model is proposed that incorpo-
rates the divergence between driver visual attention and
FOE and enables the prediction of accidents difficult to
estimate by only object and motion features.

3) The proposed accident prediction method achieves
high accuracy in accident prediction using theDashcam
Accident Dataset, including accidents such as rear-
end collision, head-on collision, turn, and crossing
collision.

4) The visualization of risk factors from visual attention
and FOE can provide a visual explanation of the
decision basis for accident prediction.

II. RELATED WORKS
A. ACCIDENT PREDICTION MODEL WITH DEEP LEARNING
Deep learning models applied to accident prediction can be
divided into four categories. The first category represents
models based on the motion features of objects [17], [18],
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[19], [20], [21], [22], [23]. The second category represents
models based on multimodal data consisting of images,
sensor data, and voice information [24], [25], [26]. The third
category is saliency-based models [27]. The fourth category
represents models based on both object and motion features
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16].

1) MODELS BASED ON MOTION FEATURES
This model uses motion features of objects, capturing
abnormal motion by extracting motion features from time-
series data, using optical flow or LSTM to predict accidents.
Anopred [17] uses optical flow and U-Net [37] to predict
future frames. Anomalies are detected by comparing the
predicted future’s frame object motion with the actual
motion. Kataoka et al. [18] used semantic flow to separate
the background for risk factor recognition. CST-S3D [19]
extracts motion features based on 3D CNN [38] that
can process spatio-temporal information on training data
augmented by an image transformation model. SP [20] uses
LSTM to account for longer-term temporal relationships.
This mechanism learns the general movements of pedestrians
and predicts their future trajectories. ConvLSTMAE [21]
also uses LSTM to extract motion features and detect
anomalies using reconstruction errors with the input image
obtained by an autoencoder. Karim et al. [22] also
used a recurrent neural network and proposed a model
based on Gated Recurrent Unit (GRU) [39], which is
more computationally efficient than LSTM. AdaLEA [23]
employed a quasi-recurrent neural network [40], which can
learn faster than LSTM by parallelizing the computational
process to capture spatiotemporal relationships. The method
introduces Adaptive Loss, which adaptively changes the
penalty weights during each epoch of training. Although
these methods can extract abnormal risk factors from motion
features, they cannot estimate accident risk when the motion
features of the risk factors are small. In addition, they do
not focus on the major risk factors such as vehicles and
pedestrians. Therefore, in recent years, object detection has
been used to detect vehicles and pedestrians and to recognize
risk factors based on the relationships among objects.

2) MODELS BASED ON MULTIMODAL DATA
Models using multimodal data are those that use not only
video images but also audio information and data obtained
from various sensors. Yamamoto et al. [24] proposed a
method that combines sensor data, such as acceleration and
speed, with video images. Tanno et al. [25] also proposed
a configuration with three streams that extract time-series
multimodal data consisting of voice information and sensor
data, such as moving images and speed. This study confirms
the improvement in accuracy using voice information and
shows the effectiveness of this method. Monjuru et al. [26]
proposed a model that uses textual data to handle cases in
which extracting features from moving images is difficult

such as, at night. However, the above-mentioned models
have not yet been combined with methods that show rational
decision bases, such as the visualization of risk factors.

3) MODELS BASED ON SALIENCY MAP
A saliency-based model is a model that uses saliency maps
showing the salient regions in an image. DRIVE [27] is
an open source and highly accurate accident prediction
model. It uses reinforcement learning to estimate the
probability of an accident occurring at each time point,
while simultaneously predicting the prominence of the next
frame and providing feedback. Depending on the estimated
value, the probability of the occurrence of an accident in
the next frame is predicted, and the weights utilized in
the predicted saliency are changed. However, many datasets
that include accident scenes exclude annotated gaze data.
In such cases, the entire model cannot be trained properly
because part of the reward in reinforcement learning is
removed. Therefore, the estimated probability of accidents
may be high even in normal operation scenarios in which
no accidents occur, which may degrade the accuracy of the
prediction. In addition, because a saliency map is used for
the visualization of the decision basis, it is the output of the
image not only in accident scenes but also in normal driving
scenes. Therefore, the visualizedmaps cannot always indicate
the risk factors, making interpretation of the decision basis
difficult. Hence, the accident prediction model is required to
visualize only the areas judged to be risk factors.

