
Received 12 November 2023, accepted 28 November 2023, date of publication 5 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339647

Multi-Class fNIRS Classification Using an
Ensemble of GNN-Based Models
MINSEOK SEO , EUGENE JEONG , AND KYUNG-SOO KIM , (Member, IEEE)
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea

Corresponding author: Kyung-Soo Kim (kyungsookim@kaist.ac.kr)

This work was supported by the Agency for Defense Development by the Korean Government under Grant UD210018ID.

ABSTRACT Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique used to estimate
brain activity by measuring local hemodynamic changes. Due to its high spatial resolution, fNIRS is being
actively researched as a control signal in the field of brain-computer interface (BCI). Extraction of effective
features and accurate classification of signals have always been the focus of research. Previous studies
have often converted fNIRS data into images based on the relative positions of the measurement channels
and utilized convolutional neural networks (CNN) for classification. However, image representation cannot
fully express the non-Euclidean characteristics of the brain signal. In this paper, we propose an approach
for single-trial, multi-class fNIRS classification using a graph representation and a graph neural network
(GNN). Specifically, a class-specific graph was constructed for each class to incorporate both positional
and task-dependent functional connectivity (FC) information. The GNN-based models were then trained on
each of the obtained class-specific graphs to have specificity for the corresponding class. Finally, the stacking
ensemble learning with a gating network was introduced to weight the models for the final prediction. The
proposed method was evaluated on a public dataset consisting of three types of overt movements. The results
were compared with baseline models based on support vector machine (SVM) and CNN, using different
image conversion methods. The best-performing baseline model achieved an average ternary classification
accuracy of 68.71%, whereas the proposed model achieved a classification accuracy of 72.31% for the single
model, and 75.47% for the ensemble model.

INDEX TERMS Brain-computer interface, ensemble learning, functional connectivity, functional near-
infrared spectroscopy, graph neural network.

I. INTRODUCTION
Functional near-infrared spectroscopy (fNIRS) is a non-
invasive neuroimaging technique for estimating brain activ-
ity by measuring oxygenation and hemodynamic changes
[1]. The change in concentration of oxygenated (HbO) and
reduced (HbR) hemoglobin is calculated from the measured
attenuation of near-infrared light. Fluctuations in HbO and
HbR reflect brain activity due to neurovascular coupling.
With its ability to reveal cortical activity in the natural envi-
ronment [2], fNIRS was initially used to monitor infants [3]
or patients with psychiatric disorders [4]. Furthermore, due
to its portability and ease of use compared to other neu-
roimaging techniques such as electrocorticography (ECoG)
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[5], positron emission tomography (PET) [6], magnetoen-
cephalography (MEG) [7], and functional magnetic reso-
nance imaging (fMRI) [8], fNIRS has gained attention in the
field of brain-computer interfaces (BCI) alongwith electroen-
cephalography (EEG) [9]. BCI aims to establish an interface
that estimates the user’s attention through measuring brain
activity and translates it into an external device control signal
[10]. Originally developed to assist individuals with severe
motor disabilities [11], [12], [13], BCI has expanded its appli-
cation to various domains such as machine control [14], [15],
mental state monitoring [16], [17], and entertainment [18],
[19]. For these applications, the multi-class classification
problem of the brain signal is crucial.

fNIRS provides complementary information to EEG by
measuring different aspects of brain activity. EEG has
superior temporal resolution as it measures the electrical
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activity of the brain, but lacks spatial specificity in localizing
the source of the signals. On the other hand, fNIRS has better
spatial resolution as it measures changes in local HbO and
HbR levels, but has lower temporal resolution and carries a
time delay of the brain hemodynamic response [20]. Thus,
it can be said that proper extraction of the spatial feature is
the key to classifying fNIRS signals.

Early research in fNIRS signal classification focused on
finding robust statistical features that can be used to charac-
terize the measured signal. Commonly used features include
mean and peak values of HbO and HbR concentrations,
as well as variance, slope, skewness, and kurtosis [21]. Each
feature was evaluated with the performance of machine-
learning-based models, mainly linear discriminant analy-
sis (LDA) and support vector machine (SVM). As useful
hand-crafted features were established and interest in deep
learning increased, the choice of classifier and feature extrac-
tion method shifted to deep-learning-based approaches. Sev-
eral methods were employed, including convolutional neural
network (CNN), long short-term memory (LSTM), recurrent
neural network (RNN), and multi-layer perceptron (MLP).
Among these methods, CNN was used most frequently [22]
due to its ability to capture and extract spatial features from
images [23]. In order to apply convolutional layers, fNIRS
signals must first be converted into image data.

A straightforward method of converting the fNIRS sig-
nal into an image is by concatenating the measured time
series [24], [25], or the extracted temporal features [26] along
the channel dimension. In some studies, single-channel time
series were first converted to a virtual image using Gramian
angular fields (GAF) and concatenated [27], [28]. With these
methods, the resulting images do not represent the spatial
characteristics of the measurement channels.

To represent the relative position of each channel, the
fNIRS signal can be rearranged into three-dimensional ten-
sors based on the sensor location [29], [30], [31]. However,
this method assumes that the distance between channels
implies connectivity, which may not reflect the internal
neural connection. Since functional networks in the brain
have a non-Euclidean character [32], mapping fNIRS chan-
nels to image pixels may lead to unwanted connections
between adjacent channels or neglect the possible connec-
tions between distant channels.

