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ABSTRACT The ball and beam (BnB) system serves as a benchmark in control engineering as it
provides a foundational concept applicable to addressing stabilization challenges of various underactuated
nonlinear systems. This includes tasks like maintaining the balance of goods carried by mobile robots
and controlling the attitude of unmanned aerial vehicles. In this study, the focus is on enhancing control
optimization strategies for BnB systems that take into account inherent nonlinearities arising from actuator
constraints and state measurements. The work introduces a novel intelligent control approach, termed
hybrid PSO-WOA, which combines Particle SwarmOptimization (PSO) andWhale Optimization Algorithm
(WOA) to automate optimal parameter search for proportional-integral-derivative (PID) and state feedback
(SF) controllers. The collaborative technique between PSO and WOA is formulated to strike a balance
between exploration and exploitation phases, and tomitigate premature convergence risks due to the system’s
complexities. Additionally, three control schemes, namely cascade PID-PID, cascade PID-SF, and cascade
PID-observer are introduced, each with tailored cost functions for optimization through the hybrid PSO-
WOA algorithm, accommodating both measurable and unmeasurable state scenarios. Simulation results
consistently demonstrate the superior performance of the hybrid approach compared to individual PSO
and WOA methods, as well as conventional PID and linear quadratic regulator approaches. Notably, the
hybrid approach exhibits a significant improvement in error metrics, reducing integral-time absolute error by
18.99%, integral squared error by 35.37%, and steady-state error by 92.86%. This substantial enhancement
suggests promising directions for future research in automated control parameter tuning for underactuated
nonlinear systems.

INDEX TERMS Ball and beam, feedback control, hybrid, intelligent control, particle swarm optimization,
proportional-integral-derivative, whale optimization algorithm.

I. INTRODUCTION
The ball and beam (BnB) system emerges as an exceptional
framework for evaluating and refining control strategies,
particularly tailored for stabilization of nonlinear dynami-
cal systems. The system’s inherent complexity, driven by
factors such as saturation characteristics of its actuators,
constraints posed by the direct current (DC) motor, and
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discontinuities in position measurements, mirrors the real-
world challenges commonly faced in underactuated nonlinear
systems [1]. Designing controls for such systems presents
substantial challenges due to their unpredictable and dynamic
characteristics [2], [3]. Practical applications of the BnB
system include robotic load balancing [4], [5], [6], [7],
attitude control in space vehicles [8], [9], nonlinear control
of actuators [10], and gyroscopic stabilization systems [11].
This versatility allows researchers to leverage the BnB system
for designing, implementing, and testing control algorithms
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capable of navigating through nonlinear dynamics and
stabilizing the system despite its underactuated nature. The
broad spectrum of potential applications provides a valuable
opportunity to assess the adaptability and transferability of
control methodologies across various contexts [12].
The primary objective of the BnB system is to stabilize

the ball at the equilibrium position by controlling the beam
motion and maintaining its stability in the presence of exter-
nal disturbances. Nonetheless, formulating a robust controller
poses a significant challenge due to the aforementioned
complexities. Traditionally, a common solution to the ball-
position stabilization problem has been the adoption of a
proportional-derivative (PD) regulator with position error.
This choice is based on the need to address the double
integral dynamics following the linearization of nonlinear
dynamics near the operating point. An advanced two degrees-
of-freedom fractional control technique is introduced in
[13] through experimental comparisons between integer and
fractional order controls, which can be considered as an
improved version of the PD controller. However, PD control
may encounter a steady-state error caused by unmodeled
dynamics and external forces. To address this, an integral
action is typically incorporated into the control law to form a
proportional-integral-derivative (PID) controller.

Alternative methods include state-space approaches such
as state-feedback with pole-placement [14], observer-based
compensator [15], and linear quadratic regulator (LQR) [16].
These controllers are typically cascaded to ensure stability
of each actuator in the BnB system. H2 and H∞ techniques
are other modern control approaches that can be used to
stabilize the BnB [17], [18], but these approaches typically
require precise system parameter information and several
loop transformations to convexify the parameter search [19].
A more advanced technique is presented in [20] and [21]
where an active disturbance rejection control is employed
to enhance the balancing performance of BnB systems by
accurately tracking the ball position and DC motor. This
approach however necessitates the utilization of sophisticated
tools and hardware, potentially limiting its applicability to
smaller or less complex control systems. Previous studies
have also explored the use of nonlinear controllers such
as neural networks [22], [23], [24], [25], fuzzy logic [26],
[27], [28], [29], backstepping [30], deep reinforcement
learning [31], and passivity-based control [32], as alternative
strategies for stabilizing the BnB system.

