IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 17 November 2023, accepted 28 November 2023, date of publication 5 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339556

==l RESEARCH ARTICLE

LSTM-Autoencoder-Based Incremental Learning
for Industrial Internet of Things

ATALLO KASSAW TAKELE AND BALAZS VILLANYI

Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1117 Budapest,
Hungary

Corresponding author: Atallo Kassaw Takele (atallo.takele @edu.bme.hu)

ABSTRACT Edge-based intelligent data analytics supports the Industrial Internet of Things (IToT) to enable
efficient manufacturing. Incremental learning in the edge-based data analytics has the potential to analyze
continuously collected real-time data. However, additional efforts are needed to address performance,
latency, resource utilization and storage of historical data challenges. This paper introduces an incremental
learning approach based on Long-Short Term Memory (LSTM) autoencoders, by sparsening the weight
matrix and taking samples from previously trained sub-datasets. The aim is to minimize the resources utilized
while training redundant knowledge for edge devices of IloT. The degree of sparsity can be determined by
the redundancy of patterns, and the inverse of the coefficient of variation has been utilized to recognize it.
A higher value of the inverse of the coefficient of variation shows that the values of the weight matrix are
close to each other, which indicates the redundancy of knowledge, and vice versa. In addition, the coefficient
of variation has been applied for limiting the size of samples from the previously trained sub-datasets. The
experiment conducted using the IIoT testbed dataset demonstrates substantial enhancements in resource
optimization without compromising performance.

INDEX TERMS Industrial internet of things (IIoT), incremental learning, LSTM-autoencoder, weight

sparsification.

I. INTRODUCTION

The network of computing devices including sensors, intel-
ligent communication gateway, controlling tiny devices and
large servers bring a new term known as Internet of Things
(IoT). The rapid growth of IoT touches several areas of
application to enhance their performance, such as healthcare,
home automation, transportation, industrial automation, agri-
culture and power plants [1]. The Industrial Internet of Things
(IIoT) is a sub-category of IoT which is utilized in industrial
scenarios. The IIoT is enabled by intelligence data analytics,
sophisticated application software, controllers, sensors, actu-
ators, and communication gateways [2], [3]. The IIoT devices
deployed in the industrial environment collect information
and transmit it to the cloud or edge server for subsequent
analysis. The IIoT facilitates the intelligent manufacturing

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio

by improving safety, reducing downtime, visualization, and
accurate decision making [3].

Now a days industries are using intelligence data analyt-
ics with smart devices for improving their safety, reducing
downtime and fast decision making [4], [5]. The traditional
way of data analytics was centralized approach which applies
machine and deep learning algorithms to the massive data
collected from several edge devices using a computationally
reach server or cloud. However, the exchange of data from the
manufacturing devices to the server causes security risk, com-
munication cost and delay. Decentralized learning has been
proposed to enable manufacturing devices to independently
manage data analytics. The decentralized approach gets more
attention by several scholars due to its ability to protect data
security [6]. However, the adaptation of decentralized learn-
ing isn’t straightforward and without limitations. It is limited
by several bottlenecks like, resource limitation to store and
analyze massive self-collected data. Although machine learn-
ing algorithms are effective in analyzing industrial devices

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

137929

https://orcid.org/0000-0002-6679-7679
https://orcid.org/0000-0003-2873-9934
https://orcid.org/0000-0001-7643-2342

IEEE Access

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

data, they are computationally cost processes. Hence, opti-
mizing these sophisticated costly intelligent algorithms for
resource limited devices is a challenge, which is the focus
of this study.

