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ABSTRACT Understanding what an AI system can and cannot do is necessary for end-users to use the
AI properly without being over- or under-reliant on it. Reliance calibration cues (RCCs) communicate an
AI’s capability to users, resulting in optimizing their reliance on it. Previous studies have typically focused
on continuously presenting RCCs, and although providing an excessive amount of RCCs is sometimes
problematic, limited consideration has been given to the question of how an AI can selectively provide
RCCs. This paper proposes vPred-RC, an algorithm in which an AI decides whether to provide an RCC and
which RCC to provide. It evaluates the influence of an RCC on user reliance with a cognitive model that
predicts whether a human will assign a task to an AI agent with or without an RCC. We tested vPred-RC in
a human-AI collaborative task called the collaborative CAPTCHA (CC) task. First, our reliance prediction
model was trained on a dataset of human task assignments for the CC task and found to achieve 83.5%
accuracy. We further evaluated vPred-RC’s dynamic RCC selection in a user study. As a result, the RCCs
selected by vPred-RC enabled participants to more accurately assign tasks to an AI when and only when the
AI succeeded compared with randomly selected ones, suggesting that vPred-RC can successfully calibrate
human reliance with a reduced number of RCCs. The selective presentation of RCCs has the potential to
enhance the efficiency of collaboration between humans and AIs with fewer communication costs.

INDEX TERMS Reliance calibration, reliance prediction, reliance calibration cue, trust calibration,
explainable AI, human-AI interaction, human-AI collaboration.

I. INTRODUCTION
Machine learning (ML) has been increasingly integrated
into artificial agents and has improved their performance in
complex tasks. However, the blackbox nature of ML models
makes it difficult for end-users to understand the behavior
of such agents [1], [2]. Particularly, a lack of understanding
about what agents can and cannot do leads users to over-
or under-rely on them [3], [4]. Over-reliance, in which a
human overestimates the capability of an AI agent, can
cause misuse and task failure [5]. Under-reliance is also
problematic because it results in disuse, increases human
workload, and degrades total collaboration performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

Previous studies attempted to adjust human reliance by
providing communication cues or information elements used
by humans to assess an AI’s capability [6], which we call
reliance calibration cues (RCCs). A challenge facing reliance
calibration with RCCs lies in the decision of whether to
provide an RCC. In typical previous studies, all available
RCCs are provided continuously. However, it has also been
revealed that giving an excessive amount of information on
an AI can have negative consequences [7], [8], [9]. There is
a trade-off between successful calibration and reducing the
communication cost, but it remains an open question of how
an AI can selectively provide RCCs.

This paper proposes the verbal Predictive Reliance Cal-
ibrator (vPred-RC), an algorithm for selectively providing
RCCs (Fig. 1). The main idea of vPred-RC is that it selects
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FIGURE 1. Reliance calibration cues prevent human over/under-reliance on AI systems, but it can be problematic if the AI provides cues too
often. verbal Predictive Reliance Calibrator (vPred-RC) enables AI system to selectively provide trust calibration cues. In vPred-RC, reliance
model predicts probability that human will assign current task to AI. By considering both cases with and without cue provision, vPred-RC
evaluates how much cue will contribute to reliance calibration and decides whether to provide it.

whether to provide an RCC to avoid a wide gap between
the human reliance rate and the AI’s success probability.
Here, the reliance rate is the probability that a human will
assign a current task to the AI system. With a reliance model,
which simulates user cognition of assigning a task to an
AI or themselves, vPred-RC predicts reliance rates in both
cases where an RCC is provided or not. By comparing the
predicted reliance rates with the success probability (actual
reliability), vPred-RC evaluates the impact of an RCC for
reliance calibration. The reliance model is expected to enable
an AI to provide information to users with an awareness of
their potential needs for proper use of the AI.

This paper reports experiments for evaluating the reliance
model and vPred-RC. First, to train the reliance model,
we built a dataset of human decisions in a human-AI
collaborative task in which RCCs were randomly provided.
As a result of training, we found that the reliance model
can predict human decisions with 83.5% accuracy. In the
evaluation of vPred-RC, we focused on crowdworkers’
decision accuracy, or how many times the workers assigned
tasks that an AI could solve to the AI and did ones that the AI
could not by themselves. The results show that the workers’
accuracywas better with vPred-RC’s selective RCCs than that
of workers whose RCCs were randomly provided, suggesting
that vPred-RC enables an AI to properly decide whether to
provide RCCs by predicting and comparing reliance with and
without an RCC.

The content of this paper is based on our previously
published proceedings paper [10], in which we proposed
Pred-RC. A main extension of vPred-RC is that it handles
verbal cues as RCCs toward interactive human-robot col-
laboration, whereas Pred-RC considers a situation in which
an AI system displays an indicator of its confidence rates
as RCCs. In addition, this paper presents a more general
formalization of the problem for vPred-RC to handle multiple
RCC candidates. We newly conducted an experiment in
a verbal and multiple-RCC setting, and the results show
that vPred-RC can enable an AI system to properly decide
whether to present an RCC and which RCC to present.

