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ABSTRACT The procedure of processing the vermicompost production includes several stages, where the
vermicompost material has different temperatures during these different stages. Thermal sensors play a key
role in numerous fields, such as medical and agricultural applications. Thermal cameras can produce a
thermal image or an array of values representing the array of sensory data. i.e., an array of temperatures.
In this study, we proposed the first thermal imagery dataset of the vermicompost production process. The
contributions of this work are two-fold using the proposed dataset. First, we framed the process of predicting
the vermicompost production process as a classification problem. Second, we compared classifying the
different stages of the process of vermicompost production based on two different input types, namely,
thermal images and an array of temperatures. In other words, the classifier will be fed with an input (an
image or an array of temperatures), and then the classifier will predict the vermicompost production stage.
In this context, we utilized several machine and deep learning models as classifiers. For the utilized dataset,
the study has been conducted on a set of images collected during the vermicompost production procedure
which was collected every 14 days over 42 consecutive days, i.e., four classes. We proposed running a series
of experiments to determine which input type yields better classification accuracy. The obtained results show
that using thermal images for the sake of classifying the vermicompost production stages achieved higher
accuracy, about 92%, in comparison to using the sensor array data, about 60%.

INDEX TERMS Classification, deep learning, machine learning, ResNet, SENet, sensor array, SVM,
thermal images, vermicompost.

I. INTRODUCTION
Thermal sensors are gadgets that gauge a system or area’s
temperature precisely. Temperature is a crucial physical
measure related to all research branches. In reality, they make
use of the Stefan-Boltzmann rule, which stipulates that every
object emits thermal radiation in proportion to its temperature
[1]. The non-visible electromagnetic spectrum is where the
thermal sensor functions. In this context, thermal sensors can

The associate editor coordinating the review of this manuscript and

approving it for publication was Poki Chen .

provide a measurable means to define the material, whether
it is a tangible object, the environment in which an object
is placed, or the context in which an object is distributed.
Sensors are classified in several ways by various researchers;
one of them is thermal sensors [2].

Thermal imaging, also called InfraRed Thermography
(IRT), is a term that literally translates as ‘‘beyond red’’ or
‘‘temperature picture’’. It is a method that uses a thermal cam-
era for thermal data processing and acquiring thermal images
[3]. There are two distinct measurement techniques that are
used to analyze thermal camera images of body surfaces,
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namely quantitative and qualitative IRT. Quantitative IRT is
regarded as more complicated to analyze than qualitative IRT.
The former technology enables the traditional visualization of
thermal patterns and quantification of surface temperatures
and their differences. Temperature calibration should be
carried out by detecting surfaces or objects with known fixed
temperatures. A radiometric temperature reading is necessary
to be able to compare results with defined restrictions and
keep track of even little deviations. On the other hand,
qualitative IRT does not require knowing the temperature
values to recognize issues. It is very simple to identify
deviations from the norm [4], [5].
Thermal imaging data is easily collected in real-time

from a variety of platforms, such as the sea, air vehicles,
and land. As a result of their vital importance, the use of
thermal cameras has spread in recent times in different fields,
e.g., medical, industrial, and agricultural. The main focus of
this paper is a thermal imaging application in agriculture.
Thermal imaging can be applied to various agricultural tasks,
such as planning irrigation [6], estimating soil water status,
estimating crop water stress [7], [8], evaluating the viability
of seedlings [9], determining the maturity of fruits and
vegetables [10], [11], identifying fruits with bruises [12],
and identifying plants with disease and pathogens [13], [14].
Many publications have explored the possible applications
of thermal imaging in agriculture and the food business [9],
[15], [16]. Despite these efforts, we did not find any literary
evidence proposing the use of thermal imaging analysis
in vermicompost production. This finding motivated this
research to contribute the first method that utilizes thermal
imaging in the analysis of vermicompost.

The proposed work famed the task of vermicompost
production stages as a classification problem. The image
classification problem is a solved problem with a high
accuracy while the progress of tabular data classification is
still much less accurate relative to the image classification.
Thus, we preferred to handle the task of vermicompost
production stages as an image classification problem over
a tabular data classification problem. In the proposed study,
we extended these efforts, of using thermal cameras in the
agricultural field, to utilize thermal imaging in classifying the
different stages of the vermicompost production procedure.
To achieve this goal, we collected the temperatures of the
mixture of soil and animal waste, which is used to produce
vermicompost, at four different stages using a thermal
camera. Then, we saved the collected data from the thermal
camera as a collection of images in one dataset and a
collection of sensor array data (i.e., temperature values) in
another dataset. Finally, different deep learning (DL) and
machine learning (ML) classifiers were trained on the two
types of thermal datasets separately to figure out which type
of thermal dataset is easier to classify.