Industrial activities are real-time processes in which
devices generate time series data. Sequential algorithms are
popular methods to effectively predict and forecast time series
data. A Recurrent Neural Network (RNN) is among the
most popular sequential models for analyzing temporal and
sequential data [11], [27]. An RNN is a special type of neural
network that is capable of memorizing the previous event.
It is capable of doing sequence classification, time series
forecasting, and sequence to sequence prediction [10], [12].
It has a number of variants in order to improve some of the
shortcomings. Long Short-Term Memory (LSTM) is one of
the most widely used variants of RNN that enhances the issue
of long-term dependency. It is applied in several domains
such as time series forecasting, speech recognition, natural
language processing, predictive maintenance, predicting sen-
sor data, and time series anomaly detection [10]. Traditional
training was through feeding the available dataset to the
LSTM network at once [14]. However, industrial devices pro-
duce data over time which needs continuous model updates.
Incremental learning has been proposed for such a scenario
by continuously transferring knowledge from the previously
trained dataset.

Most of real-time applications (i.e., anomaly detection,
automated driving, predictive maintenance) scenarios can’t
be solved by traditional models. As a result, it needs con-
tinuous updates in order to adapt to these complex scenarios.
Human beings are able to recognize new features from unseen
observation. Incremental learning is a dynamic approach that
aims to update the performance over time using continuously
collected data. Incremental learning is supposed to learn
new insights from continuously collected data [19]. It is
able to learn new classes from new observations, instead of
traditional fixed classes. It also offers optimized utilization
of computational time, memory, and energy requirements,
as training on the entire dataset observed over a long period of
time demands a significantly higher amount of resource [16].
Recent incremental learning approaches are also reducing
catastrophic forgetting which is one of the main challenges of
neural networks and it is caused by forgetting the past learned
information with the arrival of new data [7]. Hence, the main
objective of incremental learning is an efficient training of
continuously observed real-time data with limited memory,
computational time, and energy without losing performance
[15], [19].

The incremental learning can be categorized into three
groups based on the dataset they utilize [7], [26]. Namely,
training without old data, using artificially generated data,
and using samples of old data. In the first case old class data
is not required while training the current task. As clearly
examined the number of training data is small as it uses
the current task data only which affects the performance of
the prediction. Thus, it is trained by modifying the network

137930

structure and normalizing the parameters [26]. In the second
case, artificial data which represents the old data could be
generated using generative models. This improves the mem-
ory storage space required for storing old data, especially for
memory-constrained devices. The artificial data is generated
at runtime while training each task for improving perfor-
mance. The performance of prediction depends on the ability
of the generative model to produce better representative sam-
ples [7], [23]. The last option takes a sample dataset from
each old training task which takes advantage of real old data.
It maintains performance by formulating a representative
dataset from the old and new tasks.

In deep LSTM networks a large number of parameters
negatively affect the performance, require a higher com-
putational resource, and take longer time to process [24].
Hence, a significant amount of storage, memory, bandwidth,
and computational resources are required for deploying the
LSTM model. It is a challenging task to regularize deep
LSTMs, which can comprise millions of parameters and are
susceptible to overfitting. In real-time applications, the strict
real-time latency limitations make deep LSTMs impractical
due to their latency. Common approaches for minimizing
these dense deep networks are dropout and weight mask-
ing (matrix sparsification). Weight masking is to modify
or exclude specific parameters (weights) within a neural
network during training. This technique allows for selec-
tive adjustment of the weights to address problems such as
minimizing resources, overfitting, and focusing on specific
features. It includes multiplying the weights of a neural net-
work by a binary mask that can be learned during training or
predetermined. Matrix sparsification is removing or setting
to zero a specific proportion of the network weights that
have minimal impact on its output [18]. By using matrix
sparsification, the total number of parameters in the network
is decreased, leading to improved efficiency in terms of com-
putational resources and storage.

Redundant knowledge in neural networks is a common
issue and is characterized by the existence of duplicated
(overlapping) information in the model, which can result
in prolonged training periods, a decrease in generalization
performance, and higher computational expenses [26]. It may
be caused by the result of several factors such as incor-
porating redundant features or the existence of duplicated
hidden units or weights in the network. Dealing with this
problem enhances the effectiveness and efficiency of the neu-
ral network, as it can prevent decreasing model complexity,
avoid overfitting, and optimize the utilization of computa-
tional resources. This is a serious issue, especially for small
IoT devices deployed in different applications since they
have limited computational resources and memory. Several
approaches have been proposed to improve redundant knowl-
edge in neural networks, such as model compression and
weight sparsification [17], [24], [26].