Despite the availability of various control techniques for
stabilizing BnB systems, PID and state feedback (SF) or LQR
are often preferred due to their simplicity and robustness
against parameter variations [33], [34], [35], [36], [37].
In [38] for instance, it has been demonstrated via MATLAB
simulation that a cascade PID control outperforms a neural-
network-based compensator in terms of overshoot and error.
Recent works have also focused on enhancing the tuning
strategies for these controllers by employing evolutionary
algorithms [39], [40], [41]. For instance, in works such as
[42] and [43], controller performance is improved through

the application of a genetic algorithm (GA) for parameter
tuning. Alternative parameter optimization methods include
particle swarm optimization (PSO), artificial bee colony
(ABC) and bat algorithm (BA) [44]. The research conducted
by Coskun et al. [45] highlights a substantial performance
enhancement of PSO-optimized PID controllers compared
to the conventional PID approach when implemented in an
industrial electro-hydraulic system. In the study by Ouyang
et al. [46], it was observed that PSO exhibits faster con-
vergence toward optimal solutions compared to GA in PID
parameter tuning. It has also been demonstrated in [47] that
PSO-optimized PID controllers outperform those optimized
through ABC and BA. Additionally, the studies in [48] and
[49] have demonstrated performance improvements in PID
control when optimized through the Whale Optimization
Algorithm (WOA) compared to conventional approaches.
Recent findings in [50] have also highlighted the superiority
of WOA-optimized PID controllers over those optimized
through PSO and Grey Wolf Optimization (GWO).

Employing the evolutionary algorithms to optimize the
controllers nonetheless can be challenging when the nonlin-
earities are incorporated into the model as local minima issue
is bound to occur, which consequently leads to suboptimal
values [51]. One way to improve the algorithm is through
hybridization, which involves combining different meth-
ods [52], [53], [54]. As an illustration, in [55], a hybridization
of PSO with WOA was introduced, employing PSO during
the exploration phase and WOA during the exploitation
phase. This strategy showcased improved performance com-
pared to both PSO and WOA across several unconstrained
optimization problems. However, given the underactuated
and highly nonlinear nature of the BnB system, it is crucial to
carefully tailor the collaboration technique between different
algorithms to mitigate the risk of being trapped in local
minima during optimization.

Apart from optimizing control parameters, the configu-
ration of controllers and restrictions on state measurements
can significantly impact the performance of the closed-loop
system. While each control configuration comes with its
advantages, the choice typically depends on factors such as
the system’s structure, prior understanding of the system’s
model, the hardware in use, and the feasibility of obtaining
state measurements [56], [57]. For instance, a cascade PID
compensator is particularly well-suited for situations where it
is impossible to measure certain state variables. Conversely,
in situations where the state variables can be measured,
employing the state-space approach offers a systematic
and unified framework for modeling and analyzing the
system’s dynamics, thus facilitating control design [58], [59].
In instances where controlling the states is preferable but
adding extra sensors is impractical due to cost or space
limitations, observers can be employed to estimate the
state variables. Nonetheless, altering control configurations
introduces changes to the complexity of the control design,
and necessitates a different fine-tuning method and a
reassessment of both closed-loop stability and performance.
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In this study, the focus is on enhancing the control
optimization strategy for both measurable and unmeasurable
state conditions in BnB systems which take into account the
inherent nonlinearities arising from the constraints of the
actuators and state measurements. The contributions of this
paper are outlined as follows

• a novel intelligent control approach is proposed which
combines PSO and WOA, referred to as hybrid PSO-
WOA, to automate the search for optimal control
parameters for the nonlinear BnB system that is modeled
based on Newton’s laws of motion. This method can
bypass the need for meticulous fine-tuning design
processes that usually demand prior expertise

• a new collaboration technique between PSO and WOA
that seeks to strike a balance between the exploration
and exploitation phases, thereby mitigating the risk of
premature convergence that is bound to occur due to the
complexity of the nonlinear BnB system

• development of three distinct control schemes for the
nonlinear BnB system, namely cascade PID-PID, cas-
cade PID-SF, and cascade PID-observer. Each of these
schemes is equipped with suitable cost functions for
optimization through the hybrid PSO-WOA algorithm,
catering to both measurable and unmeasurable state
scenarios

The effectiveness of the proposed optimization algorithm is
validated through extensive MATLAB simulations involving
the three control feedback configurations, each requiring
a distinct search space dimension. Results demonstrate
that the proposed hybrid PSO-WOA approach consistently
outperforms both PSO and WOA individually, as well as
conventional PID and LQR methods. Furthermore, this
superior performance remains consistent across different
scenarios and feedback configurations, highlighting the
generalizability of the approach.

The subsequent sections of the paper are organized as
follows: Section II introduces the BnB modeling method,
outlines the formulation of the hybrid PSO-WOA algorithm,
and presents the proposed control schemes along with the
corresponding cost functions. Section III showcases and
analyzes the simulation results, while Section IV summarizes
the findings and provides suggestions for future work.