By considering each measurement channel as a node and
connectivity as an edge, a graph may better represent the
underlying brain network compared to an image. Represent-
ing the brain network as a graph is a well-known concept in
the field of connectome research [33], [34]. Resting-state [35]
and task-dependent [36] functional connectivity (FC) have
been used to identify brain connectivity. Once represented as
a graph, the brain network can be classified using a graph
neural network (GNN). Li et al. proposed BrainGNN [37]
to classify seven task states of the brain network using the
graph representation of the fMRI signal. Pearson correlation
and partial correlation of averaged fMRI data for each subject
and task were used to calculate the FC.

However, the application of FC in a single-trial BCI
scheme remains relatively questionable. Demir et al. [38]
represented the EEG signal as a graph by connecting each
electrode pair, k-nearest neighbors, and electrodes with a
distance below threshold to classify error-related potentials
(ErrP) and rapid serial visual presentation (RSVP) datasets.
Zhong et al. [39] used correlation, coherence, and distance
thresholding to initialize the connections between EEG chan-
nels for the emotion recognition task. Among the tried meth-
ods, distance thresholding performed the best. This may be
a consequence of the inter-trial variability of FC and the low
spatial resolution of EEG. To the best of our knowledge, there
only exists a single research on applyingGNN to fNIRS. Qiao
Yu et al. [40] were able to distinguish patients with depression
using a complete graph. Subjects performed a fixed task, and
the average FC of all trials was used as the edge weight.

In this paper, we propose a step-by-step approach for
using graph representation to classify fNIRS signals in
a single-trial, multi-class scheme. Inspired by previous
studies, we define graphs for each class using averaged
task-dependent FC instead of defining a graph per trial. Addi-
tionally, we apply position-based pruning and add far-channel
connections. Therefore, multiple graph representations are
obtained for each fNIRS signal. We then propose a spatial
module based on GNN to extract spatial features from the
graphs. The spatial module provides an initial prediction from
the given graph through graph convolution [41]. We train
spatial modules using different graph representations with
the expectation that they will specialize in distinguishing a
certain class. Finally, these obtained class-specific models
are treated as base models to train a meta-model through
ensemble learning. The final prediction is made by taking a
weighted average of the predictions from each class-specific
model. The weight assigned to each model was determined
using a gating network [42] and stacked-ensemble learning
[43]. To validate the effectiveness of the proposed GNN-
based ensemble model, experiments were conducted using
open-access data. To summarize, the main contributions of
this paper are as follows:

• We propose a graph representation method of fNIRS
data using the relative position and task-dependent FC
between channels.

• We propose a GNN-based model that can extract and
classify spatial features from graph-converted fNIRS
data.

• We propose an ensemble method using a gating network
to combine predictions made by models trained with
different class-specific graphs.

• We conduct experiments on public data [44] consisting
of three motor execution tasks. Experimental results
show that the proposed models outperform SVM and
CNN-based baseline models.

The rest of the paper is organized as follows: In Section II,
the dataset and pre-processing steps applied to the experi-
ments are explained. In Section III, preliminaries of GNN
and FC are outlined. In Section IV, the proposed graph
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representation method and modules are introduced. In
Section V, the setup and results of conducted experiments
are presented and discussed. Finally, Section VI concludes
the paper.

FIGURE 1. Location of the measurement channels. Channels 1-10 are
located around C3 (channel 9) and channels 11-20 are located around C4
(channel 18) [44]. The location of Cz is shown for convenience.

II. MATERIALS
A. DATASET
A publicly available dataset [44] for the three-class classifi-
cation of fNIRS signals was used. Data were collected from
30 subjects, consisting of 17 males and 13 females with an
average age of 23.4 years. Concentration changes of HbO
(1 HbO) and HbR (1HbR) were measured while subjects
performed one of three types of motor execution tasks. The
tasks consisted of right-hand finger-tapping (RHT), left-hand
finger-tapping (LHT), and foot-tapping (FT). Each subject
performed 25 trials per task, resulting in a total of 2250 mea-
sured trials. Each trial consisted of a 2-second introduction
period, a 10-second task period, and an intertrial rest period
ranging from 17 to 19 seconds. Eight light sources and eight
detectors were placed around the C3 and C4 regions, con-
figuring a total of 20 measurement channels. The locations
of the measurement areas were labeled and shown in Fig. 1.
The data were measured at a sampling rate of 13.3 Hz.

B. DATA PRE-PROCESSING
Throughout the study, the 1 HbO time series is used for
classification. To reduce physiological artifacts and drift com-
ponents, a third-order Butterworth filter with a passband of
0.01-0.1 Hz was applied. The data were then segmented into
epochs containing measurements up to 15 s after the task
onset and labeled. The baseline for each epoch was corrected
based on the average value of the introduction period.

An example of a raw signal and its filtered signal measured
from channel 5 is shown in Fig. 2. This channel was chosen
for its strong activity. The plots show that periodic noise such
as heartbeat and respiration has been effectively removed.

FIGURE 2. (a) Raw and (b) band-pass filtered 1HbO data measured from
a single channel (channel 5). Dashed line indicates task onset period.