This study focuses on weight sparsification and sampling
of old data for tiny devices of IIoT using LSTM-autoencoder
based incremental learning in order to enhance resource

VOLUME 11, 2023

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

IEEE Access

utilization. This proposed approach sparsens a certain level
of the weight matrix for the on-device incremental learning
methods. The amount of sparsity depends on the redun-
dancy of knowledge and this paper applies the inverse of
the coefficient of variation for examining the redundancy
of information for the weight matrix. A higher value of the
inverse of the coefficient of variation indicates that the values
in the weight matrix are closely grouped together which
suggests redundancy of knowledge. Conversely, a lower value
suggests less redundancy. The second objective of the study
is to propose a dynamic sampling mechanism for the old
training dataset. This sampling technique also uses the coef-
ficient of variation for determining the number of samples
taken from each sub-dataset. Extensive experiments prove the
effectiveness of the proposed approach by reducing compu-
tational resources.
The paper’s contribution is summarized as follows:

o This study proposed an optimized LSTM-Autoencoder
network using matrix sparsification and taking sample
of previously processed data

o We utilized the data variation to determine the amount of
weight to be sparsened and the percentage of the sample
to be extracted from the previously processed data.

« We evenly distributed the weight to be sparsened across
each row to minimize bias in the sparsening process

The remaining part of the paper is presented as follows:
Section II details the background and related works in the
proposed specific area, and Section III presents the method-
ology of the proposed approach. Section IV discusses about
the experimental demonstration process and results, and
Section V presents the conclusion of the proposed work.

Il. BACKGROUND

A. EDGE COMPUTING AND INCREMENTAL LEARNING
Edge computing is a computing approach that involves per-
forming computation and storing data in closer to the site (end
node), instead of depending on a central location (edge server,
cloud server) [20], [21]. It involves carrying out computing
tasks at the network’s edge, typically on a device situated
in close proximity to the origin of the data. Devices such
as sensors, actuators, PDAs, smart devices, and controlling
devices are among the equipment that can be utilized in this
computing paradigm. The need for real-time processing and
analysis of data and the rise of [oT devices promotes the popu-
larity of edge computing. Closer computation to the source of
data preserves bandwidth, reduces latency, improves security,
and faster processing.

Application of edge computing includes industrial automa-
tion, smart healthcare, autonomous vehicles, and smart cities.
The utilization of edge computing in manufacturing and other
industrial processes can lead to improved security, efficiency,
and minimized downtime through the processing and analy-
sis of data generated by machines [25]. In the autonomous
vehicle, it enables the processing of huge amounts of data
produced by sensors in real time, thereby facilitating quick

VOLUME 11, 2023

and secure decision-making. Medical data produced by sen-
sors and wearable devices could be analyzed locally and used
in medical intervention and treatment. Smart cities nowadays
are supported by edge processing for enhancing the quality
of life and public safety using sophisticated equipments such
as security cameras, water quality sensors, and traffic light
Sensors.

However, edge computing is hampered by several chal-
lenges such as computational cost, battery consumption,
scalability, and interoperability [21]. The design of edge
computing systems should be capable of managing the con-
siderable amounts of data generated by IoT devices, while
also being scalable to the evolving needs of the system. The
integration of devices and systems from various vendors in
edge computing systems can pose a challenge in ensuring
that they function together cohesively. The battery-powered
nature of most edge computing devices, combined with the
substantial power consumption of processing large data vol-
umes, can result in a lower battery lifespan. This challenge
is more serious for devices deployed in remote and inacces-
sible areas. Data analysis supported by intelligent machine
learning is very expensive which leads to higher computation
costs. The optimization of real-time data analysis algorithms
is an open issue for most applications. Incremental learning
is a promising approach for resource constraint devices as
the training is held using a branch of real-time instead of
feeding huge data at once. On-device learning is an edge
computing-related topic that refers to the ability of devices to
train machine learning models directly on the device, without
needing to send data to a centralized server for training.