4) MODELS BASED ON MOTION AND OBJECT FEATURES
Models using both object and motion features extract
object features, through object detection, and estimate the
probability of accidents by acquiring motion features through
optical flow and recurrent neural networks. DSA [1], CDAP
[3], L-RAI [5], DSTA [6], Yamamoto et al. [7], and FA
[16] have proposed models that process object detection
results in conjunction with LSTM and other recurrent neural
networks to extract location relationships among surrounding
objects. Ustring [2] uses graph convolution (GNN) to clearly
adapt the distance between objects to the edges in the graph
convolution for object-position extraction. Ichiki et al. [12]
used features such as dynamic obstacle presence and static
road information by combining semantic segmentation and
object detection. Object detection is also used in FRPN [15]
and Zhou et al. [14], which use changes in the size of the
detected bounding box and shifts in the center of gravity.
SSC [13] proposed an unsupervised accident prediction
method using the predictions of object movement and whole
frames. FOL-Ensemble [8], AM-Net [9], MAMTCF [10],
and THAT-Net [11] are models that utilize optical flow.
AM-Net, MAMTCF, and THAT-Net generate object-level
flow images by using the center coordinates of the object’s
bounding box. FOL-Ensemble uses optical flow in the same
manner but predicts the position of the next frame from the
optical flow. This position information is used to calculate
the probability of an accident occurrence. Some models such
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as DSA [1], [5], [6], [7], [8], [9], [12], [13], [14] calculate
the risk per bounding box to visualize risk factors by using
the bounding box with the highest risk. However, when using
object features, if the risk factor is an unexpected object
such as a falling object from a vehicle in front of the user,
it may be an example of out-of-class data for object detection,
making estimation difficult. In addition, when using motion
features, there are cases in traffic scenes in which it is
difficult to obtain the motion features of risk factors. One
example is the collision course phenomenon, in which the
apparent movement of a risk factor is reduced by relative
factors such as the angle and speed between vehicles. These
models, which use motion features to determine hazards,
cannot predict accidents well because similar phenomena
can occur in crossing collisions, curves, and other situations.
Therefore, there is a need for an accident prediction model
that can visualize the basis of a decision with high accuracy,
even for risk factors with small movement characteristics.

B. VISUAL ATTENTION MODEL WITH DEEP LEARNING
A model for estimating human visual attention from input
images is called a visual attention model. A variety of
methods have been proposed since the preliminary study on
visual attention models by Itti et al. [41] in 1998. In recent
years, deep learning based visual attention models have been
proposed [31], [34], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [52], [53], [54], [55], [56], [57], [59]. These
models use human gaze data measured by an eye tracker for
training and estimate visual attention based on factors such as
depth, context, and flicker in the image. UNISAL [46] uses
domain adaptation to predict visual attention with a unified
model for different types of datasets of still and moving
images. The model also uses a recurrent neural network,
which is not capable of simultaneously encoding both spatial
and temporal information. Therefore, methods [42], [45],
ViNet [47], HD2S [48], and STSANet [49], which can
simultaneously process spatio-temporal information based on
3D CNN, have been implemented. VSFT [50] incorporates
Transformer [51] into the model structure to consider longer-
term spatio-temporal dependencies compared with 3D CNN.

