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ABSTRACT In this study, a novel inverse optimal controller based on NARMA-L2 modelling technique
and online least squares support vector regression (LSSVR) method has been proposed for nonlinear non-
affine systems. Firstly, the nonlinear autoregressive with exogenous inputs (NARX) model of the system is
obtained using online LSSVR method, then this model is decomposed into NARMA-L2 submodels. Hence,
the non-affine system model is converted to a nonlinear affine system model. The obtained NARMA-L2
submodels are used in computing the inverse optimal control law. Furthermore, the parameters of the
inverse optimal controller have also been optimized online using the Levenberg-Marquadt algorithm. The
performance of the proposed LSSVR based inverse optimal controller using NARMA-L2 model has been
evaluated by simulations carried out on two benchmark systems, and the results show that the LSSVR based
NARMA-L2 model and inverse optimal controller attain good modelling and control performances.

INDEX TERMS Adaptive control, inverse optimal control, NARMA-L2 model, online LSSVR.

I. INTRODUCTION
In model based adaptive control methods, performance
depends on the estimation accuracy of the model. The system
model must be accurately obtained to achieve good control
results. For this purpose, machine learning based methods
have been frequently used for precise modelling. Artificial
neural networks (ANN) [1], [2], [3], [4], adaptive neuro fuzzy
inference systems (ANFIS) [3], [4], [5] and support vector
regressors (SVR) [6], [7], [8] have effectively been employed
for model identification in model based control methods.

Due to the non-convexity of the objective functions of neu-
ral network-based methods trained with the backpropagation
algorithm (ANN and ANFIS), these structures may become
trapped at local minima, making it possible to obtain only a
local model of the system.

In order to improve controller performance and minimize
modelling inaccuracies, identification methods based on
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SVR have been recently proposed and applied due to
their non-linear prediction and generalization competencies.
In SVR, a convex objective function is formulated, hence
gradient effects vanish and global extremum is ensured [9].

These machine learning based system identification meth-
ods generally start with an assumed model structure and then
try to identify the input-output relation of the model. One of
these presumed model structures is the so-called Nonlinear
autoregressive moving average (NARMA)-L2 model. The
NARMA-L2 model has been recently employed in various
applications due to its practicality. In NARMA-L2modelling,
the Taylor series expansion of the nonlinear model is written
down and first-order terms are retained. Hence, it is possible
to have a model which is linear in input. In most of the
works in technical literature NARMA-L2 models of systems
are obtained offline [10], [11], [12], [13], [14], [15], [16],
[17], [18].

From the viewpoint of control design, the computation of
the control input is critical. In affine systems, the control input
is separated from the system dynamics and appears linearly,
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which makes it easier to calculate the control input. On the
other hand, in non-affine system models, the control input is
intermingled with the system dynamics and they cannot be
separated. The study of non-affine nonlinear systems is an
academically challenging subject, however the control input
design for non-affine systems is a complicated and difficult
task. The adaptive control literature contains numerous
discussions and analyses of different kinds of nonlinear
systems and nonlinear control methodologies [19]. Research
on non-affine systems should not be disregarded since these
types of systems have greater universality compared to affine
systems. Most physical systems are inherently non-affine.
At present, various control techniques have been developed
for nonlinear non-affine systems, such as backstepping
control [20], [21], [22], [23], adaptive control [24], [25],
[26], optimal control [27], [28], [29], [30], [31], [32], [33],
fuzzy control [34], [35], [36], [37], neural control [38], [39],
[40], [41], [42], etc. As an alternative approach, in this paper,
a novel least squares support vector regression (LSSVR)
based inverse optimal controller with integrator is introduced
for non-affine nonlinear dynamical systems.

The Inverse optimal control (IOC) method uses model
information in computing the control law and therefore
can be regarded as a model-based control method. The
straightforward application of the optimal control theory
leads to theHamiltonian-Jacobi-Bellman (HJB) equation. For
linear systems, theHJB equation can be easily solved yielding
the linear regulator problem. For nonlinear problems, solving
the HJB equation is not an easy task. Therefore, inverse
optimal control methodology has been introduced to avoid
the need to obtain the exact solution of the HJB equation
for nonlinear systems. In literature, many studies have been
conducted by using the inverse optimal control method.
Numerical methods and global optimization techniques have
been integrated with inverse optimal control to determine the
optimal parameter values [43], [44], [45], [46].

The concept of inverse optimal control has been imple-
mented in various fields of applications. Some examples
of these from technical literature are summarized here.
In [47], inverse optimal control has been applied to data
obtained via motion capture of human-robot collaborative
manipulation in a shared workspace. In [48], a basic pre-
dictive control structure has been designed for compensation
of strict-feedforward nonlinear systems with input delays.
Furthermore, it was shown that the proposed control is
inverse optimal with respect to ameaningful differential game
problem. Germinal Center Optimization algorithm (GCO)
has been utilized to find an optimal set of parameters for
a neural inverse optimal controller applied to an all-terrain
tracked robot [49]. For inverse optimal control of multi-agent
systems (MAS), first a consensus protocol is designed and
then the cost function is optimized via Jaya algorithm
(JA), teaching-learning algorithm (TLBO), and advanced
teaching-learning (ATLBO) [45]. A neural affine system
has been implemented to calculate the insulin delivery

rate to control the glucose level in the blood for type 1
diabetes mellitus (T1DM) patients using inverse optimal
control method [50]. In another study, an inverse optimal
neural controller has been used for feedback control of
mobile robots with non-holonomic constraints [51]. Based
on the backstepping technique, neural networks have been
utilized to approximate the unknown function, in the
meantime, the inverse optimal controller has been used to
minimize a meaningful cost function to reduce the cost of
input [52].

A recurrent high order neural network (RHONN) has been
used in order to identify the unknown system, then a control
law which stabilizes the reference tracking error dynamics
has been developed using the inverse optimal control
approach [53]. RHONN structure has been utilized in various
other applications of inverse optimal control. RHONN trained
with extended Kalman filter (EKF) is employed to obtain
a mathematical model for a three-phase linear induction
motor (LIM) with uncertainties and discrete-time neural
inverse optimal control is employed to control the position
of the LIM [54]. Utilizing a RHONN which is trained with
an EKF-based training algorithm, inverse optimal control
technique is applied to a tracked robot [55]. In an attempt
to apply control policies for personalized drug treatment in
influenza infection disease, discrete-time impulsive systems
are derived by combining inverse optimal control with a
RHONN trained with EKF [56]. The passivity concept
based inverse optimal controller integrated with RHONN
has been utilized for stabilization of a bio-fuel production
process [57]. RHONN was also utilized to identify the
doubly fed induction generator and neural inverse optimal
control was integrated for improvement of low-voltage ride-
through capacity for a grid-connected doubly fed induction
generator [58]. To achieve trajectory tracking for uncertain
complex networks, a neural controller is applied to a small
fraction of the nodes. The controller is composed of a
RHONN and an inverse optimal controller to track the desired
trajectory [59]. The combination of a RHONN identifier and
neural inverse optimal control has been utilized to represent
the viral dynamics of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [60].
An adaptive neural inverse optimal consensus control method
is presented for MAS with uncertain dynamics and time-
varying disturbance. Fuzzy logic (FL) has been utilized
to identify the unknown nonlinear dynamics, and using
a backstepping recursive design algorithm, an adaptive
fuzzy inverse optimal scheme with a meaningful objective
functional is developed [61]. In another application of FL,
it has been utilized to identify the unknown nonlinear
dynamics, hence firstly a fuzzy state observer is designed to
estimate the immeasurable states. After that using the inverse
optimal control principle and adaptive backstepping design
theory, an observer-based fuzzy adaptive inverse optimal
output feedback controller is developed [62]. In another
work, FL has been employed to approximate unknown
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nonlinearities and auxiliary system model of vehicular
active suspension systems (ASS). Then combining adaptive
backstepping design technique and inverse optimal principle,
an adaptive fuzzy output feedback inverse optimal strategy is
proposed [63].

In all of the examples given above from the technical
literature, inverse optimal control methodology has been
implemented for the control of affine nonlinear systems,
where the control input can be separated from the nonlinear
system dynamics in the mathematical model of the system.
However, there is no significant research on the control
of non-affine nonlinear systems using inverse optimal con-
trollers. In this paper, a novel method has been proposed for
the control of non-affine and nonlinear systems using inverse
optimal control method. First, the nonlinear autoregressive
network with exogenous inputs (NARX) model of the system
to be controlled is obtained, consequently, this NARX model
is converted into a NARMA-L2 model. Both the NARX
and NARMA-L2 models have been identified by the online
LSSVR method optimized by the Levenberg-Marquardt
algorithm. The NARMA-L2modelling provides a conversion
from a non-affine to an affine system model. Next, using the
computed affine systemmodel, the inverse optimal controller
is designed. The parameters of the controller have also
been optimized with the Levenberg-Marquardt method. The
resulting control architecture is an adaptive structure where
the system model and control law are computed at every
sampling time in an online adaptive manner.

Since the performance of model-based control methods
depends on the model accuracy, updating the system model
adaptively at every time step increases the success of the
method. Furthermore, to the best of our knowledge, this is the
first implementation of inverse optimal control methodology
in literature in an adaptivemanner, with optimized parameters
at every sampling time.

Finally, we have also added an integrator controller to the
design to decrease the steady-state error.

As mentioned, the main benefit of SVR-based approaches
over backpropagation-based identification algorithms is that
they guarantee the global extremum, allowing for the accurate
determination of the system model that is valid in all
regions. Thus, a novel online LSSVR-based inverse optimal
controller has been proposed in this paper for nonlinear
non-affine single input single output (SISO) dynamical
systems, by combining the powerful modelling capabilities
of LSSVR with the functionality of the inverse optimal
controller structure.