The remainder of this paper is structured as follows.
Section II gives the background and reviews related work.
Section III formalizes the problem of selectively providing
RCCs and proposes vPred-RC. Section IV describes the
preparation of a dataset for training the reliance model and
reports an analysis of training results. Section V reports an
evaluation of vPred-RC with the reliance model trained in
section IV. Section VI provides discussions and limitations
following the results of the evaluation. Section VII concludes
this paper.

II. BACKGROUND
A. TRUST/RELIANCE CALIBRATION
Reliance is a concept relevant to trust, and it is sometimes
studied inclusively. Trust is attitudinal and a psychological
construct, while reliance focuses on the behaviors of humans,
which is directly observable and thus an objective mea-
sure [11]. Although the main focus of this paper is reliance,
this section reviews both trust and reliance calibration to
highlight our research because of their close relevance.

There are various approaches to achieving trust/reliance
calibration. Chen et al. focused on influencing human
reliance by changing an agent’s action. Their trust-POMDP is
a computational model for deciding an action with awareness
of human trust [12]. This paper considers the situation of
calibrating reliance by explicitly communicating an AI’s
capability through RCCs. Previous studies have mainly
focused on providing RCCs continuously [13], [14]. McGuirl
and Sarter compared the effect of presenting dynamic system
confidence with overall reliability only and found that the
former can improve trust calibration [15].

Some studies revealed that providing an excessive amount
of information on AI decision-making can have negative
consequences. Ferguson et al. found that detailed explana-
tions can cause information overload and lead to poorer
trust than providing simple explanations [7]. Oh et al. noted
that excessive explanation can harm the user experience [8].
Ehsan et al. discussed that whether an explanation that fits
the context is more important than its length [9]. Okamura &
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Yamada found that humans sometimes pay less attention
to continuously displayed information. In their experiment,
participants did not change their over-reliance in spite of a
reliability indicator being continuously displayed to them.
They also found that giving additional trigger signals was
effective in resolving this problem [16]. Therefore, vPred-RC
aims to calibrate reliance by not continuously but selectively
providing RCCs.

Only a limited number of methods are proposed for selec-
tively providing RCCs. A method proposed by Okamura &
Yamada judges whether an AI should provide an RCC or not
with ‘‘trust equations,’’ logical formulae that mathematically
express a human’s over/under-reliance [16], [17]. A problem
with this method is that its judgment depends only on how
many times a human falsely assigns a task to an AI or
him/herself, and it cannot capture the details of collaboration
experiences such as in what task a human observed an AI’s
failure, when an AI provided RCCs, and what the tasks
were. These experiences can affect human beliefs about an
AI’s capability. For example, an experience with an AI’s
success/failure on a task is more likely to influence human
reliance in a similar task than a different task. In vPred-RC,
a reliance model is trained to predict human reliance, taking
into account the collaboration history between a human and
an AI, and it is expected to capture these aspects.

B. RELIANCE ESTIMATION
A basic idea of vPred-RC is that inferring human reliance on
an AI agent helps with the selective provision of RCCs. For
example, an RCC that increases human reliance may be less
effective if a human already has high reliance on an agent than
if s/he has low reliance.

Muir’s trust model refers to human intervention or takeover
of a robot’s action as an indicator of poor trust [18]. A user’s
decision on whether to assign a task to themselves or an AI is
also used as an indicator of human trust [16], [17], and vPred-
RC follows this approach.

Many methods have been proposed to estimate reliance/
trust, but none of them can account for the impact of RCCs on
human reliance, or the effects of RCCs that have already been
shown to a human and how reliance changes if or unless an
RCC is provided for a current task, which our reliance model
aims to achieve.

III. SELECTIVELY PROVIDING TRUST CALIBRATION CUES
A. FORMALIZATION
This paper formalizes human-AI collaboration with selec-
tively provided RCCs as a tuple (x, ĉ, c, d, y∗, y, p). Let us
consider a situation in which a human sequentially performs
a set of tasks {xi}Ni=1 with an AI agent, where i is the index of a
task andN is the number of tasks. ĉi is a set of potential RCCs
for the AI system when xi is given, and vPred-RC decides
whether to provide ĉ ∈ ĉi. ci is the RCC that the AI agent
actually decides to provide to the human. ci = ĉw/o represents
that no RCC is provided.

FIGURE 2. Screenshot of user interface for CC task.

