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ABSTRACT This paper presents a 2.4/5 GHz dual-band low-noise and highly linear receiver (RX) for
IEEE 802.11a/b/g/n/ac/ax applications. The RX employs an RF front-end architecture composing a balun-
low-noise transconductance amplifier, current-mode passive mixers, and transimpedance amplifiers (TIAs)
to achieve compactness, low noise, and high linearity. A novel power-efficient feedforward operational
amplifier architecture was also implemented in the TIA design to achieve the target RX error vector mag-
nitude (EVM) of less than −35 dB with modulation and coding scheme 11 and 1024 quadrature amplitude
modulation. Fabricated in a 22-nm SOI CMOS process, the RX achieved noise figures of 2.1/4.2 dB, in-band
input-referred third-order intercept points of−11.8/−7.5 dBm, EVMs of−46.4/−44.6 dB for the 2.4/5 GHz
bands, respectively. It drew a bias current of 21 mA from a nominal supply voltage of 0.8 V. The active die
area was 0.65 mm2.

INDEX TERMS Dual-band, error vector magnitude, feedforward operational amplifier, power-efficient,
receiver, transimpedance amplifier, WiFi 6, WLAN, 802.11ax.

I. INTRODUCTION
The state-of-the-art technologies of the fourth industrial rev-
olution, such as the Internet of Things, smart factories,
virtual/augmented reality, remote offices, and cloud com-
puting require smart devices with very high data through-
put and low latency for wireless connection. Accordingly,
WiFi standards are continuously developed from 802.11ac to
802.11ax and 802.11be to satisfy these demands and ensure
high performance. A receiver (RX) error vector magnitude
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(EVM) of −35 dB or less and channel bandwidth (CHBW)
of 160 MHz must be ensured for modulation and coding
scheme 11 (MCS11) 1024 quadrature amplitude modulation
(QAM), to support 802.11ax [1], [2], [3], [4], [5]. An addi-
tional margin is required when considering the multipath
fading environment. Therefore, the primary factors affecting
the RX performance, such as circuit thermal noise, linearity,
in-phase/quadrature (I /Q) gain and phase errors (i.e. image
rejection ratio), local oscillator (LO) integrated phase noise,
and in-band spurs must be significantly enhanced compared
with those in 802.11ac [1], [2], [3], [4], [5]. Furthermore,
to meet the target EVM floor requirement of MCS11, each
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FIGURE 1. Block diagram and Bode plot of conventional two-stage FF
OPAMP.

circuit block impairment contributing to the EVM should be
15 dB lower than the target EVM.

The current-driven passive mixer architecture has recently
been used for high-performance receiving systems owing to
its highly linear operation [1], [2], [3], [4], [5], [6], [7]. In
this architecture, the overall performance (e.g., noise, lin-
earity) of the RX signal path largely depends on the stage
after the mixer, i.e., a transimpedance amplifier (TIA). Par-
ticularly, the TIA requires a high-performance operational
amplifier (OPAMP) with a large voltage gain at the passband
frequency range and large unity-gain frequency to support
the CHBW of 160 MHz. In addition, the OPAMP should
employ a power-efficient topology to reduce the RX power
consumption.

This study proposes a 2.4/5 GHz dual-band low-noise and
highly linear RX with a novel power-efficient feedforward
(FF) OPAMP for IEEE 802.11a/b/g/n/ac/ax applications. The
proposed WiFi RX employs an RF front-end architecture
comprising a balun-low-noise transconductance amplifier
(LNTA), current-mode passive mixers, and TIAs to achieve
a small die size, low noise, and high linearity. This RF front-
end architecture can achieve high linearity because the low
input impedance of the TIA limits voltage swings at the
mixer input and output. In addition, a new power-efficient
FF OPAMP architecture is proposed and adopted in the TIA
design to achieve low noise and high linearity for the RX
chain. Section II describes the proposed power-efficient FF
OPAMP architecture. Section III elaborates on the circuit
implementation of the dual-band WiFi-6 RX. The experi-
mental results are discussed in Section IV. The concluding
remarks are presented in Section V.