The list of contributions can be listed as follows:

1) To our knowledge, we provided the first thermal
imagery dataset of the process of vermicompost

fertilizer production stages. The dataset is publicly
available on GitHub1

2) To our knowledge, this is the first study to frame the
problem of predicting the process of vermicompost
fertilizer production stages based on thermal images as
a classification problem.

3) To our knowledge, this is the first study to compare the
prediction accuracy based on the two types of thermal
data, namely, thermal images and sensory array data.

4) The comparison is based on thermal data collected
during the vermicompost production stages. Several
machines and deep learning models were utilized to
figure out which type of thermal data could be used to
train the model and achieve higher accuracy.

The remainder of this paper is structured as follows:
Section II reviews the background and related work.
Section III describes the suggested technique. Section IV
discusses the experimental findings. Finally, Section V wraps
up the work and discusses future plans.

II. BACKGROUND
A thermal imaging camera features a sensitive heat sensor
that can pick up on the smallest temperature variations
from nearby objects. After gathering this radiation data from
the items, the device uses temperature differential data to
display their temperature in a digital radiometric image.
Fig. 1 illustrates the infrared camera’s anatomy. The primary
components of an infrared camera are lenses, detectors,
image processing circuits, and user interface control. The IR
camera works by concentrating the collected IR waves on
the detector through the lens. The IR-sensitive components
of the detector are organized in an array known as the focal
plane array. These IR-sensitive elements are very small. The
number of elements in the array influences the resolution of
the camera’s IR images [17], [18]. Then, the signal processor
module extracts the electronic signals from the detector and
displays them either as an array of values or by mapping these
values to a colored bitmap image.

The infrared camera can be mounted on various supports
to gather thermal images as well. For neighborhood-scale
design research, it is mounted on a rooftop observatory [19];
for micro-scale studies, it is used with a tripod, portable
device, or smartphone [20]; and for studies spanning the
neighborhood scale and building scale, it is mounted on a
drone [21]. As a result, several airborne and satellite thermal
sensors have been created and are currently being employed
directly or indirectly for numerous agricultural applications.

III. METHODOLOGY
A. OVERVIEW
Fig. 2 depicts the overview of the proposed methodology.
As shown in Fig. 2, we proposed collecting two types of
datasets of the vermicompost production process using a

1https://github.com/AhmedAAkl/vermicomposit_stages_prediction
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FIGURE 1. The design of the infrared camera.

thermal camera. The first dataset includes thermal images
while the second dataset includes an array of temperature
values (i.e., real numbers) instead of each image. Then,
we proposed using different deep learning models for the
purpose of feature extraction and a machine learning model
for classification purposes where the two datasets were
treated independently. Finally, the dataset that helps to
achieve the highest accuracy is reported based on the best
evaluation metric values.

B. DATASET COLLECTION
The experiment was carried out for 42 consecutive days
at the Agricultural Engineering Department, Faculty of
Agriculture at Zagazig University, Egypt, according to the
produce methods and technology in full compliance with
the European Union’s Horizon 2020 Programme, under GA
n◦ 817696. During this period, 1,869 thermal images were
required; these images were captured with a pocket thermal
camera, model PTi120, Fluke.

The vermicomposting production unit was set up in plastic
bins of dimensions (60× 40 × 30 cm), using red earthworms
(Eisenia fetida) to be used for producing vermicomposting
rates (350 to 360 worms per m3 of bed volume). The
bottom of the bin is inclined to drain the excess water from
vermicompost units, with a small sump being put in to collect
the drain water. The starter was prepared from cow dung
and biogas slurry during the composting process, where it
was used as feeding material to breed sufficient numbers
of earthworms. To attain the required worm population,
basic material sources of organic waste are provided during
vermicomposting production. Biodegradable waste (weed
biomass, vegetable and fruit waste, leaf litter) were used as
basic raw materials to enrich the quality of vermicompost.
Bedding material provides the worms with a stable habitat
and feeds them with agricultural waste. Under constant
operating conditions, maintaining the adequate moisture
content of 70% ± 2, aeration, 7 pH, and temperature
of 30 ◦C ± 2 during the composting period. Preparing
vermicompost material includes the following phases:

1. In the first step, the process involves waste material
collection, pre-digestion to waste, earthworm bed preparation
and composting, vermicompost earthworm harvesting, and
vermicompost packing and storage.