Moreover, top-down characteristics, such as those based on
task and experience, are important in estimating the visual
attention of a driver. Therefore, these proposed methods
[34], [52], [53], [54], [55], [56], [57], [59] for driving
tasks are trained on the driver gaze data. BDD-A [31]
proposed Human Weighted Sampling, a method in which the
sampling rate is varied according to the degree of separation
between the average map of the driver visual attention,
which is the correct image during training, and the visual
attention in each frame. This allows the model to learn
effective visual attention to accident scenes by identifying
important frames in the dataset. DR(eye)VE [34] applied
semantic segmentation to explicitly extract the respective
relationships among people, vehicles, and roads. Visual

attention is estimated by adding the output of branches in
RGB images, semantic segmentation images, and images
showing optical flow. Meanwhile, SCAFNet [54] and Rui et
al. [55] proposed amethod of concatenating features obtained
from segmentation images using Convolution LSTM to take
advantage of features obtained from 3D CNN. Watanabe et
al. [57] created a predictive model that reproduces human
vision on the basis of PredNet [58], which incorporates
predictive coding. Using this predictivemodel, Seki et al. [33]
demonstrated the characteristics of gaze regarding potential
dangers during driving. ARAGAN [59] proposed a method
that combines Conditional Generative Adversarial Network
[60] andMulti-HeadAttention algorithms to generate a driver
visual attention map from input RGB images. In this study,
by using a visual attention model learned from driver gaze
data, we apply driver top-down knowledge to the accident
prediction model.

III. METHOD
The proposed method consists of a base model and visual
attention module. Using DSA, a highly accurate open source
accident prediction model as a base model, we calculate the
divergence between visual attention and FOE in the visual
attention module. The outputs are combined to calculate the
probability of accident occurrence for the input image. The
model structure of the proposed method is shown in Fig. 3.

A. BASE MODEL (DYNAMIC SPATIAL ATTENTION)
The proposed method uses DSA as a base model to predict
accidents from object and motion features. We use Faster R-
CNN [61], which was pre-trained on the KITTI dataset [62]
to extract object features, such as vehicles and pedestrians.
Faster R-CNN is a typical end-to-end object detection model.
Vehicles and pedestrians in the input image are detected by
determining the location and rectangular shape of the object
using the region proposal network [61] and classifying its
class. Each of the J objects x̂ jt detected at time t is assigned
a weight αjt for accident prediction. The α

j
t is computed from

the output of the hidden layer at time t − 1, x̂ jt , and et ,
which consists of several model parameters. The calculation
formulas for α

j
t and e

j
t are as follows.

α
j
t =

exp(ejt )∑
j exp(e

j
t )

(1)

ejt = ωTρ(ωeht−1 + Uex̂
j
t + be) (2)

ω, ωe, Ue, be are learning parameters. ρ indicates the tanh
function, which improves the expressive power of the model
by performing nonlinear transformation. ht−1 is calculated at
the output gate of the RNN in the previous frame and has a
size of 10 × 512. Then, at each time step, the weight α

j
t for

each object is embedded into the Holistic Feat Xt , which is
a set of x̂ jt at each time, to obtain φ(Xt , αt ). The formula for
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FIGURE 3. Model structure of the proposed method. The proposed method consists of ‘‘DSA’’, ‘‘Visual attention module’’, and ‘‘Accident
occurrence probability calculation’’ and outputs the accident occurrence probability Pt . A graph is created using the probability of accident
occurrence Pt for each frame. GT in the graph shows the frames after the collision in red.

embedding is as follows.

φ(Xt , αt ) =

J∑
j=1

α
j
t x̂
j
t (3)

φ(Xt , αt ) uses RNN to calculate At at time t based on the
weights of detected objects such as vehicles and pedestrians.

B. VISUAL ATTENTION MODULE
1) VISUAL ATTENTION MODEL
The proposed method utilizes a visual attention model to
predict the probability of occurrence of accidents for risk
factors with small image variation. Highly accurate and open
source visual attention models include ViNet [47], HD2S
[48], and STSANet [49]. However, STSANet uses images
up to frame t + 16 to predict visual attention at frame
t . Therefore, it is inappropriate to incorporate it into an
accident prediction model. In addition, because HD2S has a
smaller model size than ViNet, we useÂ a visual attention
model [36] that composed of HD2S. HD2S estimates visual
attention by combining the outputs of four streams encoded
by 3D convolutional layers for each level of abstraction.
For pre-training of HD2S, we use the BDD-A dataset [31],
which includes dangerous traffic scenes among the driver’s
gaze datasets. Through this, we obtain top-down visual
attention according to the traffic accident prediction task. The
estimated visual attention is output as a 128 × 192 grayscale
image.