The proposed work presents a number of significant
contributions to the technical literature. These can be
listed as:

1) A novel method is proposed to implement inverse
optimal control methodology to nonlinear and non-affine
systems. To the best of our knowledge, this is the first
implementation of inverse optimal control technique to non-
affine systems.

2) An online LSSVR has been employed with inverse opti-
mal control method for the first time. Online LSSVR is used
to convert the original non-affine system model (NARX) to
affine systemmodel using NARMA-L2modelling technique.

3) Another major novelty of the proposed work is that
the P and R parameters of the inverse optimal controller
are made adaptive, they are updated iteratively using the
Levenberg-Marquadt algorithm in an online manner.

4) Using inverse optimal control methodology and online
LSSVR technique, an adaptive control architecture is imple-
mented where model identification and control design are
carried out iteratively, in an online manner.

The main contribution of our proposed method was
to come up with a novel methodology to apply inverse
optimal control technique to non-affine nonlinear systems.
Nevertheless, there are numerous methods that have been
used to control non-affine systems in the technical literature,
however, our main motivation was to adopt specifically
the inverse optimal control technique to control non-affine
systems. The application of inverse optimal control method
has been limited to affine nonlinear systems and it has not
been formulated for non-affine systems, since the control
input term is implicit in non-affine dynamical equations and
it is generally not possible to find an explicit mathematical
solution for it. Hence, the inverse optimal control law
formulated for affine systems in technical literature cannot
be used. So, in this paper, we propose a novel approach to
overcome this limitation and apply inverse optimal control
method for nonlinear and non-affine systems.

The proposed method has been tested by simulations on
two different benchmark problems. The simulation results
verify that the introduced control method can successfully
provide good tracking control. Moreover, the robustness of
the method is also justified by the simulation results obtained
under disturbance, noise and parametric uncertainty.

This paper is organized as follows: Section II presents
a concise introduction to nonlinear and non-affine systems.
Section III gives a brief summary of the inverse optimal
control method for trajectory tracking. Section IV explains
the principles of NARMA-L2 modelling, additionally online
LSSVR is summarized and the derivation of LSSVR
submodels are given. In Section V, a detailed explanation of
the proposed control architecture is presented. In Section VI,
simulation results and performance analysis of the controller
are given. In Section VII, a detailed comparison between the
proposed control method and a conventional PID controller
is presented. The paper ends with a brief conclusion in
Section VIII.

II. NONLINEAR NON-AFFINE SYSTEMS
Optimal control of affine nonlinear systems is a well-studied
problem in literature [64]. However, currently, there is no
adequate work related to the optimal control of non-affine-
in-control nonlinear systems. When it comes to solving
the Riccati Equation (RE), Algebraic Riccati Equation
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(ARE), and Hamilton-Jacobi-Bellman (HJB) equation for
control systems, nonlinear non-affine systems are more
complicated compared to linear or nonlinear affine-in-control
systems [29]. The primary difficulty in the control problem of
nonlinear non-affine systems is that the structure of the plant
model does not conform to the conventional affine system
format, as the control input u appears in a non-linear fashion.
Hence, it is difficult to obtain an explicit solution for the
control input.

The generic representation of a nonlinear and affine
continuous system is:

ẋ = f (x) + g(x)u (1)

where the vector of system states is represented as x ∈ Rn,
control input signal vector is denoted by u ∈ Rm, f (.) and g(.)
are nonlinear and smooth functions. In this representation, the
control input is separated from the nonlinear dynamics and
appears in linear form, this simplifies the design of the control
law. Since the majority of physical systems are inherently
nonlinear, they can not be modeled using the assumption
that they are affine. Systems where the control input cannot
be separated from the internal dynamics are called as non-
affine systems. The most general formulation for nonlinear
non-affine systems is given as follows:

ẋ = f (x, u) (2)

When f (x, u) is a smooth function, equation (2) can be
rewritten in Taylor expansion form as in (3) [65]:

ẋ = f0(x) +

k∑
j=1

fj(x)u[j] + R(x, u) (3)

Hence, nonlinear and non-affine systems can be approxi-
mated with affine system models by retaining the first-order
terms in (3). The design of control laws for non-linear
non-affine discrete-time systems is a difficult task due to
the control input nonlinearity or system output nonlinearity.
Thus it is common to assume that the plant is affine, which
means that the model is linear in control input. Nevertheless,
many physical systems, for example, chemical reactions,
PH neutralization processes, etc. are inherently nonlinear,
In their models, control input cannot be separated from the
nonlinear dynamics [65], [66], [67], [68], [69], [70].
In this work, a novel adaptive inverse optimal control

methodology for nonlinear non-affine systems has been pro-
posed. This method is based on derivation of the NARMA-L2
model of the system to be controlled and thereby converting
from a non-affine system model to an affine system model.
The main aim in this work is to explore the applicability of
inverse optimal control method for nonlinear and non-affine
systems. In the following section, some basic information
about inverse optimal control method is provided.

III. INVERSE OPTIMAL CONTROL
It is currently a challenging problem to find effective
approaches for optimal control of nonlinear non-affine

systems. This is because the corresponding Hamilton-Jacobi-
Bellman (HJB) equations are complicated and difficult to
solve and have no feasible solutions when the systems
dynamics are not explicit. As a result, there is a lack of
sufficient research in this area [71], [72]. Thus in our study,
we extended the boundaries of inverse optimal control to non-
affine systems.

A. A BRIEF REVIEW OF INVERSE OPTIMAL CONTROL
The fundamental concept underlying inverse optimal control
theory is to compute a feedback control law that achieves
stabilization as the initial step. This control law is then
employed in optimizing a meaningful cost function that
takes into account both the state variables and the control
inputs [73], [74], [75], [76], [77], [78]. This definition of
inverse optimal control theory may sound perplexing when
compared to the definition of the optimal control problem
where the cost functional is predetermined to formulate a
stabilizing control law. In inverse optimal control approach,
a candidate control Lyapunov function (CLF) is used to
construct an optimal control law directly without solving the
HJB equation. A storage function is used as a CLF candidate
and the inverse optimal control law is selected as an output
feedback control, which is obtained as a result of solving
the Bellman equation. Important concepts of inverse optimal
control are given below [78], [79], [80].

Consider a nonlinear, discrete and affine system given
as [81], [82], [83]:

xn+1 = f (xn) + g(xn)un (4)

where x ∈ Rn, un ∈ Rm,f : Rn
→ Rn,g : Rm

→ Rn×m.
Here, xn denotes the state, un represents the control input,
subscript n expresses the time index at time n, n ∈ Z+ and
f (.), g(.) are smooth functions where f (0) = 0 and g(xn) ̸= 0
for all xn ̸= 0.

The cost functional related to the trajectory of the system
and the control input is constructed as given below:

C(zn) =

∞∑
i=n

(l(zi) + uTi Rui) (5)

Here we define the tracking error along the trajectory xn as
zn = xn − xδ,n where xδ,n denotes the desired trajectory of
xn. C(zn) : Rn

→ R+, l(zn) : Rn
→ R+ is a positive

semi-definite function and R : Rn
→ Rm×m represents a

real symmetric and positive definite weighting matrix, here,
superscripts denote matrix dimensions. The values in matrix
R can either be chosen as constant or can depend on the
system state to adjust the weighting on control efforts based
on the state value. In the context of state feedback control
design, it is assumed that the entire state xn is accessible. The
optimal value function C(zn) can be utilized as a Lyapunov
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function and can be reformulated as follows:

V (zn) = (l(zn) + uTn Run)

+

∞∑
i=n+1

(l(zi) + uTi Rui)

= (l(zn) + uTn Run) + V (zn+1) (6)

The boundary condition V (0) = 0 is necessary for V to
be considered as a Lyapunov function. According to the
Bellman optimality principle, in the case of infinite horizon
optimization, the function V (zn) becomes time-invariant and
satisfies the discrete-time (DT) Bellman equation.

V (zn) = min
un

[(l(zn) + uTn Run) + V (zn+1)] (7)

V (zn+1) depends on xn, xδ,n and un by taking one step ahead
prediction for zn+1. It is important to note that theDTBellman
equation is solved backward in time.

To acquire the necessary conditions that the optimal control
law must satisfy, we define the discrete-time Hamiltonian
H (zn, un) as:

H (zn, un) = (l(zn) + uTn Run) + V (zn+1) − V (zn) (8)

The necessary condition for optimality of the control law is
that ∂H (un,zn)

∂un
= 0, hence:

0 = 2Run +
∂V (zn+1)

∂un
(9)

The chain rule for vectors is applied in (9) to get:

0 = 2Run + gT (x)
∂V (zn+1)

∂zn+1
(10)

When optimal control theory is implemented for trajectory
tracking problem, the HJB equation is obtained as:

l(zn) + V (zn+1) − V (zn)

+
1
4

∂V T (zn+1)
∂zn+1

gT (xn)R−1(zn)g(xn)
∂V (zn+1)

∂zn+1
= 0 (11)

Solving (11) is a challenging task, therefore inverse optimal
control technique has been proposed as an alternative method
to overcome this difficulty.
Definition 1: Radially Unbounded Function A positive

definite function V (xn) such that V (xn) → ∞ as ∥xn∥ → ∞

is called to be radially unbounded.
Definition 2: Control Lyapunov Function Assume that

V (xn) is a radially unbounded function, with V (xn) > 0,
∀xn ̸= 0 and V (0) = 0. If for any xn ∈ Rn there exist real
values un such that ∆V (xn, un) < 0, where the difference in
Lyapunov function is defined as ∆V (xn, un) = V (f (xn) +

g(xn)un)−V (xn), then V (.) is called to be a discrete-time
control Lyapunov function (CLF) for (4).