II. NEW POWER-EFFICIENT FF OPAMP TOPOLOGY FOR
THE HIGH-PERFORMANCE TIA
The FF OPAMP architecture reported in [8], [9], [10], and
[11] is widely used for high-speed operation owing to its wide
bandwidth and large voltage gain. The FF OPAMP phase can
be compensated by a left-half-plane zero generated by the FF
path without theMiller capacitance. Fig. 1 shows a simplified
signal-path block diagram of the conventional FF OPAMP
[8]. The FF and two-stage amplifier paths are observed on the
–20 and –40 dB/dec lines at the Bode plot, respectively; con-
sequently, the FF and the two-stage amplifier paths determine
the characteristics of high and low frequencies, respectively.
Fig. 2 shows the block diagrams of the conventional
two-stage FF OPAMP topologies introduced in the previous

FIGURE 2. Block diagrams of conventional two-stage FF OPAMP
topologies: (a) basic FF OPAMP topology (Version 1) [8] (b) modified FF
OPAMP topology with ac coupling capacitors and current-reused gmFF
(Version 2) [9] (c) modified FF OPAMP topology with combined stage
(Version 3) [11].

state-of-the-art. The basic two-stage FF OPAMP topology
shown in Fig. 2(a) has the following transfer function:

H (s)

∼= −
(AV1AV2 + AVFF )(1 + AVFF s

/
(AV1AV2 + AVFF )ωp1)

(1 + s
/
ωp1)(1 + s

/
ωp2)

,

(1)

where AV1 = gm1Ro1, AV2 = gm2(Ro2||RoFF ), and
AVFF = gmFF (Ro2||RoFF ). Ro1,2,FF and Co1,2,FF are the total
resistance and capacitance at the output nodes of each stage,
respectively. The dc gain, poles, and zero of the basic two-
stage FF OPAMP topology (Version 1) are given by (2)–(5).

Adc,Ver1 = −(AV1AV2 + AVFF ) ≈ −gm1Ro1gm2(Ro2||RoFF )

(2)
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FIGURE 3. Proposed power-efficient FF OPAMP (Version 4): (a) block diagram (b) simplified schematic.

FIGURE 4. Simulated frequency response of the proposed FF OPAMP (a) magnitude (b) phase.

ωp1,Ver1 =
1

Ro1Co1
(3)

ωp2,Ver1 =
1

(Ro2||RoFF )(Co2 + CoFF )
(4)

ωz,Ver1 = ωp1,Ver1

(
1 +

gm1Ro1gm2
gmFF

)
. (5)

According to (2), the dc gain of the basic FF OPAMP is
reduced owing to the parallel connection of Ro2 and RoFF .
The dc gain is significantly reduced when the RoFF value is
comparable to or lower than Ro2. According to (5), a large
gmFF is necessary to move the ωz,Ver1 below unity-gain
frequency (ωt ). Thus, realizing the phase compensation for
sufficient phase margin requires a large current consumption.
Accordingly, modified FF OPAMP topologies were intro-
duced to address the two issues of the dc gain degradation and
large current consumption of the FF stage [9], [10], [11]. The
modified two-stage FF OPAMP topology employing ac cou-
pling capacitors and current-reused gmFF (Version 2), shown
in Fig. 2(b), was introduced in [9]. The ac coupling capacitor,
CAC2, decouples the parallel connection of Ro2 and RoFF at
dc. A current-reused CMOS (PMOS/NMOS) FF stage was
also adopted to improve the power efficiency of the FF stage.

An ac coupling capacitor, CAC1, was used to bias PMOS and
NMOS transistors separately. The dc gain, poles, and zero of
the modified two-stage FF OPAMP topology (Version 2) are
given by (6)–(9).

Adc,Ver2 = −(AV1AV2 + AVFF ) ≈ −gm1Ro1gm2Ro2 (6)

ωp1,Ver2 =
1

Ro1Co1
(7)

ωp2,Ver2 ≈
1

(Ro2||RoFF )(Co2 + CoFF )
(8)

ωz,Ver2 = ωp1,Ver2

(
1 +

gm1Ro1gm2
gmFF

)
. (9)

The dc gain is improved, as shown in (6). The effective
value of gmFF of the current-reused CMOS FF stage is
increased. That is, the current consumption required for the
same gmFF with the basic FF OPAMP topology (Version 1) is
reduced. A modified FF OPAMP topology with a combined
stage (Version 3), shown in Fig. 2(c), was also introduced
to address the two issues [10], [11]. The modified topology
of Version 3 combines a high-frequency FF path with the
second stage of the low-frequency two-stage amplifier path.
In this configuration, the load of the second stage of the
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FIGURE 5. Block diagram of the proposed dual-band WiFi-6 receiver.

low-frequency two-stage amplifier acts as the Gm-stage of
the high-frequency FF path, resulting in several advantages.
First, the FF stage does not reduce the dc gain. Second,
the combined stage improves power efficiency. In addition,
the Version 3 topology effectively reduces the occurrence of
internal poles and zeros caused by parasitic elements, limiting
the bandwidth. The dc gain, poles, and zero of the modi-
fied two-stage FF OPAMP topology (Version 3) are given
by (10)–(13).