Example signals for each class after baseline correction and
segmentation are shown in Fig. 3. It can be observed that each
class is hardly distinguishable in a single trial. However, when
signals are averaged over all trials, the RHT signal shows high
activity.

For some experiments, hand-crafted temporal features
were used. Following the literature [44], the 1 HbO within
the time windows of 0-5 s, 5-10 s, and 10-15 s were averaged
across each channel and used as the temporal feature matrix
FT ∈ R20×3.

III. PRELIMINARIES
In this section, preliminary knowledge about convolutional
graph neural networks and functional connectivity is intro-
duced. In addition, the terminology used in the paper is
described.

A. CONVOLUTIONAL GRAPH NEURAL NETWORK
An undirected graph can be expressed as G = (V ,E), where
V is the set of nodes, and E is the set of edges. Let vi ∈ V to
denote a node, n to denote the number of nodes, and εij ∈ E to
denote an edge between vi and vj. Then the adjacency matrix
A is defined as an n × n matrix with Aij equal to 1 if εij ∈ E
and 0 if εij /∈ E . In the case of a weighted graph, elements Aij
are taken to be the weight of εij, denoted as eij. Each nodemay
carry a feature vector, which can be defined as node attributes
F ∈ Rn×f , where f is the length of the feature vector.
The main idea of convolutional GNN is to generate a node

embedding by aggregating features from its neighbors. In this
study, GCN [41] was utilized. The GCN uses a normalized
adjacency matrix to update the node embedding with low
numerical instability. Layer-wise propagation rule of GCN is
as follows:

H(l+1)
= σ

(
D̃

−1/2ÃD̃
−1/2H(l)2(l)

)
, (1)

whereH(l) and 2(l) denote the graph embedding and weight
matrices of layer l, respectively.H(0) corresponds to the input
node feature matrix F. σ (·) denotes the activation function,
and Ã = A+ I is the adjacency matrix with added self-loops.
D̃ denotes the degree matrix of Ã, which is a diagonal matrix
defined as

D̃ii =

∑
j
Ãij. (2)
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FIGURE 3. Example signals for each class (RHT, LHT, FT) after baseline
correction and segmentation. (a) Signal from a single trial. (b) Signal
averaged over all trials.

FIGURE 4. Illustration of (a) an image and (b) a graph constructed based
on the relative position of the measurement channels. Each channel is
labeled with its channel number. The dotted lines indicate additional
global connections.

In the case of an undirected and weighted graph, a node-wise
formulation can be expressed as follows:

x(l+1)
i = 2⊤

∑
j∈N (i)∪{i}

eij√
d̂i d̂j

x(l)j , (3)

where x(l)i denotes the feature vector of node i of layer l,
N (i) denotes the set of neighboring nodes of node i, and d̂
is defined as

d̂i = 1 +

∑
j∈N (i)

∣∣eij∣∣ . (4)

Absolute values of edge weight eij were used to consider
possible negative weights.

B. FUNCTIONAL CONNECTIVITY
Functional connectivity is defined as the temporal corre-
lation between neurophysiological measurements obtained
from distinct brain areas [45]. Coherence, phase locking
value, phase lag index, and Pearson correlation are commonly
used as indicators of FC. In this paper, Pearson’s correlation
coefficient, often referred to as correlation, is used due to
its ability to evaluate the temporal similarity between time
series. The correlation between two time series of 1 HbO
measured in channel i and j, denoted as C i

= {C i
1 . . .C i

T }

and C j
= {C j

1 . . .C j
T }, can be expressed as follows:

ρ
(
C i,C j

)
=

∑T
k

(
C i
k − C

i
) (

C j
k − C

j
)

√∑T
k

(
C i
k − C

i
)2 (

C j
k − C

j
)2 , (5)

where C̄ denotes the mean of C . The FC of a given time
window can be represented as a correlation matrix ρ = [ρij],
where ρij = ρ

(
C i,C j

)
.

FIGURE 5. (a) A task-dependent correlation matrix and (b) a
class-specific graph of the LHT task. The width of the edges indicates the
edge weight, which is the correlation between two channels. Edges with
negative weights are colored red.

C. TERMINOLOGY
For clarity, we explain some of the terminology used in this
paper. Task-dependent FC refers to the functional connectiv-
ity of the brain while performing a particular task (e.g., RHT,
LHT, and FT). When considering a multi-class classifica-
tion problem, each performed task is referred to as a class.
Thus, the term class-specific is used to describe an adjacency
matrix, a graph, and a model dedicated to a particular class.

IV. METHODS
A. GRAPH CONSTRUCTION
To represent the fNIRS data as a graph, an adjacency matrix
was defined in terms of relative position and task-dependent
FC. Each node represents a measurement channel, and the
edge weight indicates the connectivity between channels.