Theorem: Global Asymptotic Stability The equilibrium
point xn = 0 of equation (4) is globally asymptotically stable
if there exists a function V : Rn

→ R such that the following
conditions hold

(i) V is a positive definite, decrescent and radially
unbounded function.

(ii) −∆V (xn, un) is a positive definite function, where
∆V (xn, un) = V (xn+1)−V (xn).
Theorem [50]: The optimal control law to achieve

trajectory tracking is formulated as:

un = −
1
2
R−1gT (x)

∂V (zn+1)
∂zn+1

(12)

with the boundary condition V (0) = 0.
Equation (12) is an inverse optimal (globally) stabilizing

control input along xδ,n if the following two conditions are
satisfied:

Condition 1) For the system represented by (4),
equation (12) achieves (global) asymptotic stability of xn = 0
Condition 2) The control Lyapunov function, V (zn)

satisfies:

V := V (zn+1) − V (zn) + uTcnR(zn)ucn ≤ 0 (13)

If l(zn) := −V , then V (zn) is a solution for (11) and it follows
that the cost functional of the tracking error is minimized.
To compute the inverse optimal control law for the trajectory
tracking problem of nonlinear systems, first a CLF satisfying
the necessary properties [50] is selected as:

V (zn) =
1
2
zTn Pzn P = PT ≻ 0 (14)

where the trajectory tracking error (zn) is represented as:

zn = xn − xδ,n =

 (x1,n − x1δ,n)
...

(xN ,n − xNδ,n)

 (15)

The inverse optimal control law can be computed as:

un =| −
1
4
R−1gT (xn)

∂zTn+1Pzn+1

∂zn+1
|

=| −
1
2
(R+ P2(xn))−1P1(xn, xδ,n) | (16)

where

P1(xn, xδ,n) =


gT (xn)P(f (xn) − xδn+1)
for f (xn) ⪰ xδ,n+1

gT (xn)P(xδ,n+1 − f (xn))
for f (xn) ⪯ xδ,n+1

(17)

and

P2(xn) =
1
2
gT (xn)Pg(xn) (18)

In (16), (17), (18), the Pmatrix must be selected as positive
definite and symmetric. Equation (16) formulates the inverse
optimal control law which also guarantees the minimization
of the cost functional in (7). A detailed proof of the theorem
given above is available in [50], [77], [79], and [84].

By the theorem given above, the inverse optimal control
law for trajectory tracking problem can be calculated with the
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selection of appropriate P and R matrices for discrete-time,
affine-in-input, nonlinear system models.

It must be noted that the derivation of the inverse optimal
control law summarized above is based on the selection of a
positive definite Lyapunov function with a negative definite
derivative. Hence, it is inherently stable as long as P and R
matrices are appropriately selected.

The inverse optimal control technique summarized above
has been applied to affine nonlinear systems in technical
literature, however, we are not aware of any studies about
its implementation for non-affine systems. In this paper,
we propose a novel methodology where a non-affine
nonlinear system is converted to an affine system using
NARMA-L2 modelling technique and consequently inverse
optimal control law can be computed.

B. INVERSE OPTIMAL CONTROL WITH INTEGRATOR
When we implemented the inverse optimal control method-
ology formulated above to the trajectory tracking problem
of nonlinear and non-affine systems, we observed that the
transient response was very good, however, there was a
steady-state error. To minimize the steady state error an
integral control action was added to the inverse optimal
control law. Integral control is part of the well-known
proportional-integral-derivative (PID) control and its main
function is to decrease the observed steady-state error.

PID control is extensively employed in industry as the
predominant control algorithm, and it has widespread adop-
tion for industrial control purposes. PID control has gained
widespread acceptance due to its robust performance in
various operating conditions and its inherent simplicity which
provides easy implementation. The PID algorithm, as its
name implies, comprises three fundamental components:
Proportional, integral, and derivative. So it utilizes the
information on error, rate of change of error and integral of
error in computing the control input. Consequently, there are
three coefficients (or gains) to adjust the relative importance
of these components and they are tuned to achieve an optimal
response.

The proportional component of the PID algorithm is solely
determined by the error between the reference signal and
the measured output of the controlled system. Feeding back
this error information will result in a decrease in the error,
in accordance with the basic principles of feedback control
theory. Typically, increasing the proportional gain results
in a faster response of the control system. Nevertheless,
if the proportional gain is excessively high, it can lead to
oscillations in the process. If we increase the value of the
proportional gain beyond a certain point, it will result in
amplification in oscillations, leading to system instability
where the oscillations may result in an unstable system
beyond control.

The derivative part of the PID algorithm is directly pro-
portional to the rate of change of the observed error between
the reference signal and system output. Measuring the rate of
change of error makes it possible to predict how fast the error

is changing, hence the computed control signal can take an
action before the error builds up. So, a decrease in the output
is induced when the process variable exhibits a rapid increase.
Raising the derivative gain will increase the responsiveness of
the control system with respect to variations in the error term,
thereby increasing the overall speed of the control system’s
response. The derivative component of the PID algorithm
adds an anticipation property to the control signal.

The integral component of the PID algorithm sums the
error term over time. Unless the error is zero, the integral
response of the PID controller continuously tends to increase
over time. As a result, it reduces or eliminates the steady-
state error. The steady-state error is the difference between the
system output and the reference signal after the effect of the
transients are over. The mathematical justification of this is
that adding integral control is equivalent to increasing system
type by one, which means that the number of open-loop poles
at the origin of the complex plane is increased. It can be
mathematically verified that adding an open-loop pole to the
origin decreases the steady-state error [85], [86].

The PID control law can be formulated in discrete-time as:

upidn = Kp

(
en +

T
Ti

N∑
n=1

en +
Td
T
(en − en−1)

)
(19)

Here en is trajectory tracking error, T is the sampling interval,
Ti is integration time, Td is derivative time, and Kp is the
proportional gain.

In this study, to minimize the observed steady-state error
when only the inverse optimal controller is used, an integrator
control action is added to the controller design. The main
advantage of using an integral control term is to decrease the
steady-state error as described in detail above.

Hence, the overall control law implemented in this work is
given by the following equation:

un =| −
1
2
(R+ P2(xn))−1P1(xn, xδ,n) |

+ KI

[ N∑
i=1

zi

]
(20)

where KI ∈ Z+ is optimized by Levenberg-Marquadt
algorithm at every sampling time.

IV. LSSVR BASED NARMA-L2 MODEL OF NONLINEAR
NON-AFFINE SYSTEMS

The main aim of this study is to develop a novel method
to design an inverse optimal controller for non-affine and
nonlinear systems.

In order to achieve this, the NARX model of the system
is acquired initially, and then using this NARX model, the
NARMA− L2 model is attained. Thus at the first step NARX
model of the system is obtained by the available input-output
data easily.

The dynamics of theNARXmodel should be decomposed
into a NARMA − L2 model in order to apply an inverse
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FIGURE 1. Decomposition of LSSVRNARX model to LSSVRNARMA−L2
model [88]

optimal controller [87], [88], [89], [90]. Therefore, obtaining
the NARMA− L2 model is a critical point.

The online LSSVR method has been used both to obtain
the NARX model and then to convert it to the NARMA− L2
model.

Two separate LSSVRs are designed as presented in
Fig.(1). LSSVRNARX computes the NARX model of the
system from the input-output dataset of the system, then
LSSVRNARMA−L2 decomposes this model to a NARMA− L2
model in order to obtain a suitable system model to design
the inverse optimal controller.

The proposed method employs online LSSVR method
and NARMA-L2modelling technique. Hence, in this section,
some basic background material about these concepts are
provided.

A. NONLINEAR FUNCTION ESTIMATION USING LSSVR
LSSVR is a regression technique which is based on the

traditional SVR approach [91]. The main distinctive feature
of LSSVR is that it utilizes equality constraints and a squared
error term in the formulation of the optimization problem.

Let us assume that a training set is given as:

(y1, x1), · · · , (yk , xk ), x ∈ Rn, y ∈ R, k = 1, 2, · · · ,N (21)

where N is the size of training data and superscript n is the
dimension of the input matrix.The optimization objective in
LSSVR has two goals, it seeks to maximize the geometric
margin while simultaneously minimizing the training error.
The optimization problem is defined as:

min
w,b,e

1
2
wTw+

1
2

N∑
k=1

e2k (22)

subject to equality constraints:

yk − wTϕ(xk ) − b− ek = 0, k = 1, 2, · · · ,N (23)

The equations (22) and (23) are called as the primal form
of the minimization problem where parameter w is weight
vector, ϕ(xk ) is nonlinear mapping which transfers the input
dataset to feature space, b is bias, ek error of least-squares
data fitting. The fundamental concept behind support vector
machines (SVMs) involves constructing a Lagrange function
by combining the primal objective function with the asso-
ciated constraints, which entails introducing a dual set of
variables. The primal objective function and corresponding
constraints are employed to obtain a dual set of variables and
to construct the Lagrange function of the LSSVRs [92]. Thus,
at first Lagrangian function can be derived by utilization of
primal objective function and the constraints:

L(w, b, e, a) =
1
2
wTw+

1
2
C

N∑
k=1

e2k

−

N∑
k=1

αk (wTϕ(xk ) + b+ ek − yk ) (24)

where L represents the Lagrangian, C is the penalty term
and ak are Lagrange multipliers [8], [92], [93]. Since the
Lagrangian exhibits a saddle point concerning both the primal
and dual variables at the solution, the partial derivatives of
L in relation to the primal variables must vanish to achieve
optimality. Utilizing Karush-Kuhn-Tucker conditions for
optimality yields:

∂L
∂b

=

N∑
k=1

αk = 0 (25)