The human observes (xi, ci, y∗i ) and decides whether to
assign xi to him/herself or the AI agent. Let di ∈ {AI, human}
be the agent to which a human decided to assign xi. y∗i is the
desired result for xi, and yi is the actual result for xi performed
by di. y∗i = yi indicates the success of xi. The human can
observe the result produced by the AI when di = AI, which is
feedback for him/her to assess its reliability, but cannot when
di = human. pi is the success probability of the AI for xi. i is
incremented when xi is completed.

B. COLLABORATIVE CAPTCHA TASK
We developed a collaborative CAPTCHA (CC) task for train-
ing the reliance model and evaluating vPred-RC. Figure 2
shows a screenshot of the user interface. CAPTCHA is
originally a task in which a human enters characters written
in a noised and distorted image [19]. In the CC task, a worker
can get assistance from a task AI that is trained to recognize
characters in images.

Here, xi is an RGB image of a CAPTCHA. y∗i is a five-letter
string of ground-truth labels for xi. We prepared two verbal
RCC candidates in addition to ĉw/o: ‘‘I’m confident’’ and
‘‘I’m not confident,’’ which are presented in a speech bubble
from an image of the robot. Let us denote the two as ĉpos and
ĉneg, respectively.

ĉ = {ĉpos, ĉneg, ĉw/o
}. (1)

When ci = ĉw/o, the UI shows only the image of the robot
and no speech bubble.

A worker first decides di (Fig. 2). If s/he chooses ‘‘AI,’’
the task AI automatically enters its answer in a text box. The
worker can observe the AI’s answer before sending it to the
host server but cannot edit it. If s/he chooses ‘‘Yourself,’’
an empty text box appears, and s/he is asked to enter the
characters. The worker repeats this 60 times.

The CC task refers to a sort of human-AI collaboration task
such as human-robot collaborative picking [20], in which a
human works with an intelligent robot that picks and places
objects using a visual object-recognition method [21]. In this
task, the human decides whether to perform the task by
him/herself or ask the robot. Robot performance depends
on the object recognition accuracy, which may change for
various reasons. For example, it may not be able to recognize
objects when they were not in its training dataset or when
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Algorithm 1 Procedure for Selecting RCC
Require: pi: AI success probability, ĉ: set of RCC candi-

dates, θ : threshold to control the number of RCCs.
1: for ĉ ∈ ĉ do
2: Predict r ĉi with reliance model.
3: 1ĉi ← |r

ĉi
i − pi|.

4: end for
5: // Search best ĉ.
6: ĉbesti ← argmin

ĉ∈ĉ,ĉ ̸=ĉw/o
1
ĉ
i

7: // Decide whether to provide ĉ.
8: if 1ĉw/o

−1ĉbesti < θ then
9: return ĉw/o

10: else
11: return ĉbesti
12: end if

environmental conditions change. To rely on the robot,
the co-working human needs to understand what the robot
can/cannot recognize in context. By selectively providing
RCCs, the human can estimate the robot’s ability with fewer
communication costs.

C. VPRED-RC
vPred-RC adaptively selects whether to provide an RCC.
Algorithm 1 describes the proceedure of the RCC selection
and figure 1 graphically illustrates it. The main idea of vPred-
RC is that it aims to avoid a discrepancy between the human
reliance rate and the AI’s success probability. For example,
if an AI is likely to fail at a task, but a human is likely to rely
on an AI without an RCC, it may be better to provide an RCC.

The reliance rate ri is the probability that the human will
assign xi to the AI. A human is assumed to decide whether
to rely on an AI depending on the current task and the
collaboration history. We can consider ri for each ĉ ∈ ĉ:

r
Oc
i = P(di = AI|x:i, c:i−1, ci = ĉ, y∗:i, y:i−1, d:i−1). (2)

Variables with the subscript ∗:i represent the vector of the
sequence (∗1, ∗2, .., ∗i). The discrepancy1

ĉ
i is the difference

between ri and pi when ĉ is provided:

1
ĉ
i = |r

ĉ
i − pi|. (3)

First, vPred-RC refers to 1
ĉ
i to evaluate ĉi(̸= ĉw/o); the ĉi

whose 1
ĉ
i is the lowest is the best RCC. Let us denote this

ĉbesti :

ĉbesti = argmin
ĉ∈ĉ,ĉ ̸=ĉw/o

1
ĉ
i . (4)

Next, vPred-RC decides whether to provide ĉbesti or omit it.
Equation 5 is the criterion for the decision:

ci =

{
ĉbesti (1ĉw/o

i −1
ĉbesti
i < θ)

ĉw/o (elsewise).
(5)

FIGURE 3. Reliance model.

θ represents the allowable range of 1
ĉw/o

i compared with

1
ĉbesti
i and controls how much vPred-RC omits RCCs. θ =

0 means that vPred-RC omits ci only when no RCC
is predicted to be better rather than providing ĉbesti , and
increasing θ results in more omitted RCCs.