1) POSITION-BASED ADJACENCY MATRIX
As mentioned earlier, studies [38], [39] have shown that
physical distance can be used to express connectivity between
channels. Analogous to the CNN approach, connecting
nearby channels can be beneficial in capturing local spatial
information. Thus, the adjacency matrixAPOS was defined by
connecting nodes according to the sensor location depicted
in Fig. 1. To take advantage of the information originated
from the hemispheric asymmetry [46] and possible far-
channel connectivity, the global connections between sym-
metric channels were also introduced. The weight of all edges
was set to 1. The resulting graph is illustrated in Fig. 4 (b).
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2) CLASS-SPECIFIC ADJACENCY MATRIX
Next, the class-specific adjacency matrices ARHT, ALHT, and
AFT were defined based on the task-dependent FC of the
RHT, LHT, and FT, respectively. To mitigate the influence
of inter-trial variability, the task-dependent FCs were calcu-
lated using averaged time series. For each motor task, the
1HbO signals were averaged across all trials to obtain task-
dependent 1HbO time series for each channel. To find a
representative FC, a sliding-window scheme was employed
[47]. The window size was set to 10 s, which corresponds
to the task duration. For each time window, a correlation
matrix was computed. The correlationmatrix with the highest
variance was selected to maximize the difference between
active and inactive channels.

TABLE 1. The architecture of the spatial model.

To avoid the effect of post-task changes, the center of the
time windows was shifted within the task period. As a result,
three task-dependent FCs were obtained and referred to as
ρRHT, ρLHT, and ρFT.
The correlation matrix can be directly used as an adjacency

matrix. However, it has been reported that dense graphs are
prone to information loss caused by over-smoothing [48]
when applied to GNN. In addition, Achard et al. [49] sug-
gested that a sparse brain functional network increases the
efficiency of the network topology, with a low-cost threshold
of sparsity of around 0.1. To offer sparsity, thresholding is
often applied to leave connections with high connectivity
[37]. However, in the case of fMRI, it is known that a high
correlation may be observed among regions with no practical
cerebral blood flow. Physiological noise, such as cardiac and
respiratory signals, can also lead to high correlations [50].
Since fNIRS data contain signals from the skin, the impact of
physiological artifacts is more significant. Thus, threshold-
ing may result in prioritizing connections between inactive
channels.

To offer sparsity while preserving the connections
between active channels, the Hadamard product between the

correlation matrix and APOS was performed as follows:

ARHT = APOS ◦ ρRHT , (6)

where ◦ denotes the Hadamard product operator. Similar
operations were performed to obtain ALHT and AFT using
ρLHT and ρFT. In this way, connections between active
channels can be preserved while incorporating the positional
information. The ρLHT and ALHT obtained from the entire
dataset are shown in Fig. 5 as an example.

TABLE 2. The architecture of the temporal module.

B. SPATIAL MODULE
The spatial module was designed to extract spatial features
from the graph representations. Inspired by the effectiveness
of CNN in the Euclidean domain, the spatial module uses
GCN to capture local spatial information from the graph-
structured fNIRS data. Then, the readout function is applied
to the obtained graph embedding to perform classification.
In general, various pooling methods are used as the read-
out function to generate a fixed-size representation from the
graph embedding regardless of the number of nodes [51].
However, since fNIRS data have a fixed number of nodes,
a flatten layer can be used as the readout function, similar to
CNN. The flattened representation can then be fed into a fully
connected layer for classification.

It has been reported that increasing the number of GCN
layers can degrade the performance of a model due to the
convergence of node features [52]. Generally, it is known that
using two to three layers achieves optimal performance. In
this study, two layers were used in the spatial module. The
overall architecture of the spatial module is summarized in
Table 1.
The spatial module takes adjacencymatrixA ∈ R20×20 and

feature matrixF ∈ R20×f as an input. The number of features
f was varied in different experiments. When a hand-crafted
temporal feature was used, f was set to 3. When a temporal
feature was extracted with an additional temporal module,
f was set to 16. Features were extracted through two GCN
layers with output feature lengths of f (1) and f (2). The flatten
layer followed by two fully connected layers was employed
to classify the extracted features. The values of f (1) and f (2)

were adjusted for different input features. The rectified linear
unit (ReLU) was used for activation, and batch normalization
was applied after each convolution layer.
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C. TEMPORAL MODULE
As mentioned earlier, GCN effectively extracts spatial fea-
tures from graph-structured data by aggregating local node
features. However, it lacks the ability to capture temporal
information because the aggregation function of GCN does
not consider the locality and order of elements within each
node feature. To overcome this limitation, a temporal mod-
ule was designed to extract temporal features from the time
series. The temporal module uses 1D convolution to extract
temporal features without integrating signals from different
channels.

The module consists of three 1D convolutional layers with
ReLU activation, as shown in Table 2. An input feature is a
downsampled time series of 1 HbO, denoted as X1HbO ∈

R20×32. To ensure compatibility with the spatial module,
the temporal module should have an output size of 20×f .
To match the dimension, the features were downsampled to
20 × 1 × 16 by adjusting the kernel size and stride, and
then squeezed to a final size of 20 × 16. The temporal
module is placed before the spatial module, and both modules
were trained simultaneously to extract relevant features for
classification.

FIGURE 6. A schematic diagram of a gating network proposed for the
fusion module. The gating model takes predictions from the base models
as an input to obtain the weighting. yi: prediction made by the i-th base
model, yT : weighted sum of predictions.

D. FUSION MODULE
The model trained with the class-specific graph is expected
to distinguish the corresponding class better than others.
Inspired by stacking ensemble learning and a mixture of
experts [53], a fusionmodule is proposed to utilize the predic-
tion of each base model to improve the overall performance.