B. DEEP LSTM AUTOENCODER LEARNING
An autoencoder is a category of neural network that can be
trained to compress and reconstruct input data. It includes
two networks: an encoder network that converts the input
data into a compressed representation, and a decoder network
that converts the compressed representation back into the
original input data [25]. The performance of the model is
measured by the ability to reconstruct the original data and
is usually called reconstruction error. It is trained to reduce
the difference between the input data and the reconstructed
data, it can effectively grasp the structure and patterns in the
data. A long short-term memory (LSTM) unit belongs to the
class of recurrent neural networks (RNNs) that can represent
long-term dependencies in time-series data [28]. The LSTM
has been proposed to address the vanishing gradient problem
which was the challenge of vanilla RNNs. The vanishing
gradient problem can hinder the network’s ability to grasp
long-term dependencies in the data. The LSTM units have
gates that regulate the flow of information and gradients,
which allows the network to learn which parts of the input
sequence are relevant for compression and which parts are
not.

An LSTM autoencoder merges the capabilities of LSTM
units and autoencoders to acquire a compressed represen-
tation of sequential data analysis. The LSTM units in the

137931

IEEE Access

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

encoder and decoder are designed to handle time-series data
and are able to model long-term dependencies. The input
sequence is given as input to the LSTM encoder, which
is analyzed and outputs a compressed representation of the
data. The compressed representation is then fed into an
LSTM decoder, which processes the data and reconstructs
the original input sequence. The equation of LSTM gates
and states, that are used for encoding and decoding is pre-
sented in Equation (1). During training, the parameters of
the LSTM autoencoder are learned by minimizing the recon-
struction error between the input data and the reconstructed
output. The LSTM autoencoder compressed representation
learned by the network can be applied for various tasks, such
as sequence generation, anomaly detection, data compres-
sion, and prediction [29]. Although LSTM autoencoders are
widely applicable it requires numerous amounts of resource
for training.

ir =0 (Wi [h—1, %]+ b))
fr =0 (Wp.lhi—1, %]+ by)
Ci = tanh (We. [hs—1, X¢] + bc)
Co=fi*C_1+i %G
or =0 (Wo. [ly—1, %] + bo)
hy = o7 * tanh(Cy) @))]

where, h; = hidden state, o; = output gate, C; = cell state,
iy = input gate, f; = forget gate

C. RELATED WORK

Several studies have been undertaken to enhance the perfor-
mance of incremental learning. Authors in [15], proposed
an LSTM-based incremental learning approach by creating
batches of streams. They resample the available dataset in
six sequences of batches (sub-datasets) as required by the
incremental learning. The parameters of LSTM (i.e., weights,
biases, hidden and cell states) in the current are stored in
memory for the next batch training instead of storing the
historical data. However, the mathematical aspect of the pro-
posed LSTM is not clearly defined and they didn’t mention
how the evaluation metrics are computed as knowledge is
transferred from the previous batches. Authors in [22] intro-
duce a typical incremental method for IIoT which gradually
adjusts for varying domains and neither storing masks nor
task labels are required. They have presented the performance
using accuracy, forward and backward knowledge transfer,
and parameters used, but they didn’t recommend the spe-
cific neural network and how the data has been prepared for
demonstrating the incremental nature. Laura Melgar-Garcia
[9] present a real-time prediction method for detecting
anomalies and novelties using initial offline training followed
by a real-time incremental approach. It employs nearest-
neighbor techniques and incorporates novel elements in order
to identify appropriate anomalies from real-time sequential
data. Even though, offline training is essential real-world
applications might not have appropriate baseline data.