II. METHODOLOGY
A. BALL AND BEAM MODELING
The depicted BnB system in Fig. 1 aims to regulate the
position of the ball, represented by the red circle, and ensure
it reaches and remains stable at x = 0 by adjusting the beam’s
angle which is controlled by a DC motor. The system’s
parameters are specified in Table 1. The assumptions made
for the BnB system are as follows:

(i) The ball encounters friction, possesses a rotary moment
of inertia, and undergoes acceleration as it moves along
the beam

(ii) The beam angle, θ , is small

(iii) Both the masses of the ball and the beam are uniformly
distributed

(iv) The ball maintains contact with the beam and the rolling
occurs without slipping

Taking x as the position of the ball on the beam with
respect to the origin, the ball’s velocity and acceleration can
be written as

ẋ =
dx
dt

, and ẍ =
d2x
dt2

(1)

respectively. The motion of the ball is influenced by two
forces: Ftx and Frx . These forces represent the effects of
the ball’s translational and rotational motion, respectively.
Specifically, Ftx can be described as Ftx = mẍ. To determine
Frx , we can use the equation Tr = Frxr , where Tr represents
the torque resulting from the ball’s rotation. However, since

Tr = Jb
dωb

dt
= Jb

d(
vb
r
)

dt
=
Jb
r
d
dt
(
dx
dt

) =
Jb
r
ẍ (2)

where ωb is the ball’s rotational speed, and vb is the ball’s
translational speed, we will get

Frx =
Jb
r2
ẍ. (3)

Based on Newton’s second law, we can write

mg sin θ − Frx = Ftx , mg sin θ −
Jb
r2
ẍ = mẍ. (4)

Via small angle approximation, i.e. sin θ ≈ θ , we will obtain

mgθ =
( Jb
r2
+ m

)
ẍ (5)

ẍ =
( mg
Jb/r2 + m

)
θ. (6)

Applying the Laplace transform (assuming zero initial
condition) on (6) gives us s2X (s) =

( mg
Jb/r2 + m

)
θ (s),

or equivalently,

X (s)
θ (s)
=

1
s2

( mg
Jb/r2 + m

)
(7)

which is the transfer function from θ to x. As the DCmotor is
used to control the beam, it is essential to derive the transfer
function relating to the DC motor angular displacement, i.e.
α, to the ball position, x. Since the relationship between θ and
α is simply θ = γ0α where γ0 is just a constant gain that can
be obtained via experiment, we can rewrite (7) as follows:

X (s)
α(s)
=

γ0

s2

( mg
Jb/r2 + m

)
(8)

or, equivalently.

s2X (s) = γ0α(s)
( mg
Jb/r2 + m

)
. (9)

In the state-space domain, we will get

ẍ = γ0αQb where Qb =
( mg
Jb/r2 + m

)
(10)
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FIGURE 1. Ball and beam.

Hence[
ẋ
ẍ

]
=

[
0 1
0 0

] [
x
ẋ

]
+

[
0

γ0Qb

]
α, x =

[
1 0

] [
x
ẋ

]
(11)

Since Jb = (2/5)mr2, it follows that Qb =
5g
7
. By writing

the state variables as x1 = x and x2 = ẋ, the state space
representation of the BnB system can be written as[

ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
γ

]
α, y =

[
1 0

] [
x1
x2

]
(12)

where γ = (5/7)gγ0. With regard to the DC motor, the
corresponding model can be derived based on the following
equations: 

Tm = Kt i
Tm = Jmα̈ + Tload
Vb = Kvα̇

Vs = Lm
di
dt
+ Rmi+ Vb

(13)

where Tm is the motor torque, Kt is the torque constant, i is
the armature current, Jm is the motor inertia, Tload is the load
torque, Vs is the voltage supply, Vb is the back-electromotive
force (EMF), Kv is the back-EMF constant, α̇ is the angular
velocity, and Rm and Lm are armature-equivalent resistor and
inductor respectively. Usually the motor torque constant and
back-EMF constant share the same value, i.e. Kt ≈ Kv.
To simplify, let Km represent Kt and Kv, and assume Lm and
Tload to be negligibly small. With some rearrangements in
the previous equations, the transfer function from the voltage
supply, Vs, to the motor’s angular displacement,α, can be
established as follows

Gm(s) =
Km

JmRms+ K 2
m

(1
s

)
(14)

TABLE 1. Ball and beam parameters.

B. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is a computer algorithm inspired by how animals like
fish and birds work together. It was invented in 1995 by
Eberhart and Kennedy [60], and it is widely used in
engineering and science to solve various problems. Within
the PSO framework, each particle embodies a point within a
search space of D dimensions. The term ‘‘swarm’’ denotes
the assembly of particles present during a particular iteration,
collectively navigating the space with a specific velocity.
During the search process, the position of the i-th particle,
denoted as Pi(k), evolves through updates aiming to approach
the global optimum. These updates are guided by the
particle’s velocity vector, represented as Vi(k). The velocity
vector of the i-th particle undergoes modification at the k-th
iteration grounded on the following two factors:

1) The historical best position of the i-th particle, referred
to as the local best particle (pbest), and denoted as
Pbi(k), and
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2) The historical best position attained by the entire
swarm, known as the global best particle (gbest), and
denoted as gb(k).