D. RELIANCE MODEL
The reliance model models the human cognition in deciding
the assignment of a task and predicts r

ĉi
i . Figure 3 illustrates

the structure of the model. It is based on the Transformer
encoder [22], a deep-learning model that has shown great
performance originally in natural language processing and
increasingly been applied to other domains [23], [24].
By taking into account the collaboration history between
a human and the target AI system, the reliance model
can effectively capture human beliefs regarding an AI’s
capability.

The reliance model receives a history of collaboration
between a human and AI (x:i−1, c:i−1, d:i−1) and the current
state (xi, ci). The history includes information such as when
and to which task an RCC was provided and which decision
the human made regarding the task, so the reliance model can
capture a human’s beliefs regarding what task they think the
AI can execute to predict human decisions better.

In the implementation, x is a three-channel RGB array
of a CAPTCHA image. c ∈ ĉ is a categorical label and
represented as a one-hot vector. d is also a one-hot vector,
an index of which is reserved for the case where it is hidden.
Specifically, we hide di because they are not obtained when
predicting ri.
xs in the collaboration history and the status of the current

task are first transformed into a one-dimensional vector
with convolutional neural network layers. Other features
are embedded with perceptrons. The embedded vectors are
summed up with position embeddings, which give index
information [22]. Then, the vectors are transformed by the
Transformer encoder model, and a multi-layer perceptron
predicts ri from the transformed vector of the index i. Unlike
equation 2, the reliance model cannot access y∗ because we
assume that theAI is not perfect. The detailed implementation
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FIGURE 4. Examples from CAPTCHA datasets. We used left two datasets
for training of task AI. Sub-caption shows accuracy of task AI for each
dataset.

of the inputs of the reliance model should be modified
depending on the nature of the target task. For example, if an
AI can judge whether its task execution is successful or get
feedback on its task execution, it may be better to include the
information to predict human reliance more accurately.

The reliance model is trained in a supervised manner.
We adopted a binary cross-entropy loss function for the
training:

L = −δ(di,AI) · log(ri)− δ(di, human) · log(1− ri), (6)

where δ(a, b) = 1 when a = b and 0 when a ̸= b.

IV. TRAINING RELIANCE MODEL
A. TASK IMPLEMENTATION
1) CAPTCHA DATASET AND TASK AI
Figure 4 shows examples of CAPTCHA images used in
our experiments. We acquired four datasets1 from Kaggle,
a web platform for data scientists and machine learning
practitioners. We split each dataset for training and testing.
We excluded two datasets for training the task AI to replicate
a bias in AI capability. For workers, understanding bias
can help improve task assignment and result in fewer RCC
requirements. Figure 4 also shows the accuracy of the task
AI. The accuracy is actually biased by the dataset used for
the training.

Each CAPTCHA image has five characters, and the task
AI outputs the probability distribution that the j-th character
xi,j is ι ∈ I , where I is a set of alphabetic and numerical
characters.

TaskAI(xi,j, ι) = P(xi,j = ι). (7)

When di = AI, yi is a sequence of the most probable ι ∈ I for
each xi,j.

yAIi = {argmaxι(TaskAI(xi,j, ι))}
5
j=1. (8)

The task AI was implemented using ResNet-18, a deep-
learning model commonly used for image processing.

2) AI SUCCESS PROBABILITY
The confidence rate was calculated on the basis of the
probability distribution output from the task AI [25].

conf ∝ 55
j=1(maxι∈I (TaskAI(xi,j, ι))). (9)

conf becomes higher the more probability there is that
the task AI assigns to the most probable character. pi was

1https://www.kaggle.com/datasets/utkarshdoshi/captcha-dataset
https://www.kaggle.com/datasets/alizahidraja/captcha-data
https://www.kaggle.com/datasets/kaushikmetha/captcha-images
https://www.kaggle.com/datasets/greysky/captcha-dataset

calculated on the basis of conf using a logistic regression
model, which was trained to predict whether yAIi matches y∗i
from training datasets.

B. RELIANCE DATASET ACQUISITION
We made a reliance dataset to train the reliance model
and evaluate vPred-RC. 228 participants were recruited with
compensation of 100 JPY through Yahoo! Japan crowdsourc-
ing. The data acquisition was conducted on a website. The
participants were first provided pertinent information, and
all participants consented to the participation. We instructed
them on the flow of the CC task and asked five questions
to check their comprehension of the task. 52 participants,
who failed to answer the questions correctly, were excluded
from the task. 145 participants completed the task (46 female,
98 male, one did not answer; aged 19− 81,M = 48.4, SD =
13.1). The protocol of the reliance dataset acquisition and
the evaluation of vPred-RC was approved by the ethics
committee of National Institute of Informatics.
xi was randomly chosen for each participant from the test

sub-datasets. We manipulated how many images to use from
each CAPTCHA dataset so that the task AI’s overall accuracy
became 50% while keeping the task AI’s accuracy for each
dataset the same to avoid extreme over/under-reliance.