137932

Dai et al. [24] introduced a modified LSTM model
called Hidden Layer LSTM (H-LSTM), where hidden lay-
ers are added and uses grow-and-prune to reduce run-time
latency and number of parameters. They have applied
magnitude-based pruning and gradient-based growth itera-
tively in order to adjust architecture of the network. This
approach uses both pruning ang growth mechanisms at the
same time in order to get the best fitting LSTM archi-
tecture, but it doesn’t clearly prove the cost of these to
algorithms. Li et al. [26] proposes threshold-based network
pruning and nearest neighbor principle using the incremen-
tal learning approach for reducing the overhead of complex
models. It uses an automatic weight masking method using
the dispersion coefficients. It completely ignores old data
and applies mean nearest neighbor for finding the set of
fixed weights which makes all fixed weights to lower value
and may bias the prediction. Yang et al. [13] proposes an
adaptive network updated using class incremental approach
for producing sparse indicator vectors and minimizing the
issue of overfitting and catastrophic forgetting. To prevent
confusion between classes, it dynamically samples feature
vectors from class distributions and facilitates feature dis-
tribution. It speeds up feature distribution and dynamically
samples feature vectors from class distributions to prevent
confusion between classes. Although this approach brings
a new insight, network expansion and old class distribution
are extra resource consuming procedures before the actual
incremental proceeds which is a bottle neck tiny device.

In summary, the aforementioned incremental learning
methods have made significant strides by transferring param-
eters, and implementing network pruning and growing tech-
niques. Specifically, authors in [13], [23], and [26] consider
weight and network pruning (sparsening) for optimizing
incremental learning. However, none of them considers
applying weight sparsening together with taking samples of
previously processed sub-dataset, which is the motivation of
this study.

lll. METHODOLOGY
Recent studies have proved that deep neural network train-
ing involves a high degree of redundancy of information
[24], [26]. The same information is represented within the
network, which can lead to inefficient resource utiliza-
tion. This paper introduces an optimized incremental deep
LSTM-autoencoder network for resource constraint devices
of industrial applications. The dataset collected over time can
be processed with a sequence of tasks. Hence, the proposed
algorithm trains each task independently. This paper aims
to minimize the resource wasted for processing redundant
knowledge by dynamically sparsening the network weight
matrix and sampling old data for the current task training.
The level of information redundancy could be determined
by data variation [26]. This study utilizes the inverse of the
coefficient of variation which is a statistical method that
measures the variability of the dataset. The inverse of the
coefficient of variation is computed for the network weights.

VOLUME 11, 2023

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

IEEE Access

A higher value of the inverse of the coefficient of varia-
tion indicates the network weights are close to each other
(closer to the mean) which suggests the higher redundancy
of information. On the contrary lower value of the inverse
of the coefficient of variation shows the network weights
are spread out (far away from the mean) and suggests less
redundancy of information. Hence, the network weight can
be sparsened on each task training dynamically based on
the inverse of the coefficient of variation. The inverse of
the coefficient variation could be computed using mean and
standard deviation.

The mean and standard deviation of weights on each task
could be computed as

Niask
2.0 Wi
Miask = ——— (2)
“ Niask
Niask
Zilo wi
Miask = ——— 3)
“ Ntask

where, (iask mean for the sub-dataset, oy,g Standard deviation
for the sub-dataset w; = the set of weights sub-dataset Dj,
Niask = the size of the weights for the sub-dataset

The coefficient of variation for weights is computed as,

w_spar = ICV =a— = a'umk

4)
Ccv Otask

where, CV = coefficient of variation, ICV = Inverse of
the coefficient of variation, w_spar is ratio of weights to be
sparsened and « is a regularizing parameter

The coefficient of variation determines the ratio of weights
that can be sparsened on each training task, as shown
in equation (4). The most important point that should be
addressed is how to fairly distribute these percentages of
weights throughout the weight matrix. In this case, we allo-
cate for each column proportionally using the inverse of
the coefficient of variation for each column and distribute
it randomly. The relative proportion of the inverse of coef-
ficient of variation computed for each column is used to
distribute the weight sparsification. If a column has a higher
inverse of the coefficient of variation, then it gets a higher
proportion and gets sparser, and vice versa. The proportion of
weights assigned for each column is distributed fairly above
and below the mean. This way minimizes the performance
loss caused by biased sparsification since it is evenly dis-
tributed across the weight matrix. The proposed approach
has been articulated through pseudocodes (Algorithm 1
and Algorithm 2) which is language independent high-level
description of a computer program.