The i-th particle’s velocity and position will then be updated
as follows:

Vi(k + 1) = wVi(k)+ c1r1(Pbi(k)− Pi(k))

+ c2r2(gb(k)− Pi(k)) (15)

Pi(k + 1) = Pi(k)+ Vi(k + 1) (16)

where w ∈ [0, 1] is the inertia weight that determines how
much a particle maintains its prior velocity.; c1 and c2 are
the cognitive and the social parameters respectively; and
r1, r2 represent two uniformly distributed random numbers
between 0 and 1. The velocity equation comprises three dis-
tinct parts, i.e. inertia, cognitive, and social terms, which are
represented by wVi(k), c1r1(Pbi(k)−Pi(k)), and c2r2(gb(k)−
Pi(k)) respectively. The inertia term ensures a level of
consistency in particle velocity between iterations. The
cognitive term steers the particle towards its best-known posi-
tion, aiming to improve upon past performance. The social
term guides the particle towards the best position within
its neighborhood. These three components each contribute
uniquely to the optimization process. The inertia component
encourages broad exploration of the search space. On the
other hand, the cognitive and social components collaborate
to focus the search on promising solutions found up to the
current iteration. This synergy between components enables
PSO to strike a balance between exploration and exploitation,
ultimately aiding in the optimization of complex problems.

Algorithm 1 Pseudo-Code of the Standard PSO
1: for i = 1, . . . , n do
2: Randomly initialize Pi
3: Randomly initialize Vi (or set to 0)
4: Set the constants w, c1, c2, r1, r2
5: Set Pbi = Pi
6: end for
7: while k ≤ kmax do
8: for i = 1, . . . ,N do
9: Evaluate the fitness of particle i, f (Pi)
10: if f (Pbi(k)) ≥ f (Pbi(k−1)) thenPbi(k) = Pbi(k−

1)
11: else
12: Pbi(k) = Pi(k)
13: end if
14: gb(k) = min{f (Pb0(k)), f (Pb1(k)), . . . , f (Pbn(k))}
15: Update Vi(k + 1) according to (15)
16: Update Pi(k + 1) according to (16)
17: end for
18: k ++
19: end while

C. WHALE OPTIMIZATION ALGORITHM (WOA)
In the context of WOA, the simulation involves emulating
the actions of humpback whales, which exhibit a specific

behavior called ‘‘bubble-net foraging’’ wherein they adopt a
spiral trajectory around their prey and then transition into a
tightening circular path when launching an attack [61]. The
whales’ actions linked to bubbles are identified and labeled as
‘upward-spirals’ and ‘double-loops’. As depicted in Fig. 2,
the bubbles created by whales create a path that obstructs
the movement of fish. Over time, the circular shape (spirals)
reduces in size (radius), eventually leading to the aggregation
of fish in a single location.

During hunting, humpback whales often encircle their
prey. The WOA technique assumes that the current best
solution is similar to the desired outcome or is very close
to the optimal point because the exact location of the best
solution in the search space is not known beforehand. The
rest of the search agents then aim to reposition themselves
closer to the leading search agent once it has been identified.
This behavior is illustrated by the following equations

−→
S (k + 1) =

−→
S ∗(k)−

−→
A ·
−→
D

−→
A = 2a⃗r⃗1 − a⃗, a⃗ = 2− 2(k/kmax)
−→
D = |

−→
C ·
−→
S ∗(k)−

−→
S (k)|,

−→
C = 2r⃗2

(17)

where
−→
S denotes the vector representing the current whale’s

position,
−→
S ∗ denotes the values of the best whale in the

population, −→r 1,
−→r 2 are random vectors in the [0, 1] range,

and a is a parameter that linearly decreases from 2 to 0,
functioning as the distance control factor.

During the bubble-net attacking phase, two distinct
behaviors become apparent. The first involves a shrink-
ing encircling mechanism, characterized by a diminishing
hunting circle. The second behavior is related to spiral
position updates, where the separation between the whale
and the prey is adjusted. The whales exhibit a simultaneous
swimming behavior where they spiral around their prey
while also narrowing their circular movement. To replicate
this concurrent action, it is assumed that there is a 50%
probability of choosing either the spiral model or the
shrinking encirclingmechanism for adjustingwhale positions
during the optimization process. Let p be the random number
in [0, 1] representing the probability, this combined behavior
can be mathematically modeled as follows:

−→
S (k + 1) =

{
−→
S ∗(k)−

−→
A ·
−→
D if p < 0.5 (18)

−→
S ∗(k)+

−→
D ebl cos(2π l) if p ≥ 0.5 (19)

where b is a constant defining the shape of the logarithmic
spiral, and l ∈ [−1, 1] is a random number.
During the exploration phase, as the whales seek their

prey, they employ the methodology outlined in (17) with
the condition that |A| > 1. This condition is imposed to
compel search agents to move a significant distance from a
reference whale. Here,

−→
S ∗ is equated to

−→
S rand , signifying

the selection of a random position vector (a random whale)
from the existing population. This exploration stage can be
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FIGURE 2. Spiral bubble-net foraging behavior of humpback whales.

written as in (20):{−→
S (k + 1) =

−→
S rand (k)−

−→
A ·
−→
D

−→
D = |

−→
C ·
−→
S rand (k)−

−→
S (k)|

(20)

where
−→
S rand is the vector representing the position of a

random whale in the population.