Adc,Ver3 = −(AV1AV2 + AVFF ) ≈ −gm1Ro1gm2Ro2 (10)

ωp1,Ver3 =
1

Ro1Co1
(11)

ωp2,Ver3 ≈
1

Ro2Co2
(12)

ωz,Ver3 = ωp1,Ver3

(
1 +

gm1Ro1gm2
gmFF

)
. (13)

This topology also improves dc gain, as shown in (10).
According to (12), the total resistance increases, and the total
capacitance decreases in the output node. Thus, ωp2,Ver3 is
expected to be similar to ωp2,Ver1 and ωp2,Ver2.
A new FF OPAMP topology, shown in Fig. 3, is proposed.

It comprises two high-frequency FF paths to further enhance
power efficiency. The proposed FFOPAMP combines the key
ideas of the previous modified FF OPAMP topologies. The
additional high-frequency FF path with ac coupling capaci-
tors CAC1 and CAC2 is employed in the modified FF OPAMP
topology (Version 3) to further increase the effective gm of the
FF path, as shown in Fig. 3(a). CAC2 isolates the effect of the
second FF path from the main low-frequency two-stage path
at a low frequency; this prevents the gain reduction of the
two-stage path caused by the second FF path. CAC2 gradually
shortens the circuit with the increased operating frequency.
The dc gain, poles, and zero of the proposed two-stage FF
OPAMP topology (Version 4) are given by (14)–(17).

Adc,Ver4 = −(AV1AV2 + AVFF ) ≈ −gm1Ro1gm2Ro2 (14)

ωp1,Ver4 =
1

Ro1Co1
(15)

ωp2,Ver4 ≈
1

(Ro2||RoFF )(Co2 + CoFF )
(16)

ωz,Ver4 = ωp1,Ver4

(
1 +

gm1Ro1gm2
(gmFF1 + gmFF2)

)
. (17)

According to (17), the effective gmFF increases to gmFF1 +

gmFF2. Fig. 3(b) shows a schematic of the proposed power-
efficient FF OPAMP topology (Version 4). A current-reuse
inverter-type amplifier was used to realize the Gm-stage of
the second FF path (gmFF2) to improve the current efficiency.
C3,4 functions as CAC2 to prevent dc gain reduction. The
proposed FF OPAMP topology presents a larger effective gm
for the FF path than the modified FF OPAMP topologies
(Versions 2 and 3) for the same current consumption, demon-
strating the improvement in the phase margin. Generally, the
power required to obtain a similar phase margin, dc gain,
and high-frequency characteristics is reduced. The first and
second stages used local and global common-mode feedback
(CMFB) loops, respectively, to maintain the output common-
mode voltage. The second FF stage also used a global CMFB
loop. Fig. 4 shows the simulated frequency response of the
proposed FF OPAMP. The simulated dc gain was 71.8 dB.
The unity-gain frequency with a 0.1 pF loading effect of the
following stage was 4.86 GHz, with an 87.5◦ phase mar-
gin. The voltage gains were 58.8, 51.9, 44.6, and 37 dB at
10, 20, 40, and 80 MHz, respectively. Therefore, the pro-
posed FF OPAMP has sufficient voltage gain at the operating
frequencies.

III. DUAL-BAND WIFI-6 RECEIVER
This section describes a circuit implementation of the
2.4/5 GHz dual-band low-noise and highly linear RX with
a power-efficient FF OPAMP for IEEE 802.11a/b/g/n/ac/ax
applications. Fig. 5 shows a simplified block diagram
of the proposed RX. It comprises the 2.4/5 GHz balun-
LNTAs, I /Q double-balanced current-mode passive mix-
ers with 25% duty-cycle I /Q LO signals, I /Q TIAs, I /Q
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FIGURE 6. Schematic of the Q-boosted resistive-feedback balun-LNTA.

fourth-order inverse Chebyshev active-RC low-pass filters
(LPFs), and I /Q OPAMP-based programmable gain ampli-
fiers (PGAs). COB suppresses the voltage swing of the out-
of-band (OB) interferer on the RF and baseband sides of
the mixer-switching transistors to improve the overall RX
linearity [12], [13].