A typical random matrix sparsening is depicted in Fig. 1.
and the details of the process are as follows and also formally
explained in Algorithm 1.

Step 1: Compute the inverse of the coefficient of variation
for each column, equation (5).

Hecol;

Ocol;

ICVcolj = ©)

VOLUME 11, 2023

Woo | Wor | Woz | Wo3 | Wo4 | Wos 0 [Wpq | Wo2 | Woz [O 0
Wig | Wyg | Wp | Wyg | Wyg | We5 Wig | Wig | 0 0 | Wiy [W5
Wap | Wap | Wap | Wpg | Wp4 | Wog p O | W21 | O W3 | O 0
Wag | Waq | Wap | W33 | Wy | W35 0 | Wy | 0 | W3 | Wy | Was
Wap | Wgp | Wap | Waz | Wag | Was Wagg | Wgq [0 0 | Wag [Was
Wsg | Wsq | W3p | W53 | W54 | Ws5 Wso | 0 [wy| O 0 0

FIGURE 1. A typical weight matrix sparsening.

where, I Clej is the inverse of the coefficient of variation for
each column

Step 2: Find the relative proportion (Equation (6)) of each
column based on the values of inverse coefficient of variation
obtained in step 1.

ICVC()[,‘
rp_col; = :

4 2 ICV ol
J

(6)

where, rp_col f relative proportion of inverse of the coefficient
of variation for each column

Step 3: Distribute the sparsened ratio of the weights
obtained in Equation (4) to each column based on the relative
proportion, (Equation (7)).

col_sparj =rp_col [* w_spar @)

where, col_spar; ratio of weights to be sparsened on each
column.

Step 4: Compute the ratio of data points above and below
the mean for each column and distribute the ratio of column
sparse (col_sparj). Equations (8) and (9) compute the spars-
ened ratio for the column values above the mean, while the
remaining ratio pertains to values below the mean.

. _ N, col apove_mean 8

ratiogpove_mean = ——— ®)
Neo

COl—Sparabovefmean = ratiogbove_mean * COl—Sparj ©)

Step 5: Find the number of data points to be sparsened
above and below the mean for each column and distribute it
randomly

This method of distribution reduces bias and improves per-
formance since it traces almost the whole part of the weight
matrix.

Training the entire older dataset or ignoring it brings its
own trade-off as mentioned in the introduction part of this
paper. Hence, a dynamic sampling mechanism for the group
of previous datasets has been proposed. This mechanism
allows to select a subset of the old dataset that is most rel-
evant to the new task, which can improve performance while
reducing computational cost. Suppose the dataset length ‘n’
is sufficient for training. In this case, the current sub-dataset
is used as is, and the rest is obtained from previous sub-
datasets. We weight the previous sub-datasets based on their

137933

IEEE Access

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

Algorithm 1 Weight Sparsification Algorithm

Input: sub-dataset Dgyp, weight wgyp
Output: Sparsened weight
while training sub-dataset Dgyp:
(x,y) < set of sub dataset Dgyp,
Wb < access the weights from the current training
//Compute mean and standard deviation p and o
w_spar < ICV « u, o, a/lcompute ICV of
IC lej < eol;» Ocol; /lcompute ICV for each column
col_sparj <« rp_col j» W_spa
Neolupove mean < €OL_spar;
ratiogbove_mean < N. ol above_mean> Neol
col_spar above_mean> col_spar below_mean <~
ratiogpove_mean» col_spar j
/lrandomly sparse each column using the specific ratio
Wsub_spar <— col_spar above_mean> col_spar below_mean
Wsub < Wsub_spar //set sparsened weight for the next
training
endwhile