The fusion module uses a gating network to obtain weights
for each base model and outputs the final prediction based on
these weights. Letting m denote the number of models, the
gating network aims to learn a weight vector W ∈ Rm that
minimizes the loss of the final prediction. The final prediction
is given by a weighted sum of the predictions made by the
base models, which can be expressed as

yT =

∑m

i
wiyi, (7)

where yT is the final prediction, yi is the prediction made by
the i-th base model, and wi ∈ W is the scalar weight assigned

to each base model. A schematic diagram of a gating network
is shown in Fig. 6. The weight vector is obtained through two
fully connected layers with 64 hidden dimensions as follows:

W = σsoft(FL1×m(FL1×64([y1, y2, . . . , ym]))), (8)

where FL1×m(·) denotes fully connected layer with an output
size of 1×m, σsoft(·) denotes softmax function, and [·] denotes
concatenation.

E. OVERALL MODEL
The overall architecture of the proposed GNN-based ensem-
ble model is depicted in Fig. 7. The ensemble model consists
of three main elements: pre-constructed adjacency matrices,
base models, and a fusion module. From the training set,
graphs representing relative position and task-dependent FC
between measurement channels are constructed. Base mod-
els, consisting of a temporal module and a spatial module,
are individually trained using the fNIRS time series data
accompanied by the obtained graph. The fusion module is
trained with predictions from the base models to output a
weighted sum for the final prediction. For a given dataset, the
training and testing process of the overall model is explained
in the following.

1) TRAINING PHASE
The first step of the training phase is to obtain adjacency
matrices. From predefinedAPOS and labeled training data, the
average task-dependent FCs and corresponding class-specific
adjacency matrices were acquired. Then, each data was con-
verted into four different graphs regardless of its ground truth
label, denoted as G(AS,X1HbO), where G(A,F) denotes a
graph with adjacency A and node attributes F, and S ∈

{POS,RHT,LHT,FT}. Using each of the graph representa-
tions, position-based model MPOS and class-specific models
MRHT,MLHT, andMFT were trained. Finally, the fusion mod-
ule was trained with obtained base models.

2) TEST PHASE
In the test phase, the adjacency matrices constructed during
the training phase are used. As in the training phase, each data
is converted to four different graphs. Then, predictions from
each model are obtained as follows:

ys = Ms(G(As,X1HbO)). (9)

Predictions are then fused to a final prediction according
to (7).

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
The first part of the experiments was conducted using the
hand-crafted temporal features FT described in Section II
to compare the efficiency of extracting spatial features. The
spatial module was used as a standalone GNN-based classi-
fier. Using four adjacency matrices APOS, ARHT, ALHT, AFT,
and a feature matrix FT as training data, four models were
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FIGURE 7. The overall architecture of the proposed model. XfNIRS: fNIRS data (time series of 1HbO), Fti: temporal
features extracted from ith temporal module, APOS, ARHT, ALHT, AFT: position-based and RHT, LHT, FT-specific
adjacency matrix, yPOS, yRHT, yLHT, yFT: prediction made by position-based and RHT, LHT, FT-specific models, yT:
final prediction made by the fusion module.

trained (i.e., GNNPOS, GNNRHT, GNNLHT, and GNNFT).
The trained models served as a base model for training a
gated meta-model GNNGated through the fusion module. To
evaluate the effectiveness of the fusion module, an average
ensemble model GNNAvg was tested. The predictions from
each base model were weighted equally to obtain the final
prediction of the average ensemble model.

SVM with a linear kernel and CNN-based model were
selected as the baseline. The CNN-based baseline, referred to
as BL1, takes image-convertedFT as input. The feature vector
of each channel was relocated as shown in Fig. 4(a), resulting
in a 3-channel image of size 7×7×3 (width× height× num-
ber of channels). BL1 consists of two 2D convolutional layers
and two fully connected layers as listed in Table 10 given in
the Appendix. After each convolution, ReLU activation and
batch normalization were applied.

The output feature length of the spatial model is selected
through grid search from the sets f (1) ∈ {8, 16, 32, 64, 128}
and f (2)∈ {1, 2, 4, 8, 16}, resulting in (f (1), f (2)) = (64, 2).
The models were trained for 150 epochs with a batch size of
32. The Adam [54] optimizer with a learning rate of 0.01,
(β1, β2) = (0.9, 0.999), and a weight decay of 0.0001 was
used. The fusion module is trained with a batch size of 16 and
zero weight decay. The softmax cross-entropy loss was used
for training.

In the second part of the experiments, a time series X1HbO
was used to further improve the performance. The temporal
module was placed before the spatial module to extract and
feed temporal features. Using four adjacency matrices APOS,
ARHT, ALHT, AFT, and a time series X1HbO as training data,

four models were trained (i.e., T − GNNPOS, T − GNNRHT,
T − GNNLHT, and T − GNNFT). As in the previous exper-
iment, the trained models were used as the base model
for training gated meta-model T − GNNGated and average
ensemble model T − GNNAvg.