Algorithm 2 Pseudo-Code of the Standard WOA
1: for i = 1, . . . ,N do
2: Randomly initialize Si
3: Evaluate fitness of each

−→
S i

4: Find
−→
S ∗

5: end for
6: while k ≤ kmax do
7: for i = 1, . . . ,N do
8: Update a,A, p,C and l
9: if p < 0.5 then
10: if |A| > 1 then Update

−→
S (k + 1) based on

(20)
11: else
12: Update

−→
S (k + 1) based on (18)

13: end if
14: else
15: Update

−→
S (k + 1) based on (19)

16: end if
17: end for
18: Check the fitness of each

−→
S i

19:
−→
S ∗←

−→
S i if f (

−→
S i) < f (

−→
S ∗)

20: k ++
21: end while

The next subsection provides an explanation of the
proposed hybrid PSO-WOA algorithm and the control
schemes specifically designed for the BnB system outlined
in Section II-A.

D. PROPOSED HYBRID PSO-WOA FOR INTELLIGENT
CONTROL DESIGN
In the context of control design via swarm intelligence,
a common cost function involves assessing the error between
the desired output and the actual output. In this specific
scenario, the objective is to regulate the position of the ball
at x = 0, the time response of x1 can be simply included
in the cost function. In addition, for SF approach where
x2 also needs to be regulated, a generic cost function can be
formulated as follows:

f (x1, x2) =
∫ tf

0
t(w1|x1(t)| + w2|x2(t)|)dt (21)

where tf denotes the final simulation time, and w1,w2 are
weights. To balance the BnB, three distinct cascade control
approaches are proposed: PID-PID, PID-SF, and PID-
Observer. Fig. 3 provides visual representations of the
associated closed-loop systems, with Gb representing the
BnB model as outlined in (12), Gm denoting the DC motor
model as detailed in (14), and ϕb, ϕc, and ϕm characterizing
the position measurement’s constraint, beam’s physical
constraint, and power supply limitation. These nonlinearities
are as follows:

ϕj(u) =


−ϵa for u < −ϵa

u for −ϵa ≤ u ≤ ϵa

ϵb for u > ϵa.

(22)

where ϵa = 0.4m if j = b; ϵa = 0.175rad if j = c; and
ϵa = 5V if j = m. The signals d0 and x1(0) represent the
external disturbance and initial ball position respectively. The
structure of the compensators is described as follows:

Cm = Kpm +
Kim
s
+

Kdms
Tf s+ 1

(23)

Cb = Kpb +
Kib
s
+

Kdbs
Tf s+ 1

(24)

CL = Kc(sI − (Ab − LcCb − BbKc))−1Lc (25)

Kc =
[
k1 k2

]
; Lc =

[
l1 l2

]T (26)

where Ab ∈ R2×2,Bb ∈ R2×1 and Cb ∈ R1×2 refer
to the state-space matrices of the system outlined in (12),
Kc ∈ R1×2 is the SF gain, Lc ∈ R2×1 is the observer’s gain,
and Tf → 0. Each of these control strategies involves distinct
optimization dimensions due to different number of control
parameters.

In the case of the PID-PID and PID-Observer structures,
wherein x2 is assumed not accessible and only the output
influences the input, w1 is set to 1 while w2 is set to
0. Conversely, for the PID-SF structure, where both state
variables are regulated, the weights are configured to w1 =

0.9 and w2 = 0.1. In addition, as the system is inherently
nonlinear, this study proposes a novel method aimed at
mitigating the challenges of encountering local minima
and slow convergence when employing WOA and PSO
algorithms in optimizing the control parameters. Fig. 4
depicts the suggested hybrid PSO-WOA approach, where the
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FIGURE 3. Three different control schemes proposed in this study for the BnB system.

initial stage involves setting up populations for both whales
and particles. Algorithms 1 and 2 are subsequently executed
concurrently. To discern which population is more prone to
becoming trapped in local minima, the following definitions
are introduced:

1fs = f (S∗(k))− f (S∗(k − 1)),

1fg = f (gb(k))− f (gb(k − 1)) (27)

which represent the difference in the cost function between
two consecutive iterations. The population that rapidly con-
verges towards the target location initially will be temporarily
halted, while the other population continues its search. Once
the iteration count reaches three, the performance of the
population is assessed through the following equation:

�(H ) =
1
3

h+2∑
k=h

f (H (k − 1))− f (H (k)) (28)

where H can denote either the optimal position of the best
whale, i.e., S∗, or the global best position of a particle,
i.e., gb. If �(H ) ≤ ϵ, where ϵ = 0.0001, it indicates
that the population might be stuck in a local minimum.
This is because the most recent cost function value exhibits
minimal variation compared to the two preceding values.
To counteract this, the present position of the population in
motion will be passed to the other population that was earlier
put on hold. The transition will occur either upon satisfaction
of the aforementioned condition or when the iteration count
surpasses one-third of the predefined maximum iteration
count, denoted as kmax . The search activity is then resumed
until the iteration count reaches kmax . It is worth noting that
the proposed hybrid PSO-WOA in this work distinguishes
itself from the approaches outlined in [53] and [55] in terms of
how and when the whale and particle populations collaborate
to exchange information on their positions.