A. BALUN-LNTA
The 2.4/5 GHz balun-LNTAs employ a Q-boosted resis-
tive feedback low-noise amplifier (RFLNA) topology with
a series RLC input-matching network, as shown in Fig. 6
[14]. A 1:1 transformer, TF1, converts a single-ended voltage
signal, VOUT ,LNA, into differential current signals, IOUTP and
IOUTN . These current signals flowed into the double-balanced
current-mode passive mixers with I /Q TIAs. The RF provides
the real part of the balun-LNTA input impedance. The balun-
LNTA uses LG to exploit the gain-boosting characteristics of
an inductor-degenerated common-source LNA (L-CSLNA).
The left subfigure of Fig. 6(b) shows a simplified diagram
of the input-matching network of the balun-LNTA. The input
impedance of the balun-LNTA RIN_LNTA is expressed as

RIN_LNTA =
RF + RoLNTA

(1 + gm1RoLNTA)
, (18)

where RoLNTA is QLωLP// gm2ro2ro1 // RIN_MIXER at the
operating frequency. QL and RIN_MIXER represent the quality
factor of LP and input impedance of the mixer, respectively.
The right subfigure of Fig. 6(b) shows the equivalent input-
matching network, converted through parallel RC-to-series
RC conversion with a narrow frequency band of inter-
est. Thus, the balun-LNTA performs input power matching
with a series RLC network. The overall gm of the balun-

LNTA is effectively improved by
√
1 + Q2

SER, where QSER
is ωoLG/RSER for an operational frequency of ωo [14], [15].

FIGURE 7. Schematic of the current-mode passive mixer with TIA.

FIGURE 8. Schematic of the fifth-order Inverse Chebyshev LPF.

CSER and RSER are expressed as follows:

CSER = Cgs

(
1 +

1

Q2
SER

)
, (19)

RSER =
RF + RoLNTA

(1 + gm1RoLNTA)
(
1 + Q2

SER

) . (20)

When the LG andCSER values are set to resonate at the operat-
ing band, the input impedance of the balun-LNTA is obtained
as RSER, which must be equal to the source resistance, RS .
Therefore, the overall voltage gain of the RFLNA from VS to
VOUT ,LNA is given as

AV ,RFLNA = −

√
1 + Q2

SER

2

(
gm1 −

1
RF

)
(RoLNTA||RF ) .

(21)

When gm1RF ≫ 1, and RF ≫ RoLNTA, AV ,RFLNA can be
approximated as

AV ,RFLNA ≈ −

√
1 + Q2

SER

2
gm1RoLNTA. (22)

The proposed RFLNA obtains a large voltage gain, similar
to that of the L-CSLNA, while simultaneously removing the
large on-chip spiral inductors at the source of M1. A resistor
bank for RF and Gm-cells comprising main and cascode
transistors are digitally controlled for LNA gain control. In
addition, CL can be digitally tuned to adjust the center fre-
quency of the LC load according to the operating band
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FIGURE 9. Chip microphotograph.

FIGURE 10. Measured S11 and conversion gain.

FIGURE 11. Measured NF.

B. CURRENT-MODE PASSIVE MIXER WITH TIA
The required linearity is achieved using double-balanced
current-mode passive mixers with the TIA shown in Fig. 7
while maintaining the low impedances at the input and
output of the mixer. The passive mixer also improves the

FIGURE 12. Measured IB IIP3.

FIGURE 13. Measured IF frequency response versus filter bandwidth.

flicker noise performance owing to the absence of dc current.
The ac-coupling capacitors (CB1 and CB2) in front of the
mixer-switching transistors perform high-pass filtering and
reject the second-order intermodulation distortions gener-
ated by the preceding balun-LNTA. The I /Q mixers are
driven by 25% duty-cycle quadrature LO signals provided
by the divider and inverter-type LO buffers. The subsequent
OPAMP-based TIA performs current-to-voltage conversion
and eliminates the OB blockers and interfering signals. The
OPAMP is the most important block because it determines
the overall TIA performance, including the noise, linearity,
and input impedance levels. Fig. 3 shows the proposed FF
OPAMP with two high-frequency FF paths, adopted for the
TIA to support an 80MHz CHBW and achieve high linearity.
The designed FF OPAMP can obtain a high voltage gain
(even at high frequencies) and high unity-gain frequency for
a given power consumption. As shown in Fig. 7, COB,DM
and COB,CM are used to eliminate the differential-mode and
common-mode OB interferers and blockers on the RF and
baseband sides of the mixer-switching transistors to improve
the overall RX linearity.

VOLUME 11, 2023 137269



S. Yun et al.: 2.4/5 GHz Dual-Band Low-Noise and Highly Linear Receiver

FIGURE 14. Measured EVMs and constellations: (a) 2.4 GHz band (MCS10 256QAM, CHBW = 40 MHz) (b) 5 GHz band (MCS11 1024QAM,
CHBW = 80 MHz).