Two CNN-based models, BL2 and BL3, were used as the
baseline. The BL2 is a single-modal classification model
presented in [55], which consists of six 1D convolutional
layers and two fully connected layers. Since it was designed
for binary classification of 36-channel time series, the layer
dimensions were adjusted to fit the data as listed in Table 11
given in the Appendix. X1HbO was resampled to a size of
20 × 30 (number of channels × number of time steps).
BL3 is a modified version of FSNet presented in [31]. The
BL3 consists of three 3D convolutional layers followed by
a pooling layer and a fully connected layer. The input size
was adjusted, and the temporal attention pooling layer was
replaced by a max pooling layer as shown in Table 12 given
in the Appendix. Using an image conversion method similar
to BL1, X1HbO was converted to an image sequence of size
8×8×30 (width× height× time). Zero-padding was applied
to the width and height dimensions. For all models, ReLU
activation and batch normalization were applied after each
convolution. In addition, a dropout rate of 0.5 was applied to
the first fully connected layer for regularization.

The number of hidden channels of the spatial model
was selected as (f (1), f (2)) = (32, 2). The BL2, BL3, and
T − GNN models were trained for 300 epochs with a batch
size of 32. The Adam optimizer with a learning rate of 0.001,
(β1, β2) = (0.9, 0.999), and zero weight decay was used. The
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training condition of a fusion module was the same as in the
first experiment. The softmax cross-entropy loss was used.

Each model was trained in a subject-independent manner.
A 5-fold cross-validation was conducted to evaluate the aver-
age classification accuracy. Since the base models were fitted
to the training set, unused data were needed to train the fusion
module. To maintain the size of the test set, the data was
divided into three subsets with a ratio of 6:2:2. Each subset
was designated as a training set for the base model, a train-
ing set for the fusion module, and a test set, respectively.
Task-specific adjacency matrices were constructed from the
training set of the base model. For each fold, all base models
were trained using the same training set to avoid data leakage
during the ensemble learning process.

B. EXPERIMENTAL RESULTS
Table 3 shows the mean classification accuracy and standard
deviation of the proposed and baseline models. Mean accu-
racy was obtained by averaging the validation accuracy of
each fold of 5-fold cross-validation. The additional classifica-
tion evaluation metrics of the class-specific models are listed
in Table 4 - 6.

When the hand-crafted temporal feature FT was used for
training, SVM and BL1 achieved classification performance
of 68.66% and 67.91%, respectively. With the same feature,
the proposed GNN-based models performed better regardless
of the adjacency matrix used, despite the smaller training set.

The position-based model, GNNPOS, obtained an average
accuracy of 70.62%, which is higher than the accuracy of
the class-specific models, GNNRHT, GNNLHT, and GNNFT.
For ensemble learning, averaging did not improve the perfor-
mance. On the other hand, the GNNGated achieved an average
accuracy of 72.93%, a significant improvement over the base
models (paired t-test, p < 0.01).
When the time series X1HbO was used for training, the

baseline models BL2 and BL3 achieved an average accu-
racy of 68.71% and 68.62%, respectively. The proposed
GNN-based models with a temporal module outperformed
BL2 and BL3, regardless of the adjacency matrix used. The
LHT-specific model T − GNNLHT performed best among the
models trained without a fusion module, with an average
accuracy of 72.31%, surpassing the performance of the base
models trained with FT . The averaged ensemble model per-
formed marginally better than the base models, whereas the
T − GNNGated significantly outperformed T − GNNLHT, the
best-performing base model (paired t-test, p < 0.01).
The characteristics of the position-based and task-specific

GNN models were further investigated using the classifica-
tion metrics, namely precision, recall, and F1-score. These
metrics were calculated from the combined prediction result
of each fold. It can be observed that the recall and F1-score of
the class-specific models were highest in the corresponding
classes, whereas the position-based models showed balanced
performance with high precision. The confusion matrices of
the combined prediction results for each model are shown in
Table 13-15 given in the Appendix.

TABLE 3. Classification accuracy (Mean ± standard deviation) of
proposed and baseline models.

TABLE 4. Classification metrics for class-specific models without
temporal module.

Regarding the task-dependent FCs obtained from the test
set, the median of the time windows used to obtain ρRHT,
ρLHT, and ρFT were 9.0 s, 9.5 s, and 5.9 s after task onset,
respectively. It is noteworthy that the correlations of global
channel pairs (5,16) and (6,15) were negative for RHT and
LHT, and positive for FT.
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TABLE 5. Classification metrics for class-specific models with temporal
module.

TABLE 6. Classification metrics for ensemble models.

FIGURE 8. The average ROC curves and AUC of trained models. (a) BL1,
GNNPOS, and GNNGated are compared. (b)BL2, BL3, T − GNNPOS, and
T − GNNGated are compared.

C. DISCUSSION
1) PERFORMANCE OF PROPOSED MODULES
The SVM trained with FT achieved a classification accu-
racy well above the chance level, indicating that FT is a
valid temporal feature for the given dataset. Using graph
convolution, the spatial module successfully extracted spa-
tial features from the given input. Since GNNPOS and BL1

were trained with common features, the performance advan-
tage of GNNPOS implies that the graph can better represent
the fNIRS data compared to the image. Note that APOS is
obtained from the relative positions of the channels, similar
to the image conversion method employed by BL1.
The higher performance of T − GNNs over models trained

with FT implies that the temporal module effectively
extracted the temporal features. The implementation of the
temporal model not only increased the classification accuracy
of each base model but also the effect of ensemble learning.
Compared to the best-performing base model, the increase
in average accuracy was 2.31%p for GNNGated and 3.16%p
for T − GNNGated. This may be due to the flexibility of the
temporal module, which can focus on different parts of the
time series as opposed to the predefined FT . If each base
module extracts features from different parts of the signal,
the meta-model can generate more generalized predictions.