∂L
∂w

= w−

N∑
k=1

αkφ(xk ) = 0 → w =

N∑
k=1

αkϕ(xk ) (26)

∂L
∂ek

= C
N∑
k=1

ek −

N∑
k=1

αk = 0 → αk = Cek (27)

∂L
∂αk

= 0 → yk = wTϕ(xk ) + b+ ek (28)

where k = 1, 2, · · · ,N . Thus, the solution is obtained as:[
0 1

1T Ω +
I
C

] [
b
aT

]
=

[
0
yT

]
(29)

where y =
[
y1, y2, · · · yN

]
, a =

[
a1, a2 · · · aN

]
, 1 =[

1, 1 · · · 1
]
, Ω = K (xk , xm), k,m ∈ {1, 2, · · ·N }, here K

is kernel function.
The nonlinear autoregressive with exogenous inputs

(NARX) model is given as:

yn = f
(
un, .., un−nu , yn−1, .., yn−ny

)
(30)

where un is the control input applied to the plant at time n, yn
is the output of the plant, and nu and ny denote the order of
the NARX Model. This model can be employed to represent
the dynamics of the non-linear system. The state vector of the
system at time index n is represented as follows:

cn =
[
un, .., un−nu , yn−1, .., yn−ny

]
(31)
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The estimate of the output ŷn can be obtained using
LSSVR. Consequently,using equations (23), (29) and (31),
the non-linear regression or approximation function can be
expressed in terms of support vectors as given in (32):

ŷn =

∑
k∈SV

akK (cn, xk ) + b (32)

For additional information please refer to [8], [92], and [93].

B. SYSTEM IDENTIFICATION USING NARMA-L2 MODEL
The nonlinear autoregressive moving average (NARMA)
model is a discrete-time mathematical representation which
is specifically designed for characterizing the behavior of
a single input single output (SISO) system with nth-order
nonlinear dynamics and a relative degree of d, in the
neighborhood of its equilibrium state [94].

The generic representation of a discrete-time, non-affine
and nonlinear system is given as:

yn+d = Factual(un, · · · , un−k+1, yn, · · · , yn−k+1) (33)

Here yn is the system output, un denotes the control input and
d represents the relative degree, Fn is a nonlinear function of
its arguments. For the system given above, solving system
identification problem is equivalent to finding the correct
input-output mapping with as small error as possible.

In literature, there are two variations of NARMA, known
as NARMA− L1 and NARMA− L2. In both approximations,
the relationship between the input un and the output yn
exhibits linearity. Consequently, the control law un can be
determined by using algebraic linear equations. The key
distinction between these two approximations lies in the
Taylor series expansion which is used. For NARMA − L1,
the Taylor expansion is centered around specific conditions:
[yn, yn−1, · · · , yn−k+1, un = 0, un−1 = 0, · · · , un−k+1 = 0]
while the Taylor expansion for NARMA − L2 is around the
scalar un = 0. In theNARMA−L1 model, the functions f̂ and
ĝ depend on previous values of the output, yn, and the control
input, un, with a linear relationship between the current and
past control input values in the equation. However, in the
NARMA − L2 model, the functions f̂ and ĝ involve both
past output, y, and control input, u, with a linear connection
between the next output value, yn+d , and the current control
input, un. The NARMA − L1 approximation model is given
as:

ŷn+d = f̂ [yn, yn−1, · · · , yn−k+1]

+

n−1∑
i=1

ĝi[yn, yn−1, · · · , yn−k+1]un−i (34)

where

f̂ = Factual[(yn, · · · , yn−k+1, 0, 0, · · · , 0)]

ĝi =
∂Factual
∂un−i

∣∣∣∣
(yn,··· ,yn−k+1;un=0,··· ,un−k+1=0)

(35)

In order to obtain the NARMA − L2 model, the Taylor
series expansion of (33) is written down and the first order

terms are retained. Hence, the NARMA − L2 model can be
derived as:

ŷn+d = f̂ [yn, yn−1, · · · , yn−k+1,

un−1, · · · , un−k+1]

+ ĝ[yn, yn−1, · · · , yn−k+1,

un−1, . . . , un−k+1] · · · un (36)

where

f̂ = Factual[(yn, · · · , yn−k+1, 0,

un−1, · · · , un−k+1)]

ĝ =
∂Factual

∂un

∣∣∣∣
(yn,··· ,yn−k+1;un=0,un−1,··· ,un−k+1)

(37)

ŷn+d = f̂ (xn) + ĝ(xn)un (38)

where xn is the input vector, f̂ and ĝ are nonlinear functions
[88]. As can be seen in (38), the functions f̂ and ĝ are the
submodels of the NARMA − L2 model and they must be
estimated. In the NARMA− L2 model, the control input un is
separated from the nonlinear dynamics and appears linearly.
This is the main strength of NARMA − L2 model since it
provides practicality in control design. Thus NARMA− L2
modeling has been used in various researches [88], [95],
[96]. Additionally, it provides a good representation for an
affine system model. The work proposed in this paper mainly
concentrates on designing an inverse optimal controller
for non-affine systems. For this purpose, the input-output
data is used to obtain the non-affine NARX model of the
system (LSSVRNARX ), consequently, this model is utilized to
compute the NARMA − L2 (LSSVRNARMA−L2) submodels.
After identifying the dynamics of the system, the estimated
submodels (f̂ , ĝ) are used to compute the inverse optimal
control law. An illustration of theNARMA−L2model is given
in Fig.(2).

After this concise summary of the basic concepts used
in this work given above, in the following section the
main contribution of this paper, namely the adaptive inverse
optimal controller with integrator which has been proposed
for the control of nonlinear and non-affine systems is
presented in detail.

V. ADAPTIVE INVERSE OPTIMAL CONTROLLER WITH
INTEGRATOR
Inverse optimal control has been successfully applied to
various nonlinear systems, however, these systems are mainly
affine systems where control input appears linearly in system
dynamics. The inverse optimal control method has not yet
been used for the control of non-affine systems in the
literature.

In this paper, the main goal is to explore the applicability
of inverse optimal control methodology for non-affine non-
linear systems. A novel control method is proposed in order
to adopt inverse optimal control technique for the control
of a non-affine systems. In the proposed method, a totally
adaptive control architecture is constructed where system
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identification, optimization and control are executed concur-
rently at every sampling interval. From the input-output data
of the controlled plant, the NARX model of the system is
obtained using online LSSVR method. Consequently, this
NARX model is converted to a NARMA-L2 model and
submodel terms of the dynamics are identified. This step
converts a non-affine system to an affine systemmodel. Also,
the controller parameters are optimized using the Levenberg-
Marquardt algorithm. Finally, the obtained NARMA-L2
model and the optimized controller parameters are utilized
together to compute the inverse optimal control law and this
is applied to the controlled system. In the subsections that
follow, the steps of the control architecture are explained in
detail.

A. IDENTIFICATION OF NARX MODEL USING ONLINE
LSSVR
The online LSSVR method has been used to identify the
NARMA − L2 model of the system to be controlled. For
this purpose, firstly the NARX model is obtained, then the
NARMA− L2 model is attained using this NARX model.

The dynamics of a non-linear system can be represented
by the nonlinear autoregressive with exogenous inputs
(NARX ) model,

yn+1 = f (
[
un, · · · , un−nu , yn−1, · · · , yn−ny

]
) (39)

where un is the control input applied to the plant at time n,
yn+1 is the output of the plant and nu, ny represent the number
of past control inputs and the number of past plant outputs
included in the model respectively [97]. The state vector of
the system at time index n is represented as follows:

xn =
[
un, · · · , un−nu , yn−1, · · · , yn−ny )

]
(40)

Using LSSVR, an estimate of the output of the model can be
obtained by employing equations (32), (39) and (40):

ŷNARXn+1 =

n−1∑
i=n−L

aiK (xn, xi) + bn (41)

Utilizing inputs Xn = [xn−1, · · · , xn−L], corresponding
outputs of the system Yn = [yn, · · · , yn−L+1], the length
of the sliding windows L and langrange multipliers ai, the
training data set (Xn,Yn) can be obtained. If we assume that

Un = [Ωn +
I
C
]−1,where Ωn is the kernel matrix, C is the

penalty term and use equation (9), Lagrange multipliers an
and bias bn are obtained as:

Yn = [Un]−1aTn + 1T bn (42)

1aTn = 0 (43)

Solving the linear system of equations:

UnYn = Un[Un]−1aTn + Un1T bn (44)

aTn = Un[Yn − 1T bn] (45)

FIGURE 2. LSSVRNARMA−L2 model [10], [88]

Using equation (16),

1aTn = 1Un[Yn − 1T bn] = 0 (46)

bn =
1UnYn
1Un1T

(47)

Thus at time index n :

Xn = [xn−1, · · · , xn−L] (48)

Yn = [yn, · · · , yn−L+1] (49)

At time index n+ 1 :

Xn+1 = [xn, · · · , xn−L+1] (50)

Yn+1 = [yn+1, · · · , yn−L+2] (51)

At time index n+ 1, new data pair of (xn, yn) is added to
the training data and old data pair (xn−L , yn−L+1) is discarded
from the data set [98], [99].