2. Once the waste has been collected, it is shredded to
break it down into smaller bits. By mechanically eliminating
foreign items, only organic waste is left for subsequent pro-
cessing. Finally, organic waste is kept in proper containers.

3. The organic waste is then in the pre-digestion process for
seven days by steeping the materials and cattle dung slurry,
and the organic waste becomes more easily decomposable,
making it suitable for earthworms to consume. This method
helps accelerate the breakdown of the waste and enhances
nutrient availability for plants when used as fertilizer.

4. Constructing the earthworm bed, we kept a 20cm layer
of chopped dry leaves/grasses as bedding material at the
bottom of the bed. This material will provide a comfortable
environment for the earthworms to thrive.

5. Beds of partially decomposed material of specific
dimensions (60× 40× 20 cm) were made. Each bin contains
6kg of raw material and a starter.

6. Red earthworms (250g per bin) were released in the
bed’s upper layer, with water sprinkled to maintain a 70%
moisture content.

7. The bins were kept moist by a sprinkling of water daily
and covered with gunny bags, stirred once after 15 days, and
the finished product weighs 65-75% of the raw materials
used.

8. Thermal images were collected every two weeks and
the collected data can be saved as an RGB image and as an
array of temperature values; one dataset is image-based and
the other is a numerical dataset. To capture the temperature
of the soil (i.e., vermicompost material), a thermal camera,
Fluke PTi120,2 is utilized. The saved images were converted
to the RGB format using the high contrast color palette; the
high contrast color palette is a standard implemented in most
of the commercial thermal cameras.3 ,4

C. PREPROCESSING
The collected datasets are of two different types, i.e., images
and numerical data. Both of them are generated using
a thermal camera. The spatial resolution of the utilized
thermal camera is 90 × 120 pixel detectors IR-Fusion,
i.e., real numbers. These values can be saved as an array of
temperature values or as an RGB image. For the imagery
dataset, as the images have different sizes, we pre-processed
the thermal images by resizing them to 224 × 224 × 3 pixels
to meet the input form of the model. In addition, to speed
up the training process we normalized their values into a
range between (0,1). On the other hand, we pre-processed
the thermal sensory data to convert the array of temperature
values into grayscale images, as it consists of one channel.
Then, we resized the converted grayscale images into 90 ×

90 × 1 pixels. Finally, we normalized the thermal numerical
arrays into a range between 0 and 1. Thus, both the datasets

2https://www.fluke.com/en/product/thermal-cameras/pocket-pti120
3https://www.flir.com/discover/industrial/picking-a-thermal-color-

palette/
4https://www.fluke.com/en/learn/blog/thermal-imaging/how-color-

palettes-alarms-and -markers-improve-infrared-inspections
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FIGURE 2. Flow diagram of the proposed method.

are normalized into a range between 0 and 1 and both can be
treated as images.

D. FEATURE EXTRACTION
We proposed using two transfer learning models for the sake
of feature extraction, namely, the Residual Network (ResNet)
and the Squeeze-and-Excitation Network (SENet). In the
following text, a justification for selecting these two models
is outlined and then an amendment of these two models will
be exposed to be used as feature extraction models instead of
classifier models.

ResNet was introduced by He Kaiming’s model in 2015
[22]. The 2015 ILSVRC and COCO competitions’ ImageNet
Detection, ImageNet Localization, COCO Detection, and
COCO Segmentation tasks were won by this model. ResNet
is constructed using layers with variable counts, such
as 34, 50, 101, 152, and even 1,202. As deep learning
training often takes a lot of time and is only capable of
training a limited number of layers, this architecture was
developed to solve these challenges. The ResNets model has
a significant advantage over other architectural models in that
its performance is unaffected by the depth of the architecture.
Down-sampling and its limited ability to capture multi-scale
features are its main shortcomings.