FIGURE 4. FOE and optical flow. This shows FOE and optical flow in the
in-vehicle camera images. Optical flow is indicated by the direction and
size of the red arrow. Also, FOE is shown as a green circle.

2) FOE (FOCUS OF EXPANSION)
FOE is defined as the origin of the optical flow [63],
[64]. Fig. 4 shows FOE and optical flow in an in-vehicle
camera image. As shown in Fig. 4, the norm of the
optical flow increases with separation from FOE. Therefore,
FOE obtained by the weighted average, which increases
the weights of the optical flow norm, is extended to a
two-dimensional image distribution by the Gaussian filter.
The calculation formula for the x-coordinate of FOE is
shown below. Also, calculate the y coordinate using the same
formula.

FOEx =

∑
ω1x1 +

∑
ω2x2 +

∑
ω3x3∑

ω1 +
∑

ω2 +
∑

ω3
(4)
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x1 and x2 represent the coordinates of the starting point
of the 10% and 20% optical flow with small norms, and x3
represents the coordinates other than the above. In this paper,
we set ω3=1, ω2=2, and ω1=3 because the smaller the norm,
the larger the weight. There are two methods for determining
optical flow: dense optical flow [65], [66] and sparse optical
flow [67]. In the sparse optical flow calculation method,
optical flow is calculated only for pixels where feature points
in the image can be obtained. On the other hand, the method
that calculates dense optical flow calculates it for all pixels.
Therefore, it is calculated even in areas where the norm of
optical flow is close to 0, such as the sky. In this paper,
we calculate FOE using optical flow with a small norm.
Hence, optical flow in areas such as the sky may become
noise. Here, we use Lucas-Kanade method [67], which is the
method for finding sparse optical flow. The estimated FOE is
output as a 128 × 192 grayscale image.

3) CALCULATION OF DIVERGENCE
The divergence between the obtained visual attention and
FOE is calculated as presented here. SIM, an index for
evaluating the overlap of histograms, is used for the
divergence. In SIM, the distribution is normalized so that the
total value is 1, and the sum of the minimum values of each
corresponding pixel i is calculated. The definition formula for
SIM is as follows.

SIM (mapA,mapB) =

∑
i

min(mapAi,mapBi) (5)

where
∑
i

mapAi =

∑
i

mapBi = 1 (6)

SIM indicates that the distributions are perfectly matched
when it is 1, and 0 indicates that there is no overlap in the
distributions. Therefore, the value obtained by subtracting
SIM from 1 is used as the divergence. The equation for
calculating divergence Dt is shown below. Since this paper
uses real images, FOE may fluctuate as the vehicle shakes,
and the SIM may be affected. Therefore, to absorb the
fluctuation, we set n= 5 and take the average of the previous
5 frames.

Dt =

∑t
i=t−n(1 − SIM i)

n
(7)

C. ACCIDENT OCCURRENCE PROBABILITY CALCULATION
Using the resulting At from the base model, the final accident
probability Pt is calculated using At and Dt , as shown below.

k = (1 − At ) Pt = (1 − k)At + kDt (8)

When the output from the base model is low, the coefficient
k increases the weight of the output from the visual attention
module, allowing the treatment of accidents that are difficult
to estimate from only object and motion features. For normal
driving scenes, the divergence between visual attention and
FOE is low, allowing the calculation of accident probability
without over-detection. Let Pt be the probability of accident

TABLE 1. Experimental conditions.

occurrence, and use the learning process of DSA, which is
the base model. The loss used for learning in the accident
prediction model makes the penalty for failure in prediction
in a frame close to the accident larger than that in the case of
prediction in a frame far from the accident. In addition, cross-
entropy error is used in scenes where no accidents occur.
Therefore, set each loss as follows.