B. LSSVR BASED NARMA-L2 DECOMPOSITION
After obtaining the NARX model of the system, the next step
is to decompose it into NARMA − L2 submodels. Hence
the focus of this step is to obtain the model parameters for
LSSVRNARMA−L2 from the previously obtained model of the
system:

ŷNARXn+1 =

n−1∑
i=n−L

aiK (xn, xi) + bn (52)

The NARX model which is not directly usable in inverse
optimal control design should be separated into submodels
Fn(.)and Gn(.) as shown in Fig.(2). Submodels can be
presented at prediction phase:

f̂ −
n

∼= Fn−1(xn) (53)

ĝ−
n

∼= Gn−1(xn) (54)

Subscript denotes the time index of the state vector and
superscript indicates if the system model is derived for time
step n or n− 1. ‘‘-’’ is used to indicate that models computed
in the previous time step n−1 are evaluated with current state
vector xn with the purpose of obtaining ˆf −

n and ˆg−
n . In other

words, f̂ +
n and ĝ+

n represent that model acquired in the current
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step (n) has been utilized with the current state vector xn as
follows:

f̂ +
n

∼= Fn(xn) (55)

ĝ+
n

∼= Gn(xn) (56)

To compute inverse optimal control, submodels Fn(.)and
Gn(.) have to be obtained. The regression functions for
Fn−1(xn−1) and Gn−1(xn−1) are represented as:

f̂ +

n−1
∼= Fn−1(xn−1) =

N∑
i=1

αik(xi, xn−1) + bf (57)

ĝ+

n−1
∼= Gn−1(xn−1) =

N∑
i=1

θik(xi, xn−1) + bg (58)

The output of LSSVRNARMA−L2 model of the system can be
acquired as:

ŷNARMAn = Fn−1(xn−1) + Gn−1un−1 (59)

=

N∑
i=1

αik(xi, xn−1) + bf

+

[ N∑
i=1

θik(xi, xn−1) + bg

]
un−1 (60)

Themodels of LSSVRNARMA−L2 and LSSVRNARX are matched
and the following relation between these two models can be
established:

N∑
i=1

aiK (xi, xn−1) + bn

=

N∑
i=1

[αi + θiun−1]K (xi, xn−1) + bf + bgun−1 (61)

Hence:

ai = αi + θiun−1 (62)

bn = bf + bgun−1 (63)

In order to proceed, let us assume that there exists the
following relations between submodels:

ŷNARXn ∼= ŷNARMAn (64)

The following assumption has been suggested to use this
relationship and to estimate the submodels’ parameters using
this approach:

αi = µ1(.)θi (65)

bf = µ2(.)bg (66)

As a consequence, we obtain:

Fn−1(xn−1) = µ1(.)Gn−1(xn−1)

+ [µ2(.) − µ1(.)]bg (67)

It is clearly seen from equation (67) that the
LSSVRNARMA−L2 model of the system depends only on
Gn−1(xn−1) for given values of µ1(.) and µ2(.), µ1(.) and

µ2(.) are the regressor parameters of the submodels. Using
equations (65) and (66), the bias and Lagrange parameters of
the LSSVRNARMA−L2 submodels Fn−1(xn−1) and Gn−1(xn−1)
are calculated with respect to LSSVRNARX model:

θi =
ai

µ1(.) + un−1
, ai = µ1(.)θi

bg =
bn

µ2(.) + un−1]
, bf = µ2(.)bg (68)

When the transformation from the NARX model (52) to
NARMA-L2 (60) is achieved, the biggest advantage obtained
is that the control signal term is successfully extricated
from the nonlinear terms in the NARX model (52) and
transformed into a multiplier term as in NARMA-L2 (60).
Thus, an affine nonlinear equivalent of the NARX model can
be accomplished. As a result, the control signal term as in (60)
can be expressed in terms of the nonlinear dynamics of the
NARX model, transformed by Taylor series expansion.

As a consequence, system dynamics that are required
for designing an inverse optimal controller can be calculated
using the initially obtained LSSVRNARX model and then
converting it to a LSSVRNARMA−L2 model.

C. PARAMETER OPTIMIZATION USING
LEVENBERG-MARQUARDT ALGORITHM

The tracking performance of the proposed method depends
on the parameters µ1, µ2, P, R and KI .

To efficiently update all of the aforementioned param-
eters, a predictive framework that takes into account the
system’s K -step-ahead future behavior has been deployed.

The objective function E given in equation (69) is
optimized by Levenberg-Marquardt algorithm to tune the
parameters P, R, µ1, µ2 and KI .

E(µ,P,R,KI ) =
1
2

K∑
k=1

ê2n+k +
1
2
λ[un − un−1]2 (69)

Here, ên+k = rn+k − ŷn+k , λ is the penalty parameter.
Levenberg-Marquardt algorithm is used to adjust the param-
eters as follows:

µ1new
µ2new
Pnew
Rnew
KInew

 =


µ1old
µ2old
Pold
Rold
KIold

 +
[
JT J + ηI

]−1 JT e (70)

where (71), as shown at the bottom of the next page.
e = [ên+1 · · · , ên+K

√
λ∆un]T and J is Jacobian

matrix. If the jth support vector and current state are
cn = [un−1, · · · , · · · , un−nu , yn, · · · , yn−ny+1]T and xj =

[xj1, · · · , xjnu , xjnu+ny ]
T , respectively, K-step ahead future
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behavior of the system can be approximated as:

ŷn+k = fn(ĉn+k ) + gn(ĉn+k )un (72)

ĉn+k = [un, · · · , un︸ ︷︷ ︸
k

, un−1, · · · , un+k−nu︸ ︷︷ ︸
nu-k

ŷn+k , · · · , ŷn+1︸ ︷︷ ︸
k-1

yn, · · · , yn+k−ny︸ ︷︷ ︸
ny +1-k

] (73)

where

fn(ĉn+k ) =

∑
j∈SV

αjK (dn+k,j) + bf

=

∑
j∈SV

αjexp(
−dn+k,j
2σ 2 ) (74)

gn(ĉn+j) =

∑
j∈SV

θjK (dn+k,j) + bg

=

∑
j∈SV

θjexp(
−dn+k,j
2σ 2 ) (75)

The Euclidean distance between the state vector at
step(n+k) and the jth support vector xj is defined as dn+k,j.

The choice of kernel parameter σ significantly influences
how well the data can be distinguished in the feature space.
With a small σ , the kernel matrix emphasizes similarities
among input data, causing similar points in input space to be
widely dispersed in feature space. Consequently, this leads
to an increase in the number of support vectors needed to
accurately capture the system’s dynamics. Conversely, for
large σ values, dissimilar data in the input space are projected
closely in the feature space. This can cause the kernel’s
nonlinearity to be diminished, resulting in an imprecise
identification of the system’s dynamics.

dn+k,j =

√
(cn+k − xj)T (cn+k − xj)

=
√
DUn+k + DYn+k =

√
An+k (76)

where

DUn+k =

min(k,nu)∑
i=1

(un − xj,i)2

+

nu∑
i=min(k,nu)+1

(un+min(k,nu)−i − xj,i)2

− δ(nu − k) (77)

DYn+k =

min(k−1,ny)∑
i=1

(ŷn+k−i − xj,nu+i)
2

+

ny∑
i=min(k−1,ny)+1

(un+min(k−1,ny)+1−i − xj,nu+i)
2

− δ(ny + 1 − k) (78)

δ(.) represents unit step function. The system Jacobian Jm
is given as:

∂ ŷn+k
∂un

=
∂fn(cn+k )
∂dn+k,j

∂dn+k,j
∂un

+
∂gn(cn+k )
∂dn+k,j

∂dn+k,j
∂un

un + gn(cn+k ) (79)

where

∂fn(cn+k )
∂dn+k,j

=
−1
2σ 2

∑
j∈SV

αjexp(
−dn+k,j
2σ 2 ),

∂gn(cn+k )
∂dn+k,j

=
−1
2σ 2

∑
j∈SV

θjexp(
−dn+k,j
2σ 2 ), (80)

∂dn+k,j
∂un

=
∂dn+k,j
∂An+k

[
∂An+k

∂DUn+k

∂DUn+k
un

+
∂An+k
∂DYn+k

∂DYn+k
un

]
(81)

∂dn+k,j
∂An+k

=
1

2
√
An+k

=
1

2dn+k,j
, (82)

J =


∂en+1
∂ ŷn+1

∂ ŷn+1
∂µ1

∂en+1
∂ ŷn+1

∂ ŷn+1
∂µ2

∂en+1
∂ ŷn+1

∂ ŷn+1
∂P

∂en+1
∂ ŷn+1

∂ ŷn+1
∂R

∂en+1
∂ ŷn+1

∂ ŷn+1
∂KI

...
...

...
...

...
∂en+K
∂ ŷn+K

∂ ŷn+K
∂µ1

∂en+K
∂ ŷn+K

∂ ŷn+K
∂µ2

∂en+K
∂ ŷn+K

∂ ŷn+K
∂P

∂en+K
∂ ŷn+K

∂ ŷn+K
∂R

∂en+K
∂ ŷn+K

∂ ŷn+K
∂KI

∂
√

λ∆un
µ1

∂
√

λ∆un
µ2

∂
√

λ∆un
P

∂
√

λ∆un
R

∂
√

λ∆un
KI



= −


∂ ŷn+1
∂un

∂un
∂µ1

∂ ŷn+1
∂un

∂un
∂µ2

∂ ŷn+1
∂un

∂un
∂P

∂ ŷn+1
∂un

∂un
∂R

∂ ŷn+1
∂un

∂un
∂KI

...
...

...
...

...
∂ ŷn+K
∂un

∂un
∂µ1

∂ ŷn+K
∂un

∂un
∂µ2

∂ ŷn+K
∂un

∂un
∂P

∂ ŷn+K
∂un

∂un
∂R

∂ ŷn+K
∂un

∂un
∂KI

−
√

λ ∂un
µ1

−
√

λ ∂un
µ2

−
√

λ ∂un
P −

√
λ ∂un

R −
√

λ ∂un
KI



=


−

∂ ŷn+1
∂un
...