SENet is the winner of the ILSVRC 2017 competition,
[23]. It is a distinct architectural, Squeeze, and excitation
unit that was created to improve neural network performance.
The SE block undertakes positive channel-wise feature
re-calibration while suppressing less valuable features.
SENet’s structures are commonly used in a variety of tasks
and have demonstrated genuine performance improvements.
The two main phases of the SE block are squeezing and
excitement. Squeezing produces the channel description
and is dependent on global average pooling. The gating
arrangement for the excitation section is simple and uses
a sigmoid activation function. The result is a scalar that

has been channel-wise amplified by the feature map. [24].
By learning, a SENet architecture can automatically deter-
mine the significance of each feature channel. In accordance
with this significance, the features that are useful for
classification are enhanced, while those that are less useful
are suppressed. The classification performance of thermal
images can be significantly improved by the weighted
feature.

As both the ResNet and SENet models are proposed
as classifier models, we proposed replacing the last layer
(i.e., the classification layer) with a fully connected (FC)
layer of size 128. Thus, the input image pixels were used as
an input and then the transfer learning model (i.e., ResNet
and SENet) extracted the 128 most significant features.
In other words, the added FC layer extracts the important
features of each input image and then these extracted features
will be used as inputs to the classifier models, as depicted
in Fig. 3.

E. CLASSIFICATION
The main idea of the proposed work is to predict vermicom-
post production stages based on the collected thermal images.
Thus, the problem is framed as a multiclass classification
problem where each class represents a different stage of
the vermicompost production stages, as shown in Fig. 2. In
this subsection, a detailed elaboration is provided for the
classification task.

For the classification task, we proposed utilizing an SVM
model [25] and a transfer deep learning (i.e., ResNet).
The SVM model is a machine learning technique that
makes use of statistical learning theory; it reduces the upper
bound of the model generalization error while minimizing
sample error. It incorporates structural risk reduction criteria,
which improves the generalizability of the model. The core
concept behind SVM would be to use the kernel transform
to accurately classify low-dimensional, linearly indivisible
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FIGURE 3. The proposed model architecture is a combination of a deep neural network (feature extraction) and an SVM model (classification).

problems in high-order space. SVM is frequently employed
in the classification of remote sensing data [26], [27].

In the model training phase, we used the two datasets
independently and split them into training and testing subsets,
80% for training and 20% for testing. Next, we trained the
utilized models and tested these models on the test dataset.
Then, we evaluated the performance of the proposed methods
using different evaluation metrics, e.g., precision.

F. IMPLEMENTATION DETAILS
To complete the proposed study, we chose machine learning
on both thermal imaging and thermal numerical array
datasets, to carry out the proposed study since it is
cutting-edge technology that can be utilized to address
practically any problem, whether it is classification or object
detection, in almost any area. Following data collection,
the thermal images and thermal numerical arrays were
pre-processed to remove temperature scales and other
markings and then resized to 224 × 224 × 3 and 90 ×

90 × 1 respectively. For all the experiments, we utilized a
reduction learning rate on a plateau (RLRP) which is another
callback function that automatically lowers the learning rate
after a certain specified value depending on the relative
increase in the model’s performance [28].

We checked the validation loss with a factor of 0.2 and
a minimal delta of 0.000001 with a patience value equal
to five. We used the early stop technique to discontinue
training at the right time and avoid the overfitting problem
with a value of 20. Thus, the process of training the proposed
model stopped when the accuracy did not improve for
20 successive epochs. For training, the batch size we utilized
was 32 and the Adam optimizer is used as an optimizer with
a compilation-based sparse categorical cross-entropy loss
function to our model. In an experimental study, Kingma and
Ba [29] demonstrated that the Adam optimizer is the fastest
optimizer relative to the most well-liked gradient descent
optimization technique. We utilized popular neural network
frameworks such as TensorFlow, Caffe, and CNTK.

G. EVALUATION METRICS
The metrics that are used for evaluating the performance
of the classifier model can be defined as follows: TP (True
Positive) which means that the classifier correctly predicts
that the soil is positively fertilized. The precision metric can
be computed as the true positive (TP) divided by the total
positive cases (TP+ FP) as shown in Equation 1.

Precision =
TP

TP+ FP
(1)

The recall metric is computed as the division of TP over
the total correct predictions (TP + FN). This is shown in
Equation 2.

Recall =
TP

TP+ FN
(2)

The F1-score metric can be computed as the harmonic
mean between the precision and the recall as shown in
Equation 3.