Whether to provide an RCC was randomly decided for
each participant. The percentage of times that RCCs were
provided was controlled to be 0, 20, 40, 60, 80, or 100%.
We prepared two strategies to choose which RCC (ĉpos and
ĉneg) to show because we did not have the reliance model
yet and could not use equation 4. For the threshold strategy,
we chose ĉpos when pi was higher than a threshold, which
was determined by referring to the point closest to the top-left
corner of the ROC2 curve [26]. We set the threshold to
0.4475. For the other strategy, proportional, we chose a cue
with a selection probability proportional to pi. That is, ĉpos

has a higher probability of being chosen if pi is higher,
but there is still a possibility that ĉneg could be chosen
probabilistically as well, though with a lower probability than
ĉpos. We prepared the proportional strategy to broaden the
variety in the dataset distribution by introducing randomness.
95 and 50 participants were assigned to the threshold and
proportional conditions, respectively.

C. ANALYSIS OF RELIANCE DATASET
We briefly analyzed the reliance dataset to determine the
trends for human-AI collaboration in the CC task. Figure 5
shows the distribution of the F-score for each participant.
Here, the F-score was calculated with the number of times
a participant assigned a task to the AI when the AI succeeded
and assigned themselves when the AI failed. It reflects how
much participants could predict the AI’s performance with
selective RCCs. The X-axis (rate) expresses the number of
times that RCCs were provided.

2Receiver Operating Characteristic.
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FIGURE 5. F-scores in reliance dataset.

FIGURE 6. Distribution of △
ĉbest
i

i − △
ĉw/o

i for reliance dataset and
thresholds for target percentage.

In general, the F-score decreased as the number of RCCs
decreased. Notably, participants with a score of zero were
concentrated in cases where the rate was 0.0 or 0.2. This is
mainly because of under-reliance; the participants performed
the task mostly by themselves and seldom used the AI.

The scores with the threshold strategy were slightly higher
than proportional, but an ANCOVA (Analysis of covariance)
with the rate variable as covariant showed no significant
difference in the strategies (F(1, 141) = 1.647; p =
.20; η2p = .012). A summary table of the ANCOVA is
available in Appendix (table 2).

D. TRAINING RESULTS
With the reliance dataset, we trained the reliance model
and investigated its accuracy. The hyperparameters for the
training are available in Appendix (table 4). Three-fold cross
validation was performed with stratification of the data so
that the percentage of the number of provided RCCs was
aligned. We trained the model for 30 epochs. As a result, the
maximum accuracy was 83.5% (SD=1.1%) on average at the
18th epoch. Hereafter, we combined the outputs of the three
models through averaging as the reliance model to get the
benefit of ensemble learning.

We further investigated 1
ĉbesti
i − 1

ĉw/o

i that the model
calculated with the dataset. This difference is used by vPred-
RC to judge whether to provide an RCC (Equation 5).
Figure 6 shows the distribution of the difference. Generally,
the difference was positive, which means that it was predicted

that it would be better to present ĉbest than omitting
it to reduce 1. However, in 8.0 percent of cases, the
reliance model predicted that omitting an RCC instead would
contribute to reducing the discrepancy.

V. EVALUATION
A. AIM
We evaluated whether vPred-RC can selectively provide
RCCs at an effective timing. More specifically, we investi-
gated whether vPred-RC can let users rely on an AI when it
succeeds a task and avoid relying when fails.

B. PROCEDURE
The CC task was used to evaluate vPred-RC. The participants
performed the task in a similar way as the reliance dataset
acquisition. The difference is that it was vPred-RC that
determined whether to provide RCCs by referring to each
participant’s decision-making history, whereas this was
randomly determined in the reliance dataset acquisition.
vPred-RC predicted the user reliance rate with the reliance
model. 170 crowdworkers, none of whom participated in
the data acquisition for the reliance dataset, were recruited
for this experiment with compensation of 100 JPY. Using
the comprehension checking questions, 55 participants were
excluded from the CC task. 98 participants completed the task
(38 female, 55 male, 5 did not answer; aged 17-86, M=47.4,
SD=13.7). After the CC task, we asked the participants to
answer Likert-scale questions to supplementarily investigate
their subjective perception. We also asked them to freely
comment on their experience with the task.

We compared the F-score for the humans’ decisions in
the vPred-RC condition with the random condition from
the results of the threshold strategy in the reliance dataset.
From the results of the reliance dataset acquisition and our
preliminary experiments, we considered under-reliance to
occur regardless of the choice of RCCs when the rate of the
number of RCCs was below 20%. Therefore, we set θ so
that the rate would be 30, 40, 50, 60, or 70% (See table 5
in Appendix), and let us denote the actual rate as a. Since
θ cannot precisely control the rate, we used the results only
in cases of 0.2 < a ≤ 0.8, and 18 and 13 participants were
excluded because a ≤ 0.2 and 0.8 < a, respectively. Ignoring
the results of a = 0.2 was disadvantageous for vPred-RC
because the zero-score results of the random condition were
not taken into account. Finally, 67 participants remained.