−
∂ ŷn+K
∂un√
λ


[

∂un
∂µ1

∂un
∂µ2

∂un
∂P

∂un
∂R

∂un
∂KI

]
= JmJc (71)
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∂An+k
∂DUn+k

=
∂An+k
∂DYn+k

= 1, (83)

∂DUn+k
∂un

=

min(k,nu)∑
i=1

2(un − xj, i), (84)

∂DYn+k
∂un

=

min(k−1,ny)∑
i=1

2(ŷn+k−i − xj,nu+i)
∂ ŷn+k−i

∂un

δ(k − i) (85)

The Jacobianmatrix Jm is obtained using the substitutions
A and D given in equations (76)-(78) and LSSVRNARMA−L2
model of the system as shown in equations (79)-(85).
Tracking performance of the system achieved using the
proposed method depends on parameters µ1, µ2,P,R. Due
to the observed steady-state error we also added an integrator
to the controller design. Since adaptive parameters are not at
their optimal values in the transient state of the closed-loop
system, a correction term denoted as δun has been added to
tolerate the error in the resulting control signal. Using Taylor
series expansion given in [100], [101], the correction term can
be derived as follows via Jm.

δun = −
[
JTmJm

]−1JTmê (86)

The objective function given in equation (69) is optimized
by the Levenberg-Marquardt algorithm to tune the param-
eters. The adjustable controller parameters have also been
adapted using the Levenberg-Marquardt algorithm.

D. PROPOSED CONTROL PROCEDURE
A step-by-step outline of the proposed control method
is provided below. A flow chart of the pseudo-code that
summarizes the algorithm is given in Fig.(3). Additionally,
the control architecture of the overall system is illustrated in
Fig.(4).

1. Initialize controller and model
parameters.
-Controller parameters: µj, P, R, KI
-LSSVRNARX model parameters:
β = bβ = 0, C = 1000, ε = 10−3,
σ = 1

2. Train LSSVRNARX model using
(ufn−1, yn) data pair
-Set index to n
-Constitute xn−1 = [un−2, · · · , un−nuyn−1
, · · · , yn−ny ]
-Predict ŷn via LSSVRNARX model
-Calculate emn = yn-ŷn
If | emn | > ε

Train system model where emn =

yn−ŷn else continue with the system
model and controller parameters
obtained at the previous step

3. Convert LSSVRNARX model to
LSSVRNARMA−L2 model

-Compute parameters ofFn−1(α, bf )
andGn−1(θ, bg) by usingLSSVRNARX
parameters (β,bβ ) as shown in (68)
-Constitute xn = [un−1, · · · , un−nu,yn,··· ,yn−ny+1]
-Compute f̂ −

n and ĝ−
n by Fn−1(.) and

Gn−1(.)
4. Calculate the control input pro-

duced by Inverse Optimal Con-
troller with integrator (un).
-Calculate the control signal (un)
using the predictions of submodels
and control law in (20)

5. Apply control signal un to the
system to compute yn+1 -Training
data pair of LSSVRNARX model
(un, yn+1) for next step is obtained.

6. Calculate the Jacobian
-Apply un K-times to LSSVRNARX
model in order to constitute Jaco-
bian matrix in (71)

7. Learning Step for Controller
-Update Controller parameters (µj,P,R,KI )
using (70)

8. Increment n = n + 1

VI. SIMULATION RESULTS
The proposed control methodology has been assessed with
simulations performed on two different nonlinear benchmark
problems. The control system performance has been evalu-
ated for the nominal case and for the cases with measurement
noise, input disturbance and parametric uncertainty.

Assuming that the system dynamics are unknown,
we initially used online LSSVRNARX to detect the unknown
dynamics using input-output data pairs.

Then by the proposed method, LSSVRNARMA−L2 model is
obtained as given in equations (61-68, 70).

For both benchmark problems, we used staircase type of
reference signals for the systems to track. The reason that we
chose such reference signals is that they are rather difficult
to follow and also transient responses and steady-state errors
can be clearly observed. In order to make the simulations
as realistic as possible, we followed a hypothetical approach
where we assumed that we do not have any prior information
about the dynamics of the system to be controlled, however,
the real system model is given by the mathematical equations
of the benchmark systems. In other words, we assume
that we can use the computations of the mathematical
dynamical equations of the benchmark systems as if they are
measurements obtained from the physical plants. At every
iteration the system output is computed using the system
dynamics given with equation (89) for benchmark system I
and equation (90) for benchmark system II. The input and
output values are used to construct the input feature vector
to LSSVRNARX which computes the NARX model of the
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FIGURE 3. Flow Chart of the Proposed Method.

system. Then the NARX model is converted to submodels f̂
and ĝ by LSSVRNARMA−L2. The parameters P, R, µ1, µ2 and
KI are optimized using Levenberg-Marquardt algorithm with
equation (70). The computed submodels and the optimized

parameters are utilized to calculate the inverse optimal
control law which was given by equation (20). Consequently,
the control law is applied to the actual system, a new system
output value is computed for the applied control input. With
the new control input and system output the next iteration
of the simulation starts to recompute the NARX model,
convert it to submodules, optimize controller parameters and
calculate the inverse optimal control law. Obviously, at every
iteration system identification and control are carried out
together and in an adaptive manner.
In order to verify the effectiveness of the proposed control
method, the simulations are repeated for two different
benchmark systems which are nonlinear and non-affine.
Also, to assess the robustness of the method simulations
are repeated for the cases where measurement noise, input
disturbance or parametric uncertainty are added to the system.
The simulation scenario summarized above is applied to
observe how the proposed method deals with these cases and
whether it achieves robustness. Hence, for both benchmark
systems I and II, simulations have been performed for the
following cases:
1) The nominal case.
2) Measurement noise is added to the system.
3) Input disturbance is added to the system.
4) Parametric uncertainty is added to the system.

The input feature vectors of LSSVRNARX and
LSSVRNARMA−L2 models are chosen as Mc = [un−1, · · · ,

un−nu , yn, ..yn−ny+1]T where nu = 3 and ny = 3 represent the
number of past inputs and outputs. Since the inverse optimal
controller parameters are optimized based on a predictive
objective function in equation (69), the grid search algorithm
is used for obtaining the optimal estimation horizon (K ) and
penalty term (λ). The application of this algorithm yielded the
optimumK and λ values for system 1 and system 2 asK = 1,
λ = 0.1000 and K = 5, λ = 0.2000, respectively. The 3-D
error surfaces obtained as a result of the grid search algorithm
are illustrated in Fig.(5) and Fig.(6) for system 1 and system 2,
respectively.

The derivation of the inverse optimal controller involves
the utilization of a positive symmetric Lyapunov function.
Consequently, the control law is formulated so that the
negative definiteness of the derivative of the Lyapunov
function is assured. Hence, it is guaranteed that the inverse
optimal controller is inherently stable as long as P and R
matrices are appropriately selected. In simulation results,
we also verified the stability of each case by plotting the
Lyapunov function and its derivative.

A. BENCHMARK SYSTEM I
1) NOMINAL CASE
Firstly, the performance of the proposed method has been
tested on the following non-affine nonlinear system described
by:

x1n+1 = 0.1x1n +
2(un + x2n )

(1 + (un+1 + x22n )
(87)
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FIGURE 4. Adaptive LSSVR based Inverse Optimal Controller Scheme.

FIGURE 5. 3-D Error surface for Benchmark System I via Grid Search.

x2n+1 = 0.1x2n + un
(2 + u2n)

(1 + x21n + x22n )
(88)

yn+1 = x1n+1 (89)

where initial parameters are assigned as P(0) = 0.000120,
R(0) = 0.40, KI (0) = 0.01.

Fig.(7) and Fig.(8) illustrate the tracking performance results
for the nominal case. In Fig.(7) the states, control input law
and the control signal correction term are depicted. In Fig.(8),
P, Q and KI parameters and µ1 and µ2 are illustrated. Fig.(9)
depicts the trajectory tracking error, the Lyapunov function
and its derivative. From the figures, it can be observed that
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FIGURE 6. 3-D Error surface for Benchmark System II (CSTR) via Grid Search.

FIGURE 7. Tracking performance (a), Inverse optimal control signal (b),
and control signal correction term (c) for Benchmark System I (nominal
case).

the trajectory error has a very small magnitude. The output
converges to the reference signal fast and tracks it with
minimum steady-state error. The parameters tune themselves
adaptively to provide successful tracking. Also it can be
concluded that the Lyapunov function is always positive and
the derivative of the Lyapunov function is always negative,
proving the stability of the proposed controller for benchmark
system I for the nominal case.

2) MEASUREMENT NOISE CASE
To evaluate the trajectory tracking performance of the
proposed control scheme under measurement noise, 30 dB
measurement noise is added to the output of the benchmark
system I. The system output, calculated control input and
control signal correction term can be observed in Fig.(10).
Fig(11) depictures the parameters of the inverse optimal con-
troller with integrator and LSSVRNARMA−L2 decomposition
parameters. It can be clearly seen that the proposed controller
can successfully deal with the measurement noise and the
parameters adapt themselves to perform successful control.

Fig.(12) depicts the trajectory tracking error, the Lya-
punov function and its derivative. It is observed that
the proposed controller guarantees stability for benchmark
system I under measurement noise. The figures clearly show
that despite the presence of measurement noise, output
trajectory successfully follows the reference signal and there
is nearly no steady-state error. Naturally, because of the
measurement noise added to the system oscillations are
observed, but these are small magnitude oscillations and the
proposed control method can successfully deal with them.