F1 − score =
TP

TP+ 0.5(FP+ FN )
(3)

The accuracy metric is computed as the ratio between the
correct prediction outcomes and the total prediction outcomes
as shown in Equation 4.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

The confusion matrix is a well-known metric, also known
as the UT error matrix, It may be used for both binary
classification and multi-class classification issues, and it is
the table that describes how a classification model performs
on a set of test data.

IV. EXPERIMENTAL RESULTS
A. SETUP
To design the proposed models, we built an environment
using the Python programming language version 3.9.16 on
a computer with a Linux Operating System. This machine
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has a Dual Core Processor Intel(R) Core(TM) of 2.50 GHz,
24 GB of system RAM, and Nvidia T4 with 16 GB of RAM.
Then, we proposed dividing the utilized dataset into three
subsets: the training, the validation, and the testing sets. We
used the training and validation sets to train the model, and
the test set–which is not visible during training–was used
to test it. This training strategy fixes the overfitting issue
and improves the model’s generalizability. Also, we used
Early Stopping and decreased Learning Rate On the Plateau
during the training procedure. These two methods made it
easier to complete the task of generalization. TensorFlow 2.5,
a well-known deep learning framework, was used to create all
of the suggested deep learning models. The proposed code
and dataset are available on GitHub5 for the sake of results
reproducibility.

Two examples of the thermal images and array of thermal
sensory data are depicted in Fig. 4, where sensor readings
alongwith the corresponding temperature within the array are
presented in Fig. 4a. The image in Fig. 4b depicts an example
of a thermal image taken by thermal cameras. Thermal
images are very sensitive heat sensors that can detect even
small temperature variations such values in the left figure.
Once the data from the infrared radiations generated by the
object has been collected, a map-out thermal picture based
on the variations and inflections of the temperature values.
Millions of detector pixels are stacked in a grid in this array.
The infrared radiation concentrated on each sensor array pixel
causes it to respond by emitting an electrical signal. The
camera processor receives this electrical signal and processes
it mathematically to provide a color map of the object’s
observed temperature as shown in Fig. 4b the resultant color
matrix is delivered to the camera’s memory, and a separate
color channel is given to each temperature value. Typically,
these created pictures are grayscale. White items are hot and
black objects are cold, with gray indicating a degree between
the two. However, the newer and more sophisticated thermal
imaging camera types may produce more colors, employing
a color spectrum of yellow, orange, purple, red, and blue,
to assist users in detecting other factors within the output
image.

B. RESULTS AND DISCUSSION
We conducted a set of experiments to investigate the
performance of the utilized models for both the classification
and feature extraction tasks. The comparison criteria are
based on four evaluation metrics, namely, precision, recall,
F1-score, and accuracy. The results include numerical values
of the evaluation metrics, the visual results of the confusion
matrices, underfitting analysis, cross-validation analysis, and
the confidence interval analysis to outline the proposed
model’s level of trust. The main goal of these experiments
is to evaluate the accuracy of classifying the thermal images
of different vermicompost production stages. Besides, the

5https://github.com/AhmedAAkl/vermicomposit_stages_prediction

experiments reveal the performance gap between classifying
thermal images generated by the built-in thermal camera
color palette against the numerical values representing the
temperature values.

In the first set of results, we reported the numerical values
of the four evaluation metrics in Table 1. These results are for
both datasets, thermal image, and thermal numerical values.
In Table 1, it is obvious that the models trained on the
thermal images achieved better results relative to the models
trained on the sensor array values, i.e., sensors’ numerical
values. For the thermal images dataset, three different models
were utilized for the classification purpose. The first model
is a pre-trained deep learning model (i.e., SENet model)
which achieved 89.84%. The second model consists of a deep
learningmodel for feature extraction, i.e., SEnet, and an SVM
model for classification purposes which achieved an accuracy
rate of 90.09%; we called this model SENet+SVM. The third
model utilizes the ResNet model, which is a pre-trained deep
learning model, for feature extraction and an SVMmodel for
classification purposes; we called this model ResNet+SVM.
The proposed ResNet+SVM achieved the highest accuracy
rate, 92.24%, as listed in Table 1.