C. HYPOTHESIS
We hypothesized that by properly selecting whether to
provide RCCs and which RCC to provide, vPred-RC earns
higher F-score than the random condition when compared at
the same rate.

D. RESULTS
Figure 7 illustrates the F-score for the humans’ decisions.
We conducted an ANCOVA to statistically analyze the
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FIGURE 7. F-score of humans’ decisions. Error bands shows 95% CI for
linear regressions.

FIGURE 8. Successful and unsuccessful examples of vPred-RC.

results. There were significant effects for the number of cues
(F(1, 110) = 7.629; p = .0067; η2p = .065), the RCC
selection method (F(1, 110) = 6.575; p = .012; η2p =
.056). The interaction effect was not statistically significant
(F(1, 110) = 1.387; p = .242; η2p = .012). This suggests
that vPred-RC gets F-score per the number of RCCs more
than the random condition in this range and supports the
hypothesis. Therefore, we conclude that vPred-RC can reduce
the number of times RCCs are provided while avoiding
over/under-reliance by evaluating the effect of each RCC on
the basis of human reliance prediction.

VI. DISCUSSION
A. EXAMPLES OF VPRED-RC’S BEHAVIOR
Figure 8(a) shows a successful example of vPred-RC.
We need to mention that it is difficult to follow the actual
dynamics of the interaction among vPred-RC, participants,
and tasks, so our explanations here are post-hoc.
x1, x3, x6 were from the datasets that were not used for

the training of the task AI, and the AI could not correctly
recognize them. vPred-RC first decided not to present a
cue that the AI could not recognize, and the participant

properly avoided assigning it to the AI. This was a risky
but probabilistically possible decision. Only 35.6% of the
participants assigned a task to the AI when c1 = ĉw/o,
whereas 13.7% assigned a task to the AI when c1 = ĉneg.
Providing ĉneg was judged less effective with equation 5.
x2 was from the training dataset, and the AI could recognize
it correctly. vPred-RC provided ĉpos and successfully let the
participant assign it to the AI. vPred-RC decided not to
provide RCCs for i = 3, 4, and the participant properly
avoided assigning them to the AI. Notably, although p4 =
.489 was above the threshold of the ROC curve (subsection
IV-B), vPred-RC cancelled presenting ĉpos. This example
may suggest the potential of vPred-RC in borderline cases
where whether the AI succeeds or fails is uncertain. vPred-
RC provided ĉpos for x5 and the participant could assign it to
the AI.When i = 6, no RCCwas provided and the participant
falsely assigned it to the AI. A possible interpretation for
not presenting the RCC is that the participant did x1 and x3,
which were from the same dataset as x6, and was expected
to do it her/himself again. However, it is also possible to
counter-argue that the participant had never observedwhether
the AI was capable of recognizing them, so it was likely that
the participant tried to assign it to the AI.

Figure 8(b) illustrates an unsuccessful example. The target
RCC rate for the participant was 30%, so vPred-RC needed
to calibrate her/his reliance with a small number of RCCs.
We should say that the success of the first trial was luck-
based because, as we mentioned in the succesful case, the
reliance is low when c1 = ĉw/o. Here, p was high (.700),
but vPred-RC could not choose ĉpos because of a large θ . The
participant did not assign x2 to the AI, though s/he observed
the successful result for x1. This assignment does not follow
a probabilistic expectation. 87.5% of the participants who
observed AI success without an RCC when i = 1 assigned
x2 to the AI again. The failures for x3 and x4 were due
to poor predictions of the AI success probability. p3 and
p4 were.431 and.544, respectively, where the AI succeeded
in the former and failed in the latter. Particularly, the failure
for x4 may have led the participant to under-trust, and s/he did
not rely on the AI in spite of the presentation of ĉpos.

B. SUBJECTIVE MEASURES AND COMMENTS
Although the main focus of this paper is reliance, the
objective aspect of the collaboration, we supplementarily
asked nine Likert-scale questions, with an expectation that
appropriately selected RCCs would have a positive effect
on the participants’ subjective measures. Table 1 shows the
questions, which were grouped into four categories. The
‘‘understanding of AI’’ category aimed to ask about the
participants’ subjective understanding of the performance of
the AI gained through the trials. The ‘‘evaluation of selective
RCCs’’ questions aimed to ask how useful the participants
perceived the selectively provided RCCs to be. The ‘‘overall
measures of system’’ questions aimed to ask the participants
for their overall evaluation of the AI through the interaction
in the CC task. Additionally, we asked the ‘‘understanding of
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TABLE 1. Questions for subjective measures.