FIGURE 4. Proposed hybrid PSO-WOA algorithm for intelligent control
design.

E. PERFORMANCE EVALUATIONS
To evaluate the effectiveness of the proposed hybrid PSO-
WOA-optimized compensators, two different scenarios are
presented; Scenario 1 and Scenario 2. Both scenarios entail
the presence of a non-zero initial ball position along with
external disturbances possessing varying amplitudes. For
Scenario 1, the initial position is set at x1(0) = 20 cm,
while for Scenario 2, it is adjusted to x1(0) = −25 cm.
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The external disturbance is introduced as a brief sine wave,
simulating a person’s contact with the beam. In Scenario 1,
this disturbance is applied at t = 6.2 s for 0.8 s, with
an amplitude ranging from −16.3 cm to 6.35 cm. For
Scenario 2, the disturbance is applied at t = 6.45 s for
0.6 s, with an amplitude varying between −14.7 cm and
5.7 cm. The main motivation for introducing two distinct
scenarios for performance evaluation is to differentiate
between Scenario 1, which aims to search for optimal
parameters, and Scenario 2, which serves to validate and test
the proposed method’s generalizability.

To gauge and contrast the performance of the hybrid PSO-
WOA approach against its individual components, namely
PSO and WOA, as well as conventional control synthesis
methods, three performance metrics are employed which are
integral time absolute error (ITAE), integral squared error
(ISE), and steady-state error (SSE). These metrics are defined
as follows:

ITAE =
∫ tf

0
t|e(t)|dt, ISE =

∫ tf

0
e2(t)dt,

SSE = lim
t→tf

e(t) (29)

where e(t) = x(t) since it is a regulator system. ITAE
assesses the system’s speed of response and error attenuation
during transient periods, emphasizing prompt stabilization
and minimal oscillations. ISE considers both error magnitude
and duration, magnifying significant deviations due to its
squared nature. SSE on the other hand measures how
accurately the control system can maintain the ball at the
desired position without any ongoing corrections. A low
SSE is desirable as it means the ball is effectively kept at
the setpoint position with minimal deviation. This aspect is
critical as in the presence of deliberately introduced external
disturbances, it is imperative for the compensator to swiftly
attenuate the resulting errors. The following section presents
the simulation results and ensuing discussions.

III. RESULTS AND DISCUSSION
This section presents simulation results of the BnB system
with the three compensator configurations outlined in the
preceding section. The parameter setting for the PSO,
WOA and the proposed hybrid PSO-WOA approaches is
detailed in Table 2. The bounds of the control parameters
are set considering the practical constraints of the BnB,
as excessively large parameters could lead the system into
unstable regions. In regard to the conventional approaches,
the optimization of PID control parameters is executed
through the MATLAB PID Tuner, targeting optimal spec-
ifications encompassing a faster response time and robust
transient behavior. Additionally, for the refinement of SF
gains, the conventional LQR approach is employed, which
adjusts the gains by minimizing the cost function J =∫
∞

0 (xTQx + uTRu)dt where Q = I and R = 1. For
the observer, established guidelines are followed for pole
placement, ensuring that the poles are positioned ten times

faster than the closed-loop poles. The optimized control
parameters achieved based on Scenario 1 for the PID-PID,
PID-SF, and PID-Observer configurations are documented in
Table 3.
For the first control configuration, which is PID-PID,

the convergence curve obtained from the proposed hybrid
PSO-WOA approach is juxtaposed against the individual
components in Fig. 5. Initially at the second iteration,
it is evident that 1fg is smaller than 1fs, indicating that
the particle population primarily drives the search process.
Nevertheless, by iteration k = 7, the responsibility for the
task transitions from gb to the whale population due to the
fulfillment of the condition k ≥ kmax/3. The search process
continues until the maximum iteration count is reached.
Further analysis of iterations 12 to 20 reveals that the hybrid
strategy effectively mitigates the occurrence of local minima
issues that are prone to emerge during the PSO search. The
effectiveness of the hybrid PSO-WOA is reflected on the time
response of the BnB system as depicted in Fig. 6 where it can
be clearly seen that x1 in Fig. 6(a) reaches the equilibrium
position notably faster than the rest when the system is
initiated with x1(0) = 20 cm, and experiences an external
disturbance at t = 6.2s. On the contrary, PSO- and WOA-
optimized controllers result in relatively larger undershoots.
The conventional approach, while not causing undershoot at
all, takes the longest time to reach the equilibrium position.
Another striking observation is the trajectory of the ball
velocity in Fig. 6(b) which reaches the steady-state more
rapidly and exhibits reduced oscillations. This highlights the
improved capability of the hybrid PSO-WOA technique in
maintaining the ball position, in contrast to the individual
PSO and WOA methods that continue oscillating to keep the
ball at the desired position.