3) INPUT DISTURBANCE CASE
Simulations are repeated for the case where an input
disturbance of udn = 0.01 sin( 2π

12.5n) is added. The tracking
performance is given in Fig.(13). The evolution of the
inverse optimal controller and decomposition parameters
are depictured in Fig.(14). The figures clearly show that
the proposed control method can successfully provide good
control and also can effectively deal with input disturbance.
Although there are small magnitude oscillations in the
response, the output signal successfully follows the reference
signal and the observed steady-state error is very small. It can
be clearly seen how the computed control input signal varies
in an oscillatory manner to deal with the disturbance added
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FIGURE 8. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d),
µ2 values (e) for Benchmark System I (nominal case).

to the system. The adaptive and model-based nature of the
proposed control method makes it possible to easily vary
the control input signal to minimize the error. Additionally,
Fig.(15) visualizes the simulation results for the trajectory
tracking error and stability acquired by the proposed method
for the benchmark system I under input disturbance.

4) PARAMETRIC UNCERTAINTY CASE
The coefficient of the term ‘‘0.1x1n ’’ in (87) is considered as
an uncertain parameter given as pnx1n where pn = 0.1(1 +

0.1sin(2π 1
25n)). The tracking control performance and the

change of the uncertain parameter are depictured in Fig.(16).
Inverse optimal controller with integrator parameters and
LSSVRNARMA−L2 decomposition parameters are illustrated

FIGURE 9. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System I (nominal case).

FIGURE 10. Tracking performance (a), Inverse optimal control signal (b),
and control signal correction term (c) for Benchmark System I
(measurement noise case).

in Fig(17). The figures display very good tracking results
with very small steady-state error. Parametric uncertainty
is introduced to the system, however with the proposed
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FIGURE 11. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d),
µ2 values (e) for Benchmark System I (measurement noise case).

control method the output of the benchmark system I
can successfully follow the reference signal with slight
oscillations. The steady-state error in the output is very small.
As can be clearly seen from these figures, the controller
can provide successful control despite parametric uncertainty.
The controller parameters optimize themselves to achieve
effective control.

Fig.(18) demonstrates the trajectory tracking error and
stability of benchmark system I when parametric uncertainty
is added to the system.

B. BENCHMARK SYSTEM II
1) NOMINAL CASE
The performance of the proposed method has also been tested
on a third-order continuously stirred tank reactor (CSTR)

FIGURE 12. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System I (measurement noise case).

system. Continuously stirred tank reactors (CSTRs) are
frequently utilized in continuous hydrogen production [102].
While chemicals flow into the reactor to undergo a reaction,
there is also an exit stream to extract chemicals from the
reactor to keep the volume constant. So, the main advantage
of CSTRs is that they provide continuous production
without filling and emptying the reactor repeatedly [103].
The dynamical equations of the CSTR system are highly
nonlinear and non-affine. Since the control of the CSTR
system is a difficult task, it has frequently been employed
as a benchmark problem to examine the performances of
proposed control methods [101], [104]. The differential
equations describing the system are given as [101], [103],
[104]:

ẋ1(t) = 1 − x1(t) − Da1x1(t) + Da2x22 (t)

ẋ2(t) = −x2(t) + Da1x1(t) − Da2x22 (t)

− Da3d2(t)x22 (t) + u(t)

ẋ3(t) = −x3(t) + Da3d2(t)x22 (t) (90)

where Da1 = 3, Da2 = 0.5, Da3 = 1, d2nominal(t) = 1.
The controlled input of the system is u(t) and x3(t) is the
output of the process. This model of the CSTR system is
a nonlinear affine system, in order to test the superiority
of our proposed method for nonlinear non-affine systems,
the system input signal term (u(t)) in equation (90) has
been modified as sin( 2π4 u

2(t)). Thus, a non-affine system has
been obtained to examine the performance of the introduced
control architecture. We have used 4th order Runge-Kutta
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FIGURE 13. Tracking performance(a), Inverse optimal control signal (b),
and control signal correction term (c), input disturbance (d) for
Benchmark System I (input disturbance case).

method with sampling time Ts = 0.05 sec. to discretize the
systemmodel [100]. It must be noted that continuous systems
can be discretized in accordance with the Nyquist sampling
theorem and consequently discrete-time controllers can be
utilized.

Initial parameters for the controller are set asP(0) = 0.58,
R(0) = 0.04, KI (0) = 0.01. In the simulation results given
below, the results for the nominal case, and for the cases
where measurement noise, input disturbance and parametric
uncertainty added to the system are depicted. For each case,
the tracking results for the output, the computed control
input, control signal correction term, the inverse controller
and integrator parameters, LSSVRNARMA−L2 decomposition
parameters and trajectory tracking error are illustrated.

Additionally, the Lyapunov function and its derivative are
also provided to prove the stability of the proposed method.

In Fig.(19) and Fig(20) the trajectory tracking results for
the nominal case with no noise, disturbance or parametric
uncertainty are given. As can be observed from the figures,
the proposed method provides good tracking performance
with fast response and very small steady-state error. The

FIGURE 14. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d),
µ2 values (e) for Benchmark System I (input disturbance case).

output of the system displays very short transients and
quickly converges to the reference signal. It follows the
reference signal with a negligible amount of steady-state
error after converging. The figures also show how the
controller parameters adjust themselves adaptively to achieve
good tracking performance with minimum error. Fig.(21)
illustrates that trajectory tracking error is minimized, also
the Lyapunov function is always positive and its derivative
is always negative, which justifies that the proposed method
guarantees the stability of the CSTR system.

2) MEASUREMENT NOISE CASE
The performance of the proposed method has been tested
when 30 dB measurement noise is added to the output
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FIGURE 15. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System I (input disturbance case).

of the benchmark system II (CSTR). Fig.(22) represents
the tracking performance of the proposed method, Fig.(23)
shows the parameters of inverse optimal controller with
integrator and parameters obtained for the LSSVRNARMA−L2
system identification for the case with measurement noise.
The measurement noise added to the system naturally
results in oscillations in the system output. However, despite
oscillations, it can be observed that the output of the system
successfully follows the reference signal. The proposed
adaptive control method results in a similar oscillatory control
input. To suppress noise, the control input signal adapts
itself continuously yielding a good tracking performance
with small transient effects, fast convergence and very small
steady-state error. The simulation results justify that the
proposed method yields satisfactory results when there is
measurement noise in the system.

Fig.(24) depicts the signs of the Lyapunov function and
its derivative assuring stability and justifies the minimization
of the trajectory tracking error for the CSTR system under
measurement noise.

3) INPUT DISTURBANCE CASE
In order to evaluate the performance of the proposed method
under input disturbance for the CSTR system, an input dis-
turbance of d(t) = 0.01 sin( 2π

12.5 t) is implemented. Fig.(25)
clearly shows the success of the tracking performance for the
proposed method under disturbance. The system output suc-
cessfully tracks the reference signal with short transients and
nearly no steady-state error. The sinusoidal input disturbance

FIGURE 16. Tracking performance(a), Inverse optimal control signal(b),
control signal correction term (c), and uncertain system parameter (d) for
Benchmark System I (parametric uncertainty case).

applied to the system inevitably causes oscillations with small
magnitudes. However, the adaptive nature of the proposed
control method can effectively deal with the disturbance
as observed with the oscillatory and changing behavior
of the control input signal which is computed. Fig.(26)
illustrates the adaptation of inverse optimal controller with
integrator and LSSVRNARMA−L2 systemmodel decomposition
parameters. The stability and the tracking error results are
given in Fig.(27) for the case when input disturbance is added
to the CSTR system.

4) PARAMETRIC UNCERTAINTY CASE
The performance of the proposed control algorithm has also
been assessed under the presence of parametric uncertainty in
the system. For this purpose, it has been assumed that there
is a sinusoidal uncertainty in parameter d2(t) which varies
as d2(t) = (1 + 0.1 sin 0.08π t). The results obtained for
the CSTR system verify that the proposed method is very
successful at suppressing parametric uncertainties. Tracking
performance is illustrated in Fig.(28). The adaptation of the
parameters of the inverse optimal controller with integrator
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FIGURE 17. Adaptive P (a), R (b), and KI (c) parameters, Adaptive µ1 (d),
and µ2 (e) parameters for Benchmark System I (parametric uncertainty
case).

and LSSVRNARMA−L2 system identification parameters can
be observed at Fig.(29). The figures display that the system
output converges to the reference signal fast and tracks it
very successfully. The transient effects vanish quickly and
the steady-state error is very small. The adaptation of the
controller parameters and the control input signal yields good
control performance despite parametric uncertainty in the
system. Fig.(30) provides the trajectory tracking error. It also
depicts the Lyapunov function and its derivative to prove the
stability of the proposed control approach for the case when
parametric uncertainty is introduced to the CSTR system.

The simulation results justify that the proposed control
method is successful in providing good trajectory control

FIGURE 18. Trajectory Tracking Error(a), Lyapunov Function (b), and its
derivative (c) for Benchmark System I (parametric uncertainty case).

FIGURE 19. Tracking performance (a), Inverse optimal control signal (b),
and control signal correction term (c) for Benchmark System II (CSTR)
(nominal case).

with fast vanishing and small magnitude transient effects
and small steady-state errors. The robustness of the method
is also verified since the method assures good performance
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FIGURE 20. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d), µ2
values (e) for Benchmark System II (CSTR) (nominal case).

when measurement noise, input disturbance or parametric
uncertainty are imposed on the system. The main reason
for the good performance attained by the proposed control
method is that it is a model-based and totally adaptive
approach. At each sampling time, the dynamics of the system
to be controlled are identified. The controller parameters are
optimized using the Levenberg-Marquardt algorithm. The
information of the obtained system model and the optimized
controller parameters are utilized in computing the inverse
optimal control law. Identification and control are carried out
concurrently at each time sample. Hence, the control law
can instantly take an action for any change in the reference
trajectory, system dynamics and for the noise, disturbance or
uncertainty effect that are observed. Consequently, the effects

FIGURE 21. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System II (CSTR) (nominal case).