FIGURE 9. Results for subjective measures. * in subcaption indicates statistical significance between vPred-RC and Random (p < .05), and † indicates
marginal significance (p < .10).

task’’ questions to check whether the human-AI collaboration
setting in this paper was understandable for the participants.

We also prepared an open question that asked the
participants to comment about what they thought during the
task and how they decided task assignments. We acquired
valid comments from 60 of the participants.

1) SUBJECTIVE MEASURES
Figure 9 shows the results of the Likert-scale questions.
We conducted two-way ANCOVAs with the RCC selection
methods as the independent variable and the rate as a
covariant to analyze the difference between vPred-RC and
the random condition. Summary tables of the ANCOVAs
are available in Appendix (table 2). Here, we summarize the
results for each category.

a: UNDERSTANDING OF TASK
Most of the participants evaluated their understandings of the
task highly. There was no statistically significant effect of any
variables for both questions.

b: UNDERSTANDING OF AI
There was no significant effect of the condition, rate, and
their interaction effect for the two questions. Notably, the rate
variable did not have an effect on the subjective evaluations.
A possible reason is that the length of the task (60 trials) was
enough to reach the upper bound of understanding the AI.
There is a limit to the amount of information that RCCs can
provide for several reasons, such as the prediction of the AI’s
success not being perfect and the performance of the AI not
being stable even when a CAPTCHA is taken from a known
dataset.

c: EVALUATION OF SELECTIVE RCCS
Significant effects of the condition were found for the two
questions. That is, the participants perceived RCCs selected
by vPred-RC to be more useful than those selected randomly
when rates were aligned. The evaluation of RCCs decreased
as the rate decreased, which is a natural result because
the participants had less opportunity to get the benefit
of RCCs.
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d: OVERALL MEASURES OF SYSTEM
A significant effect of the condition was found for the
‘‘AI trustable’’ question, and the effects were marginally
significant for the other questions. The scores of vPred-RC
were consistent with the value of the rate for the last two
questions, whereas the random condition got lower scores
as the rate decreased. This suggests that, in the random
condition, an RCC may not have been presented at the time
the user needed it or that the RCCpresentedwas inappropriate
for participants, while vPred-RC could prevent the decrease
in the scores.

In conclusion, RCCs selected by vPred-RC were more
positively evaluated than the random condition. The partic-
ipants thought that RCCs from vPred-RC were more useful.
In addition, vPred-RC could prevent a decrease in trust even
with a reduced number of RCCs.

2) COMMENTS
21 participants mentioned that they had focused on specific
visual features such as ‘‘blue background color’’ or ‘‘crossed
line’’ to decide to whom to assign tasks, suggesting that they
were aware of the bias of the task AI’s success probability,
and most of them successfully captured the characteristics
of the CAPTCHA datasets. 25 participants mentioned the
provided RCCs. 14 participants explained that they assigned
a task to the AI when ĉpos was presented, and 8 explained
that they avoid using the AI when ĉneg was presented. One
commented that he could not trust the AI when an RCC was
missing. One provided a negative comment on the provided
RCCs because the AI failed even though they provided ĉpos.
This may indicate distrust in RCCs. The problem of distrusted
RCCs may need to be handled in ways such as apologies,
excuses, or explanations and dialogues, which are found to
be effective for trust repair [27], [28], [29], [30], [31].

C. SCOPE AND LIMITATIONS
Our formalization in subsection III-A assumes a situation
in which a human successively decides whether to assign
a task to an AI system. In other words, the reliance model
aims to capture the dynamics of human-AI collaboration
between trials. This assumption is likely to suit tasks with
characteristics such as:

• The human can allow for trial and error, so it is less
necessary for him/her to continuously monitor an AI’s
behavior in order to intervene (for example, picking a
solid object, cleaning floors).

• Each trial in a task is performed in a short period of time
(X-ray inspection).

• Total performance is more important than the accuracy
for each trial (recommending items to customers).

However, vPred-RC is not immediately applicable to tasks in
whichwe need to consider the dynamics during each trial. For
example, when it comes to autonomous cars, an AI system’s
action may immediately lead to a critical failure. Particularly,
level 2 or 3 autonomous cars require users to constantly

monitor the situation and system behavior to intervene when
necessary, which makes the dynamics during a trial more
important. We are currently tackling the problem of the
during-task setting by using this paper’s approach of selecting
RCCs by predicting their effect on human reliance. Here,
we are considering an autonomous driving monitoring task in
which a user judges whether to rely on an autonomous car or
drive themselves while monitoring the car’s object detection
results as RCCs [32]. However, the dynamics between trials
are still important for the long-term use of the system, and
combining the two approaches has the potential to further
deepen the relationship between humans and AIs. Another
limitation is that vPred-RC assumes that a task’s result can be
categorized as either success or failure. We also need further
consideration for tasks whose results should be evaluated
continuously.