FIGURE 5. Convergence curve comparison between PSO, WOA and the
proposed hybrid PSO-WOA for the PID-PID compensator optimization.

Fig. 7 demonstrates the behavior of the BnB system in
Scenario 2 where the configurations for x1(0) and the external
disturbance are varied slightly from those in Scenario 1. This
variation aims to highlight the methods’ ability to perform
effectively across different situations and emphasizes their
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TABLE 2. Parameter setting for the optimization.

FIGURE 6. Comparison of the state trajectories for the BnB with PID-PID
compensator for Scenario 1 where x1(0) = 20 cm and d0 entering the
system at t = 6.2s.

generalizability. As can be observed, the proposed hybrid
PSO-WOA consistently outperforms the rest in terms of
speed and oscillation. Similar to Scenario 1, the controllers
based on PSO and WOA exhibit larger overshoots, and the
conventional approach requires a longer time to stabilize The
corresponding ITAE, ISE, and SSE metrics for each method
and scenario are documented in Table 4. It is evident from the
table that the hybrid PSO-WOA method consistently attains
the lowest values across all categories.

With regard to the PID-SF structure which requires less
number of parameters for optimization compared to that of
PID-PID structure, Fig. 8 shows the resulting convergence

FIGURE 7. Comparison of the state trajectories for the BnB with PID-PID
compensator for Scenario 2 where x1(0) = −25 cm and d0 entering the
system at t = 6.45 s.

curves, while Fig. 9 and Fig. 10 illustrate the trajectories of
the state variables for Scenario 1 and Scenario 2, respectively.
Similar to the PID-PID parameter optimization process, the
particle population begins the search task in the beginning and
then passes the information to the whale population, as visible
in Fig. 8. However, the transition takes place slightly earlier
as the condition � ≤ ϵ is satisfied at k = 3. The minimum
cost achieved through the proposed PSO-WOA is lower than
those from the PSO and WOA, signifying the effectiveness
of the hybrid approach. The impacts of this approach can
be observed from the trajectories of x1 and x2 in Fig. 9 and
Fig. 10 where x1 reaches the steady-state faster with minimal
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TABLE 3. Optimal control parameters for all the three compensator structures.

TABLE 4. Performance evaluations of PID-PID compensator optimized using different methods.

FIGURE 8. Convergence curve comparison between PSO, WOA and the
proposed hybrid PSO-WOA for the PID-SF compensator optimization.

oscillations compared to the other methods. The performance
of the proposed approach in comparison to the others is
documented in Table 5, which also demonstrates reduced
ITAE, ISE, and SSE values for each scenario.

The comparison of convergence curves between the
hybrid PSO-WOA and its individual components within the
PID-Observer structure is presented in Fig. 11. Although
the transitional pattern between the particle and whale
populations during the search process resembles the patterns
observed in the previous two cases, the attained minimum
cost through the proposed method only exhibits a marginal

reduction in comparison to the costs achieved by the PSO and
WOA methods. This trend is also evident in the trajectories
of x1 depicted in Fig. 12. However, the proposed method
displays a faster convergence to the steady state as can be
seen in Fig. 12(a) with minimal oscillation as displayed
in Fig. 12(b) when the system encounters an external
disturbance.

The comparison of the state trajectories for the BnB
with PID-Observer compensator for Scenario 2 is showcased
in Fig.13. In this case, the WOA-optimized controller is
able to maintain the performance with a slight undershoot
when subjected to disturbance, as depicted in Fig.13(a).
In contrast, the conventional PID results exhibit larger
oscillations and thus, requires a relatively longer time to
drive the ball to the equilibrium position. Another notable
observation is the instability induced by the PSO-optimized
compensator, where the fluctuation of the ball position
increases significantly immediately after the disturbance
is imposed. This behavior suggests the occurrence of an
overfitting issue during the optimization process, a phe-
nomenon more likely to happen as the dimension of the
search space increases. Nevertheless, the proposed hybrid
PSO-WOA method is able to sustain its performance while
the performance of other methods degrades. The numerical
results as recorded in Table 6 underscores the consistent
performance of the proposed method across both presented
scenarios.

The comprehensive overview of performance, encompass-
ing both the proposed hybrid PSO-WOA method and other
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TABLE 5. Performance evaluations of PID-SF compensator optimized using different methods.

TABLE 6. Performance evaluations of PID-Observer compensator optimized using different methods.

FIGURE 9. Comparison of the state trajectories for the BnB with PID-SF
compensator for Scenario 1 where x1(0) = 20 cm and d0 entering the
system at t = 6.2 s.

techniques for each compensator is summarized in Table 7.
The numerical outcomes highlight that the proposed hybrid

FIGURE 10. Comparison of the state trajectories for the BnB with PID-SF
compensator for Scenario 2 where x1(0) = −25 cm and d0 entering the
system at t = 6.45 s.