In contrast, for the sensor array values dataset (i.e., tem-
perature values), we trained two models on the sensor
array data. The first model is the pre-trained deep learning
model ResNet which achieved a 59.89% accuracy rate.
The second model consists of a deep learning model for
feature extraction, i.e., ResNet, and an SVM model for
classification which achieved a 59.63% accuracy rate as
well. The SENet was not able to run on this dataset, as the
image represents the sensor array data consisting of one
channel whereas the SENet model requires an input with
three channels. Thus, the results of Table 1 indicate that
using the thermal images for training is the preference
over the senor array data for the task of classifying the
vermicompost production stages. The first research question
of this work was answered with the results of Table 1.
For all of the four evaluation metrics, the image-based
dataset was easier to predict relative to the thermal values
dataset. The performance gap of the predictive models was
about 30% on average. Thus, the recommendation based
on the obtained results is to use the thermal images for
classification purposes. These results emphasize that using
the color palette provider by the thermal camera, i.e., Fluke
PTi120, provided an easier dataset to be classified relative to
converting the numerical values, i.e., temperature values, into
images.

As the ResNet+SVMmodel achieved the best results, this
model’s performance analysis is detailed in the following
text. As the problem at hand is a multi-class problem, the
accuracy of each class out of the existing four classes, the
vermicompost production stages, are depicted as a heatmap
in Fig. 5 where the values are obtained from the confusion
matrix. Evidently, the accuracy of predicting the images of
each class varied. Last week’s, i.e., day 42, class was the most
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FIGURE 4. Sample of an array of thermal sensory data and thermal images.

TABLE 1. The evaluation metric scores the proposed classifier models trained on either the thermal images or thermal numerical data.

challenging task, as the accuracy rate for predicting this class
was 84%.

The second point of analysis of the ResNet+SVM model
is the feature extraction quality. We proposed evaluating
whether the ResNet model used in the feature extraction task
was suffering from overfitting or underfitting problems. Thus,
we depicted the train and test scores for both accuracy and
loss metrics as in Fig. 6. Fig. 6a shows a very close accuracy
rate for the training and test sets and Fig. 6b shows very
close loss rates for the training and test sets. Thus, the ResNet
utilized for the feature extraction did not suffer from either the
overfitting or underfitting problems.

To analyze the proposed model accuracy variance, we per-
formed the cross-validation test alongside the confidence
interval analysis, as the third point of analysis. We per-
formed this analysis on the best-performing model, i.e., the
ResNet+SVM classifier. The ResNet+SVM was run on
10 different folds, i.e., k = 10. Then, we used the
cross-validation results to evaluate the trust level of the
proposed ResNet+SVM with the 95% confidence interval.
Fig. 7 depicts the error margin with a 95% confidence
interval. In Fig. 7, regardless of the k value used, the error

FIGURE 5. Confusion matrix for the proposed ResNet+SVM classifier.

margin was still narrow. The narrow depicted error margin in
Fig. 7 reflects a high trust level of the classification accuracy
results.
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FIGURE 6. Evaluation metrics of tuned ResNet architecture (a) Training and test accuracy
(b) Training and test loss.

FIGURE 7. The proposed ResNet+SVM model’s accuracy with 95% confidence interval for
10 cross-validation folds.

Finally, the ResNet+SVM classifier was run 10 times to
measure the prediction time. Given the input image to the
proposed ResNet+SVM classifier, the average prediction
time was 30.4 milliseconds and the standard deviation was
2.6 milliseconds. This reported time reflects the real-time
property of the proposed predictive model.

V. CONCLUSION
The thermal cameras were successfully utilized in different
fields for different purposes. Thermal cameras can produce
two types of data, namely, 1) thermal images and 2) sensor
array data (i.e., an array of temperature values). In this
work, we proposed to utilize these advancements in thermal
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cameras to classify the vermicompost production stages.
Thus, we collected the first thermal dataset for the vermi-
compost fertilizer production stages, as per our knowledge.
The collected dataset consists of four classes that represent
the four stages of the vermicompost production procedure,
where the thermal data were collected as thermal images and
sensor array data. Then, we trained a set of machine and deep
learning models on the two thermal data types separately.
Besides, we proposed investigating which thermal data type,
out of these two types, can be easier to use for the predictive
tasks. The obtained results show that training predictive
models on the thermal images can achieve better results in
comparison to training them on sensor data. The performance
gap for the accuracy metric is about 30%. The proposed
trained model is able to predict the vermicompost production
stage for the given thermal data within 30 milliseconds on
average. The future direction is to improve the classification
results by proposing a new CNN-based architecture and then
train it on the thermal image dataset from scratch, instead of
using transfer learning.
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The dataset is publicly available.6
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