The participants recruited from the crowdsourcing plat-
form had a diverse set of demographic characteristics,
and from this perspective, we believe our data to have
good representativeness. We also conducted a post-hoc
power analysis on the ANCOVA in subsection V-D using
G*Power [33] and calculated a power (1 − β) of 0.73.
However, there are also potential limitations such as the
nationality of the participants, as most participants on the
platform are Japanese. A potential bias in the experimental
setup is the difficulty of the task for both a user and an AI.
That is, which CAPTCHA image a person/AI can read which
they cannot. This paper assumes a situation in which a user
has a better capability of reading the images but uses the AI
for efficiency. However, if the legibility of an image for the
user is too low, s/he may need to rely on an AI even when
the AI performance is also low, which can make the optimal
strategy of RCC selection much more complex.

Our experimental results that demonstrate the success of
vPred-RC indicate that 83.5% accuracy is fair enough for
vPred-RC to address the problem of reliance calibration with
fewer RCCs on average. However, as we demonstrated in
subsection VI-A, there were also failures caused by poor
prediction of the reliance model, which means room for
further improvement.

We aimed to change the value of θ to manipulate the
rate of the number of RCCs, and we investigated whether
vPred-RC could actually manipulate it as intended. The
correlation coefficient between the target and actual rates
at which RCCs were provided was .679 (p < .0001),
which suggests that we can control the number of RCCs
to some extent by changing θ . In actual use, however,
we need to consider the trade-off between collaboration
performance and the communication cost of RCCs rather
than rigidly target the number of RCCs. A future direction
for this work is to integrate machine-learning methods
to adjust θ . A possible approach is using reinforcement
learning (RL), in which another model whose structure is
the same as the reliance model but it learns not ri but
theta with a reward function that balances the performance
and cost.
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Our formalization does not consider human capability for
a task. Two participants commented that they used the task
AI when they were not confident in their answers, and one
said that the AI was useless because it could not recognize
CAPTCHA that she cannot read. In the CC task, humans
were not perfect as well (81.7% accuracy when di = human).
While our experiments successfully demonstrated that vPred-
RC can effectively calibrate human reliance with a measure
of how many times humans assign a task to the AI if and
only if the AI can succeed, to improve the total collaboration
performance, we still need to take into account the capability
of a human and compare it with that of an AI.

VII. CONCLUSION
To address the problem of excessive amounts of information
from XAI, this paper proposed vPred-RC. It dynamically
selects which RCC to provide by predicting its effect on
human reliance using an AI reliance model that predicts the
probability of a human assigning a task to an AI for cases in
which an RCC is provided or not. vPred-RC aims to avoid
a discrepancy between the task success probability of an AI
and the human reliance rate.

vPred-RC was extended from our previously proposed
algorithm, Pred-RC. The main difference in the extension is
that it handles verbal cues as RCCs toward interactive human-
robot collaboration, whereas Pred-RC considers a situation in
which an AI system displays an indicator of its confidence
rates as RCCs.

We tested vPred-RC for a human-AI collaboration task.
First, the reliance model was found to predict human
decision-making with 83.5% accuracy. Next, we found that
the RCCs selected by vPred-RC enabled participants to
more accurately assign tasks to an AI when and only when
the AI succeeded compared with randomly selected ones,
suggesting that vPred-RC can successfully calibrate human
reliance with a reduced number of RCCs. Last, we revealed
that vPred-RC’s selective RCCs acquire better subjective
evaluations than random ones. These results demonstrate the
potential of vPred-RC for human-robot collaboration such as
human-robot collaborative picking (subsection III-B). With
vPred-RC, humans are expected to efficiently understand
what a robot can and cannot do, leading to making full use
of it with fewer communication costs.

APPENDIX. DATA AND CODE AVAILABILITY
The implementation of vPred-RC, the reliance dataset, and
the results of the evaluation are available at
https://github.com/fuku5/vPred-RC.

APPENDIX. ANCOVA RESULTS
A. RELIANCE DATASET
Table 2 shows a summary table of the ANCOVA for the
reliance dataset analysis (subsection IV-C).

TABLE 2. Reliance dataset analysis.

TABLE 3. Evaluation of vPred-RC.

B. EVALUATION
Tables 3 show summary tables of the ANCOVAs for the
subjective measures (subsection VI-B).
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TABLE 4. Hyperparameters for training reliance model.

TABLE 5. θ for evaluation experiment.

APPENDIX. ENVIRONMENT AND PARAMETERS
For the implementation, we used following softwares: python
3.8.10, torch 1.13.0, and numpy 1.23.2. Table 4 shows the
hyperparameters of the reliance model. Table 5 shows the
values of θ used for the evaluation.
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