Lp =

∑
t

−e−max(0,y−t)log(Pt ) (9)

Ln =

∑
t

−log(1 − Pt ) (10)

Here, Lp indicates the loss in the positive scene where the
accident occurred. Let y be the time of occurrence of the
accident. In addition, Ln indicates the loss in a negative scene
where no accident occurs. Finally, calculate the sum of each
loss. ∑

j∈P

L jp +

∑
j∈N

L jn (11)

Here, let P be the set of positive scenes and N be the set of
negative scenes.

D. VISUALIZATION OF RISK FACTORS
The proposed accident prediction model enables visual
explanation through the visualization of only risk factors.
Risk factors are visualized using the output from the base-
model DSA, visual attention, and FOE. Visual attention
and FOE are output as two-dimensional image distributions
to compute the difference of the image. In addition, the
bounding box coordinates of the highly hazardous object
obtained by DSA object detection are extended to the
distribution by the Gaussian filter. By visualizing the risk
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FIGURE 5. Accident prediction curves in DAD. Risk factors in the input image are shown in yellow. The two on the left show accident scenes, and
the third from the left is a normal scene. In each graph, the vertical axis shows the estimated accident prediction probability, and the horizontal
axis shows the frame number. In addition, FT is the estimation failure time. TTA is the difference between time t1 when the predicted accident
probability exceeds the threshold and time t2 when the accident occurs.

factors from adding these two images, a heat map is created
for the risk factor in the frame where the risk factors are
present. There is no heat map created in the typical usual
operation scene without the risk factor. Visualization of solely
risk factors allows for the rational explanation of the basis for
model decisions.

IV. EXPERIMENTS
To verify the effectiveness of the proposed model, categories
were generated representing each type of accident, and
accident prediction experiments were conducted.

A. DATA SET
For the experiments, a widely used dataset containing
accident scenes named DAD [1] is used. The DAD consists
of various accident scenes involving cars, pedestrians, and
motorcycles, which are filmed with in-vehicle cameras
such as drive recorders and published on the website. The
resolution of the dataset is 720 × 1280, and the frame rate
is fixed at 20 fps. In this study, accident scenes from datasets
are classified into four categories. In the categories ‘‘Rear end
collision’’ and ‘‘Head on collision,’’ it is assumed that risk
factors exist in the center of images. When the given vehicle
moves, the flow of the risk factor becomes relatively large
in the direction of motion, because the optical flow of the
peripheral background is small. Therefore, these categories
are assumed to be accidental scenes in which the image
variation of the risk factors tends to increase. In addition,
in the cases of ‘‘Turn’’ and ‘‘Crossing collision,’’ considering
that the motion features cancel each other out owing to the
relative movement between the vehicles, these categories are

assumed to be accident scenes in which the image variation
of the risk factors tends to be small. In addition, the dataset
includes some scenes in which vehicles are not moving, such
as those captured by fixed-point cameras, and such scenes are
excluded.

B. EXPERIMENTAL CONDITIONS
Experimental conditions are shown in Table 1. For the
experiment, we used DAD [1], which is widely used as a
dataset containing accident scenes categorized by accident
category. The learning rate of themodel is 0.0001, the number
of epochs is 30, and the batch size is 10. Use Adam as
the optimization function. These conditions are set so that
the loss in learning can be sufficiently converged. DSA and
DRIVE [27] are used as methods for comparison in the
experiment. The CPU configuration is Intel Core i9-9900K
CPU @ 3.60 GHz and the GPU configuration is NVIDIA
GeForce RTX 2080Ti. Time to accident(TTA) is used as an
evaluation index. TTA is the time range of risk perception
before an accident occurs and is defined as the difference
between the time t1 when the predicted accident probability
exceeds the threshold value and the time t2 when the accident
occurs. False Time(FT) is defined as the average of the time
corresponding to false negatives in accident scenes and false
positives in normal scenes, with a smaller value serving as an
indicator of better results.