PSO-WOA approach consistently upholds its performance
standards across ITAE, ISE, and SSE metrics, even when
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FIGURE 11. Convergence curve comparison between PSO, WOA and the
proposed hybrid PSO-WOA for the PID-Observer compensator
optimization.

FIGURE 12. Comparison of the state trajectories for the BnB with
PID-Observer compensator for Scenario 1 where x1(0) = 20 cm and
d0 entering the system at t = 6.2 s.

dealing with differing search space dimensions for each
compensator. The table reveals that the PID-SF compensator
achieves the fastest convergence to zero SSE, primarily due

FIGURE 13. Comparison of the state trajectories for the BnB with
PID-Observer compensator for Scenario 2 where x1(0) = −25 cm and
d0 entering the system at t = 6.45 s.

to the feedback scheme being applied to both state variables.
In cases where the ball velocity is unobservable, both the
PID-PID and PID-Observer can be employed. The PID-
PID structure holds an advantage in terms of effectively
suppressing the ISE while the PID-Observer compensator
exhibits the capability to achieve lower ITAE and SSE values
as compared to the PID-PID compensator. However, it is
important to highlight that the efficacy of the observer’s
structure is intricately linked to the precision of the model
representing the BnB system. In other words, if the model
fails to accurately capture the dynamics of the actual system,
the performance is inevitably susceptible to degradation, thus
the PID-PID structure can be a better option.

Table 8 quantifies the performance improvement attained
by the proposed PSO-WOA method in comparison to the
second-best method for each compensator type, based on
ITAE, ISE, and SSE. It is evident from the results that the
proposedmethod demonstrates a significant decrease in ITAE
by 18.99%, ISE by 35.37%, and SSE by 92.86%. The larger
reduction in ISE indicates the efficiency of the proposed
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TABLE 7. Summary of performance evaluation for the three types of compensators optimized using different methods.

TABLE 8. Performance improvement through the proposed PSO-WOA
based on the average ITAE, ISE and SSE across the three compensators.

method in minimizing oscillations, while the greater decrease
in SSE signifies its ability to swiftly bring the ball to the
desired position and maintain it with minimal deviation.

IV. CONCLUSION AND FUTURE WORK
In this study, a novel hybrid PSO-WOA-based intelligent
control is introduced to provide an automated search for
PID and state feedback control parameters tailored to
nonlinear BnB systems. The proposed algorithm is able
to strike a good balance between exploring new solutions
and exploiting known ones, reducing the risk of getting
stuck in local minima or premature convergence. Simulation
results consistently highlight the superiority of the hybrid
approach over conventional methods and standalone PSO
and WOA techniques across diverse scenarios and feedback
configurations. This emphasizes the method’s effectiveness
and generalizability. Notably, the hybrid approach yields a
substantial improvement in error metrics, demonstrating an
18.99% reduction in ITAE, a 35.37% reduction in ISE, and a
92.86% reduction in SSE.

While the proposed method demonstrates significant
advantages, its practical application to BnB systems may
pose challenges due to the need to make several assumptions
on ideality a priori. The robustness of the approach under
noisy conditions stemming from sensor measurements, and
uncertainties due to mechanical motion should be carefully
examined as the complexities introduced by these factors
could potentially affect the reliability and efficiency of the
proposedmethod. In addressing these challenges, future work
could focus on the development of an online adaptive control
framework capable of dynamically adjusting controller
parameters in real-time. This adaptive framework becomes
especially crucial in dealing with significant uncertainties

within the system dynamics. The aim is to enhance the
adaptability of the proposed approach, allowing it to perform
optimally in the face of real-world variations.

Despite these challenges, the observed improvements
in error metrics suggest promising directions for future
research, particularly in the realm of automated parameter
tuning for underactuated nonlinear systems. Addressing
the intricacies introduced by sensor noise and mechanical
motion will contribute to enhancing the adaptability of the
proposed approach. Furthermore, the insights gained from
this study have broader applications beyond BnB systems.
The automated search for control parameters could extend
to various scenarios, such as managing the balance of
goods carried by mobile robots, and gyroscopic stabilization
systems. This study opens avenues for advancing control
strategies in diverse contexts where underactuated nonlinear
systems play a pivotal role, emphasizing the potential impact
of the proposed hybrid approach on broader technological
applications.

ACRONYMS/SYMBOLS
Acronyms/Symbols Description
BnB ball and beam
DC direct current
EMF back-electromotive force
PD proportional-derivative
PID proportional-integral-derivative
LQR linear quadratic regulator
SF State Feedback
GA Genetic Algorithm
ABC Artificial Bee Colony
BA Bat Algorithm
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
ITAE integral time absolute error
ISE integral squared error
SSE steady-state error
Rm×n m× n real matrices
Conv Conventional method
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