The performance of the models was also compared using
receiver operating characteristic (ROC) curves. ROC curves,
which are typically used for binary classifiers, can be
extended to multi-class classifiers by treating the classifier as
multiple one-versus-rest (OvR) binary classifiers. The ROC
curve of each class can then be micro-averaged to obtain an
average ROC curve. The average ROC curves of the trained
models are shown in Fig. 8. Since a larger area under the
ROC curve (AUC) indicates a better classifier performance,
it can be seen that GNNPOS performed marginally better
than BL1, while GNNGated performed significantly better.
Similarly, T − GNNPOS performed better than BL2 and BL3,
and T − GNNGated performed significantly better than others.

TABLE 7. Contingency table for McNemar test to compare GNNPOS and
GNNGated.

TABLE 8. Contingency table for McNemar test to compare T − GNNPOS
and T − GNNGated.

Since the test folds between the models were kept the
same during the cross-validation, the McNemar test can be
performed. By comparing the prediction result of each data,
the two-by-two contingency tables shown in Table 7 and 8
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FIGURE 9. Average model weights used by the fusion module to predict each class using (a) the spatial module and (b) the spatial and temporal modules
together. wPOS, wRHT, wLHT, and wFT denote the weight applied to the position-based model, RHT-specific model, LHT-specific model, and FT-specific
model, respectively.

were constructed to compare the ensemble model and the
single model.

From the table, the null hypothesis that the predictive
performance of the two models is equal can be tested. Using
the mid-p McNemar test, the hypothesis can be rejected if the
p-value is less than the significance level of 0.05. Since the
resulting p-value is 4.99×10−4 for Table 7 and 6.43×10−7

for Table 8, the null hypothesis can be rejected for both cases.
Therefore, the predictive performance of GNNGated and
T − GNNGated is significantly better compared to GNNPOS
and T − GNNPOS, respectively.

In terms of average classification accuracy, there was no
noticeable difference between the class-specific models and
the position-based model. However, as mentioned earlier,
class-specific models achieved higher F1-score and recall
for the corresponding class compared to the position-based
model. Thus, if the binary classification of discriminating
specific class is considered, class-specific models can per-
form as a better OvR classifier compared to the position-
based model.

Fig. 9 shows the averageweights used by the fusionmodule
to predict each class. In the case of GNNGated, the most
weighted model for the data predicted as RHT, LHT, and
FT were GNNRHT, GNNLHT, and GNNFT, respectively. In
the case of T − GNNGated, the most weighted model for the
data predicted as RHT, LHT, and FT were T − GNNRHT,
T − GNNLHT, and T − GNNPOS, respectively. The weight
of T − GNNFT was the second highest for data classified as
FT. From observations, it can be said that the fusionmodule is
able to assign a higher weight to a class-specific model with
correct prediction, or possibly a higher confidence.

Overall, the proposed GNN-based ensemble model outper-
formed all baseline models based on SVM and CNNs with
different data conversion methods.

While the proposed model overcomes the limitation of
position-based image representation by using a graph rep-
resentation, there are some high-performance models with
different approaches. The reported mean accuracy of the
high-performance models is shown in Table 9. The fNIRS-T
[56] is a model based on a Transformer that takes time series
as an input data. Other models utilize computer vision (CV)
after encoding the signals into a virtual image for classifica-
tion [28]. The CVmodels used were ViT [57], EarlyConvViT
[58], MLP-Mixer [59], and ResMLP [60]. Since the Trans-
former andVision-MLPs are known to have a large number of
parameters, the model size is also listed. The mean accuracy
of the 5 × 5-fold cross-validation is selected to compare the
performance under similar conditions.

TABLE 9. Reported accuracy of 5-Fold cross validation for
high-performance models [28].

The performance of T − GNNGated was comparable to
the state-of-the-art models, despite its compact size. This
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FIGURE 10. The learning curves of trained models. The top row shows the training and validation accuracy curves of (a) BL1 and GNNPOS, (b) BL2, BL3,
and T − GNNPOS, (c) GNNGated and GNNAvg, and (d) T − GNNGated and T − GNNAvg. The bottom row shows the training and validation loss curves of
(e) BL1 and GNNPOS, (f) BL2, BL3, and T − GNNPOS, (g) GNNGated, and (h) T − GNNGated.

parameter efficiency is due to the nature of GCN, where all
nodes share weights and the number of layers is limited. It
should be noted that there are differences in the modality
used and the sampling method. For example, fNIRS-T uses
1 HbO and 1HbR time series of 1.5-19.2 s after task onset.
In this study, a 1 HbO time series of 0-15 s after task onset is
used.

2) LEARNING CURVES
The accuracy and loss curves of the trained models are shown
in Fig. 10. The curves obtained from each fold of the 5-fold
cross-validation were averaged. Since the class-specificmod-
els and the position-based model produced similar results,
the curves of the GNNPOS and T − GNNPOS are presented as
representative. Overall, the GNN-basedmodel showed higher
validation accuracy and lower validation loss compared to the
baseline models.