FIGURE 22. Tracking performance (a), Inverse optimal control signal (b),
and control signal correction term (c) for Benchmark System II (CSTR)
(measurement noise case).

of these factors on the control performance are diminished
before they build up. Therefore, we can conclude that the
adaptive nature and the optimization property of the proposed
control method assure good control performance.
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FIGURE 23. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d),
µ2 values (e) for Benchmark System II (CSTR) (measurement noise case).

VII. COMPARISON OF THE PROPOSED CONTROL
APPROACH WITH PID CONTROLLER
We have compared the performance of the adaptive LSSVR
based inverse optimal controller with integrator for nonlinear
non-affine systems proposed in this paper with a conventional
PID controller. As in the previous section staircase type
of reference input signal has been used to observe the
transient effects and steady-state error clearly. A detailed
comparison has been carried out for both of the benchmark
systems and robustness analysis has also been performed.
For a meaningful comparison, the integral gain that has
been computed by the proposed method has been utilized.
The proportional and derivative gains of the PID controller
have been determined in accordance with the Zieglers-
Nichols method, utilizing the value of the integral gain [105].

FIGURE 24. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System II (CSTR) (measurement noise case).

We have carried out a detailed comparison for both of the
benchmark systems, for the nominal case and for the cases
when measurement noise, input disturbance and parametric
uncertainty are added to the systems.

ISE =

∫
e2(t)dt (91)

To verify the effectiveness of the proposed approach with
respect to PID, the ISE index is computed for each simulated
case and for both benchmark problems, all of the results are
tabulated.

A. BENCHMARK SYSTEM I
For the benchmark system I given by (89), performance
results are tabulated in Table 1. In the table, the ISE
performance index is given for all the simulated cases, namely
for the nominal case and for the cases with measurement
noise, input disturbance and parametric uncertainty. It can
be observed from the table that the proposed control method
yields better tracking performance than PID controller for
all the cases. The gain parameters of the PID controller for
all the cases are chosen as Kp = 0.01, Ki = 0.0095,
Kd = 0.026. The integral gain is set as the same value
that was utilized in the integral part of the proposed control
method. The proportional and derivative gains are determined
in accordance with the integral gain using Ziegler-Nichols
table [105]. It is clearly seen that results obtained by the
proposed method are far better in cases with noise, input
disturbance and parametric uncertainty.
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TABLE 1. Comparison of proposed control method and PID controller with respect to ISE performance index(System in (82)).

FIGURE 25. Tracking performance (a), Inverse optimal control signal (b),
and control signal correction term (c), input disturbance (d) for
Benchmark System II (CSTR) (input disturbance case).

1) NOMINAL CASE
The trajectory tracking result obtained by the PID controller
for benchmark system I is given In Fig(31) for the nominal
case. The tracking performance can be seen in Fig. 31(a) and
the control signal generated by the PID controller is depicted
in Fig 31(b).

2) MEASUREMENT NOISE CASE
Fig. 32(a) illustrates the trajectory tracking performance
obtained by the PID controller for the case when measure-
ment noise is applied. Fig. 32(b) shows the control input
signal computed by the PID controller. When we compare
Fig.(32) with Fig. (10) it is clearly seen that the performance
of the proposed method is better in dealing with measurement
noise and the PID control signal fails to overcome the effects
of the added noise.

FIGURE 26. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d),
µ2 values (e) for Benchmark System II (CSTR) (input disturbance case).

3) INPUT DISTURBANCE CASE
In Fig.(33), the system output is given together with the
control signal for the udn = 0.01 sin( 2π

12.5n) input disturbance
case when the PID controller is applied. When Fig.(33) and
Fig. (13) are compared, it is clearly seen that the proposed
method yields a far better performance than that obtained by
the PID controller.
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FIGURE 27. Trajectory Tracking error (a), Lyapunov Function (b), and its
derivative (c), for Benchmark System II (CSTR) (input disturbance case).

FIGURE 28. Tracking performance(a), Inverse optimal control signal (b),
control signal correction term (c), and Uncertain system parameter (d) for
Benchmark System II (CSTR) (parametric uncertainty case).

4) PARAMETRIC UNCERTAINTY CASE
Fig 34(a) depicts the trajectory tracking performance and
Fig 34(b) graphs the control input signal computed by the

FIGURE 29. Adaptive P (a), R (b), and KI (c) parameters, µ1 values (d), µ2
values (e) for Benchmark System II (CSTR) (parametric uncertainty case).

PID controller when a parametric uncertainty of pn =

0.1(1+0.1sin(2π 1
25n)) is applied.When figures (16) and (34)

are compared, it is clearly seen that the proposed control
method can successfully provide good tracking performance
compared to PID controller and effectively deals with
parametric uncertainty while PID totally fails.

B. BENCHMARK SYSTEM II
The ISE performance index values computed for the system
given by (90) for all simulated cases are listed in Table 2. The
table demonstrates the superiority of the proposed control
method in comparison to the conventional PID controller for
the nominal case and for the cases when measurement noise,
input disturbance and parametric uncertainty are added to
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FIGURE 30. Trajectory Tracking Error (a), Lyapunov Function (b), and its
derivative (c) for Benchmark System II (CSTR) (parametric uncertainty
case).

FIGURE 31. Tracking performance (a), PID control signal (b) for
Benchmark System I (nominal case).

the system. The gain parameters of PID for all the cases
are Kp = 0.004, Ki = 0.041, Kd = 0.060. As for the
benchmark system I, the integral gain is selected the same as
the value used for the proposed controller, the proportional
and derivative gains are determined in accordance with the
integral gain using Ziegler-Nichols design criteria.

1) NOMINAL CASE
Fig.(35) illustrates the trajectory tracking performance and
the control input signal obtained by the PID controller
for benchmark system II. When figures (19) and (35) are

FIGURE 32. Tracking performance (a), PID control signal (b) for
Benchmark System I (measurement noise case).

FIGURE 33. Tracking performance (a), PID control signal (b) for
Benchmark System I (input disturbance case).

FIGURE 34. Tracking performance (a), PID control signal (b)) for
Benchmark System I (parametric uncertainty case).

compared, it is easily seen that the proposed control method-
ology can provide successful tracking and the transient effects
are eliminated compared to PID control.
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TABLE 2. Comparison of proposed control method and PID controller with respect to ISE performance index(CSTR System in (83)).

FIGURE 35. Tracking performance (a), PID control signal (b), and control
signal correction term (c) for Benchmark System II (CSTR) (nominal case).

FIGURE 36. Tracking performance(a), PID control signal (b) for
Benchmark System II (CSTR) (measurement noise case).

2) MEASUREMENT NOISE CASE
Fig.(36) shows the trajectory tracking results obtained by
the PID controller when a 30 dB measurement noise is
applied to benchmark system II. When figures (22) and (36)
are compared, it can be observed that the proposed control
method is more successful compared to PID control. The
control input computed by the PID controller fails to surpass
measurement noise and transient effects.

3) INPUT DISTURBANCE CASE
In Fig.(37), tracking output and control signal obtained for
the case when input disturbance of d(t) = 0.01 sin( 2π

12.5 t) is

FIGURE 37. Tracking performance (a), PID control signal (b) for
inputBenchmark System II (CSTR) (disturbance case).

FIGURE 38. Tracking performance (a), PID control signal (b) for
Benchmark System II (CSTR) (parametric uncertainty case).

applied to the benchmark system II is given for PID control.
The results illustrated in figures (25) and (37) justify that in
comparison to the PID control, the proposed control method
can successfully provide good trajectory control and also it
overcomes the effects of the disturbance.

4) PARAMETRIC UNCERTAINTY CASE
Fig.(38) illustrates the output trajectory and the control input
attained by PID control when parametric uncertainty is added
to the system. The comparison of figures (28) and (38)
verifies that the obtained results by the proposed method are
superior to those obtained by the PID controller.
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VIII. CONCLUSION
In technical literature, the work on inverse optimal control

mainly concentrates on application of the method on affine
systems, however, the inverse optimal control method has
not been implemented on non-affine systems yet. In this
paper, a novel inverse optimal control approach is proposed
for nonlinear and non-affine systems based on NARMA-L2
modelling and online LSSVR. First, the NARX model is
obtained for non-affine systems using online LSSVR, then
this model is decomposed into NARMA-L2 submodels.
This procedure provides a conversion from non-affine to
affine system model. Next, the computed NARMA-L2
submodels are used in the computation of the inverse optimal
control law. Another contribution of the proposed method
is that the parameters of the inverse optimal controller with
integrator are all computed in an online manner using the
Levenberg-Marquardt algorithm. Overall, the main novelties
and contributions of this proposed work can be listed
as, the application of inverse optimal control method to
nonlinear non-affine systems by conversion from non-affine
to affine system model using NARMA-L2 modeling method,
utilization of online LSSVR in inverse optimal controller
design and adaptive optimization of controller parameters
of the inverse optimal controller in an online manner using
Levenberg-Marquardt algorithm.

The resulting control architecture is an adaptive control
system where the system model is estimated and all
parameters are optimized online at every sampling time. The
extensive simulations performed on benchmark problems to
verify the success of the proposed control methodology.

For future studies, we firstly aim to extend the application
of the inverse optimal control method to nonlinear non-affine
systems by using different machine-learning based methods.
Reinforcement based learning methods are good candidates
for this goal. Also, it is within our plans to design novel
adaptive inverse optimal controller architectures that do not
require transformation parameters that enable the transition
from NARX model to NARMA-L2 model. Furthermore,
model predictive control concepts can be integrated with
inverse optimal control methodology using machine-learning
based methods. Another possible research direction is the
implementation of inverse optimal control method for multi-
input multi-output (MIMO) nonlinear non-affine systems.
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