C. RESULTS
Estimated accident prediction curves from the Dashcam
Accident Dataset are shown in Fig. 5. The horizontal axis is
time, and the vertical axis is accident occurrence probability.
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TABLE 2. Quantitative Evaluation in DAD. In each category, ‘‘Rear end collision’’ and ‘‘Head on collision’’ are categories that tend to have large motion
features, and ‘‘Turn’’ and ‘‘Crossing collision’’ are categories that tend to have small motion features.

FIGURE 6. Visual description of the model in DAD. Risk factors for the input image are shown in yellow. The three on the left are accident scenes,
and the three on the right are normal scenes. In the proposed method, only the areas determined to be risk factors are visualized using a heat
map.

The period that exceeds a threshold of 0.5 (50%) in the
accident prediction task is indicated in red. The proposed
method can recognize the danger even in an accident
scene in which the image variation of the risk factor tends
to become small and confirm that the probability of an
accident is low and predictable under normal conditions.
A quantitative assessment is shown in Table 2. The proposed
method exhibits the same performance as that of DSA in
accident scenes where the image variation of the ‘‘Rear end
collision’’ and ‘‘Head in collision’’ risk factors tend to be
large, and improves by 12% in the F1 compared to DSA in
accident scenes where the image variation of the ‘‘Turn’’ and
‘‘Crossing collision’’ risk factors tend to be small. In addition,
the TTA is 0.5 [s] better than the TTA of the DSA, and the
FT is better than those of both the DSA and DRIVE. Our
proposedmodel performs 5%better thanDSA and 49%better
than DRIVE in terms of F1 for all test images. These results
show that the proposed method can predict the probability
of accidents with high speed and accuracy while maintaining
predictability in categories for which the image variation of
risk factors tends to be large and suppressing over-detection in
categories for which the image variation of risk factors tends
to be small. Fig. 6 shows the results of the visualization of the
decision basis for the model. Risk factors in the input image
are indicated by yellow boxes. In each accident scene, DRIVE
can confirm risk factors such as cars and motorcycles, but
it can also confirm vehicles traveling in front of the scene
other than risk factors, such as the scenario in the third scene
from the left. This can be considered as the gazing area during

normal operation, and similar output can be seen in the three
non-accident scenes shown on the right. This constant display
of the human gazing area is not appropriate for visualizing
the basis for decisions in the accident prediction task because
it makes distinguishing risk factors impossible. Meanwhile,
the proposed method provides output only for the risk factors
that suddenly present themselves, such as the motorcycle
in the first and third scenes from the left for accident
scenes. Therefore, in the normal driving scene shown on the
right, nothing is displayed because there are no risk factors.
Although DSA also provides visualization for risk factors,
it displays many bounding boxes containing features other
than risk factors. These qualitative evaluations confirm that
the proposed method adequately captures risk factors and
provides reasonable visual explanations. We have discussed
the issues with the proposed method. The proposed method
has the same performance as the baseline in ‘‘Rear end
collision’’ and ‘‘Head on collision,’’ and no major changes
due to the visual attentionmodule can be observed. This could
be the case the vehicle, which is a risk factor, is likely to
be located in the center of the screen. Therefore, because
the visual attention and FOE regions overlap, no discrepancy
occurs and each evaluation index has the same value.

V. CONCLUSION
This study proposes an accident prediction model based on
DSA that predicts accidents based on object and motion
features, combined with the divergence between visual
attention and FOE. By applying the visual attention model
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learned from the driver gaze data, the driver top-down
knowledge is incorporated into the accident predictionmodel.
The proposed method is applied to the DAD dataset and
compared with the DSA and DRIVE. The results show the
effectiveness in the metrics F1, TTA, and FT by confirming
that it is possible to predict accidents with high accuracy
for all accident scenes containing risk factors with small
motion features. Visualization of the risk factors using
differential images of visual attention and FOE demonstrates
that a visual explanation of the basis for decision making
is possible. These qualitative evaluations confirm that the
proposed method adequately captures risk factors and
provides reasonable visual explanations.
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