CNN-based models tended to converge faster, but the
increase in training accuracy did not lead to better valida-
tion performance, which implies insufficient regularization.
Overfitting was more evident for BL2 and BL3, as model
depth increased. As training progressed, the model became
overconfident leading to a rapid increase in validation loss.
Although validation accuracy was not significantly affected,
overconfidence can make prediction scores less informative.
Since the ensemble model relies on a gating network based
on prediction scores, maximum epochs of 150 and 300 were
set to prevent overfitting. It can be seen that the validation
loss of GNNPOS and T−GNNPOS stopped decreasing around
themaximum epoch, whereas the training accuracy continued
to increase. Note that the training and validation accuracy of
ensemblemodels starts at about 70% because the basemodels
are already trained.

3) TASK-DEPENDENT FUNCTIONAL CONNECTIVITY
Haggard et al. [61] reported that the primary motor cor-
tex (M1) becomes active during voluntary movement. Also,
the contralateral hemisphere becomes more active compared
to the ipsilateral hemisphere, creating an asymmetry. This
asymmetry explains the negative correlation of channel pairs
(5, 16) and (6, 15) in ρRHT and ρLHT. Considering the sensor
position shown in Fig. 1, it can be deduced that M1 corre-
sponds to the measurement channels of {4, 5, 6, 14, 15, 16}.
Furthermore, the brain functional map of the primary motor
cortex [62] shows that the area responsible for foot movement
is closer to Cz compared to the area responsible for hand
movement. This explains why no significant hemispheric
asymmetries were observed in ρFT since no sensors were
placed around Cz. Thus, obtained task-dependent FCs agree
well with previous studies on brain activation areas. In addi-
tion, if a threshold was applied, the characteristic asymmetry
and connections between active channels could be lost.

FIGURE 11. The ROC curves and AUC for each class of (a) GNNGated and
(b) T − GNNGated. The shaded area indicates the 95% confidence intervals
for all folds.
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TABLE 10. The architecture of the baseline model BL1.

TABLE 11. The architecture of the baseline model BL2.

4) ERROR ANALYSIS
The observation made on task-dependent FC can be extended
to an error analysis of the proposed model. As mentioned
above, no sensors were placed around Cz, where the neural
activity signal from FT could be effectively measured. From
Table 4 - 6, it can be seen that the F1-score of the FT class is
the lowest in all cases, indicating that the models suffered the
most from misclassification of FT. This can also be verified
by the ROC curves for each class. As shown in Fig. 11., the
AUC of FT was significantly lower than the AUC of RHT or
LHT for GNNGated and T − GNNGated.
Another potential source of error is the so-called ‘‘BCI

illiteracy’’, which states that approximately 20% of untrained
subjects cannot produce a signal reliable enough for BCI
control [63]. Although the motor task is known to produce
a robust signal compared to mental arithmetic or motor
imagery tasks, the reported subject-dependent [44] or leave-
one-subject-out [56] validation result indicates that there is a
large difference in classification accuracy between subjects.
These unreliable signals not only degrade the validation accu-
racy but also result in noisy labels, which can interfere with
the training process.

TABLE 12. The architecture of the baseline model BL3.

TABLE 13. Confusion matrices of base models without temporal module.

5) LIMITATIONS
Although GNN-based models trained with the proposed
class-specific graph showed strong performance as a stan-
dalone classifier and as a base model for ensemble learn-
ing, heuristic steps were involved in the graph construction.
A more comprehensive investigation of the graph construc-
tion method can further improve the performance. The pro-
posed spatial and temporal modules were designed to work
separately to evaluate the GNN’s ability to extract spatial
features. However, in terms of model performance, using a
spatio-temporal graph neural network to extract spatial and
temporal features simultaneously may be helpful. Finally, the
method of utilizing 1HbR as an additional modality can be
explored.

VI. CONCLUSION
In this paper, we propose a graph representation and clas-
sification method for fNIRS signals. Although functional
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TABLE 14. Confusion matrices of base models with temporal module.

TABLE 15. Confusion matrices of ensemble models.

connectivity is known to contain valuable information, apply-
ing FC to a single-trial, multi-class BCI scheme has been
challenging due to its variability across trials and classes. To
address this limitation, adjacency matrices were defined for
each class, rather than for each trial. The positional infor-
mation and the averaged task-dependent FC were used as
the connectivity measure to define a characteristic adjacency
matrix. The data were converted to graphs using the obtained
adjacency matrices, which were then used to train class-
specific models. Finally, a fusion module was employed to
weight each model for the final prediction.

It is worth noting that, unlike previous studies in the field
of fMRI or connectome, task-dependent FC was not used as
a feature for distinguishing structural changes in the brain
network. Instead, it served more as a soft mask that guides
the model to extract features relevant to the corresponding
classes, thus helping the ensemble model to generate a more
generalized prediction.

The proposed models were evaluated on a public dataset
and significantly outperformed baseline models based on

SVM and CNN. In the future, we plan to improve the model
performance by exploring better graph construction schemes,
integrating spatial and temporal models, and using 1HbR as
an additional modality.

APPENDIX A
ARCHITECTURE OF THE BASELINE MODELS
See Tables 10–12.

APPENDIX B
CONFUSION MATRICES OF PROPOSED MODELS
See Tables 13–15.
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