C. BASEBAND ANALOG CIRCUITS
As shown in Fig. 8, an active-RC LPF with the preceding
TIA implements a fifth-order inverse Chebyshev LPF. It can
provide an adjacent channel rejection ratio (ACRR) of more
than 35 dB. The 3 dB filter bandwidth can be tuned to 10,
20, and 40 MHz based on the WiFi channel bandwidth.
A three-stage OPAMP-based PGA is used to provide a 42 dB
maximum voltage gain with a 60 dB dynamic range and 1 dB
gain step.

IV. EXPERIMENTAL RESULTS
The dual-band WiFi-6 RX was fabricated using 22-nm sili-
con on insulator complementary metal-oxide semiconductor
(SOI CMOS) technology. Fig. 9 shows a microphotograph of
the chip. The RX has an active die area of 0.65mm2 including
2.4/5 GHz LNTAs/RXMs and I /Q TIAs/LPFs/PGAs. The
2.4/5 GHz RX, excluding the LO circuits, drew a current of
21/20.5 mA from a nominal supply voltage of 0.8 V. The
current consumptions of the 2.4/5 GHz balun-LNTA, I /Q

TIAs, I /Q active-RC LPFs, and three-stage PGAs were 4/3.5,
3, 8, and 6 mA, respectively. A grounded 50-� coplanar
waveguide was applied on an assembled printed circuit board
to perform the measurements. The differential LO signals at
2fLO were supplied from the off-chip through a commercial
balun.

Fig. 10 shows the measured S11 and conversion gain of
the RX when the baseband analog circuits have a 0 dB gain
code. The implemented RX achieved a measured S11 of less
than –10 dB and a conversion gain of 42–45 dB. Fig. 11
showed the measured double side-band (DSB) NFs versus the
operating RF frequencies. The RX achieves minimum NFs
of 2.1/4.2 dB at the 2.4/5 GHz bands, respectively. The RX
in-band (IB) input-referred third-order intercept points (IIP3)
were also characterized by adjacent and alternate channels.
The two-tone test conditions of the IB IIP3 for 2.4 GHz
band and 20 MHz CHBW were f1 = fLO + 20 MHz, f2 =

fLO + 41 MHz, pf 1 = −60 dBm, and pf 2 = −44 dBm.
The two-tone test conditions of the IB IIP3 for the 5 GHz
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TABLE 1. Measured performance summaries and comparisons.

band and 80 MHz CHBW were f1 = fLO + 80 MHz, f2 =

fLO + 161 MHz, pf 1 = −57 dBm, and pf 2 = −41 dBm. The
two-tone test conditions are derived from the frequencies and
powers of the adjacent and alternate adjacent channels. The
obtained maximum IB IIP3s were –11.8/–7.5 dBm for the
2.4/5 GHz bands, respectively, as shown in Fig. 12. Fig. 13
shows the measured baseband frequency responses for dif-
ferent filter bandwidth modes. The proposed RX can support
three bandwidth modes of 10/20/40 MHz. Fig. 14 shows the
measured RX EVMs, received spectrums, and constellations
for the 2.4/5 GHz bands. MCS10 256QAM/40 MHz CHBW
and MCS11 1024QAM/80 MHz CHBW signals were used
for the 2.4/5 GHz bands, respectively. The measured RF input
power was −50 dBm for both bands. The obtained minimum
RX EVMs were –46.4/–44.6 dB for the 2.4/5 GHz bands,
respectively. The measured RX EVMs for the 2.4/5 GHz
bands were much less than the target EVM of –35 dB. Table 1
presents a comparison of the performance of the proposed
RX with those of other reported WiFi RXs. The implemented
RX obtained similar or better noise performance compared to
other WiFi RXs

V. CONCLUSION
A 2.4/5 GHz dual-band low-noise and highly linear RX
for IEEE 802.11a/b/g/n/ac/ax applications was designed and
implemented in a 22-nm SOI CMOS process. A new power-
efficient FF OPAMP architecture was proposed to achieve a
broadband, low-noise, and highly linear TIA. The proposed
RX obtained a maximum conversion gain of 85 dB with a
dynamic range of 120 dB, a gain step of 1 dB, and an ACRR
of more than 35 dB. It also achieved NFs of 2.1/4.2 dB
and IB IIP3s of −11.8/−7.5 dBm for the 2.4/5 GHz bands,
respectively.
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