Algorithm 2 Dynamic Sampling Mechanism
Input: sub-dataset Dgyp
Output: Sampled sub-datasets
while training dataset:
CV subDi <= OsubDi» subDi
rp_subD; <— CV gwpi, CV subDi
NsubD; <— TPsubDj» N,no_subDy
Samgarq < subDy Unsubp, UnsubDy NisubDs - - - -UlsubDy
Endwhile

coefficient of variation to obtain the remaining part of the
dataset (Equation (12)). This ensures that the most informa-
tive sub-datasets are given more weight, which can improve
the performance of our model. If a certain sub-dataset has
a higher coefficient of variation, then a higher amount of
sample is taken from it and vice versa. The overall process is
depicted in Algorithm 2. It is also important to set maximum
and minimum proportions in order to minimize bias caused
by taking extremely high or low amounts of data from a
certain sub-dataset.

o .
CVsuppi = —2 (10)

M subDi

CV subDi

rp_subD; = o subDi (11)

i N_1

Zizl CV subbi

NsubD; = V'PsubD; * (N — nosuppy) (12)
samgara = subDy U NsubD, U NsubDyNsubDsy - - - - U RsubDy _q
(13)

where, CVg,pp; is coefficient of variation, pgpp; iS mean,
osubpi Standard deviation, ng,p, number of samples for
individual sub-dataset, no_subDy number of the current sub-
dataset, samgq:, the total amount of sample and N is total
amount of sample.

137934

B Existing LSTM-Autoencoder
I Proposed LSTM-Autoencoder

144

Time

D1 D2 D3 D4 D5 D6

FIGURE 2. Comparison of the proposed and existing model on processing
time using the weather dataset.

107 I Existing LSTM-Autoencoder

I Proposed LSTM-Autoencoder

Time

D1 D2 D3 D4 D5 D6

FIGURE 3. Comparison of the proposed and existing model on processing
time using the thermostat dataset.

IV. RESULT AND DISCUSSION

The evaluation of the proposed approach has been undertaken
using a testbed dataset collected at the University of New
South Wales website [8]. The dataset was specifically pre-
pared for testing security analysis of IoT and IIoT devices
such as intrusion detection systems and anomaly detec-
tion. The measures of garage door, Modbus, smart fridge,
smart motion sensor, Global Positioning System (GPS),
weather monitoring system, and the smart thermostat has
been reported. Among those, weather monitoring systems
and thermostats are widely applicable in smart manufacturing
[20]. Hence, we have chosen them for evaluating the perfor-
mance of the proposed model. The experiment was conducted
using Python with TensorFlow framework on a hardware
setup consisting of an Intel (R) Core (TM) 15-8350U CPU
(1.70 GHz) and 8 GB of main memory.

The dataset selection, preparation and ways of feeding
to the algorithm is presented as follows. Sequential models
require batches of sequential inputs usually ordered by time
[15] and the evaluation of this study has been performed in

VOLUME 11, 2023

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

IEEE Access

TABLE 1. Parameter configuration.

TABLE 3. Performance comparison on weather dataset.

Parameter Value
Loss function Mean Square Error
Optimizer Adam
Batch size 32
Epochs 20

TABLE 2. Results of BIC and AIC for both the proposed and existing
methods.

Sub- Existing Proposed Existing Proposed
dataset LSTM-AutoEn LSTM-AutoEn LSTM-AutoEn LSTM-AutoEn
BIC for Weather AIC for Weather
D1 30771.02 30625.47 20885.27 20739.73
D2 49671.83 34505.46 38831.61 24368.58
D3 68135.73 42069.80 56737.36 31536.84
D4 86438.96 53270.67 74644.65 42299.23
D5 104706.46 67210.96 92605.02 55835.74
D6 122872.37 81806.76 110520.32 70246.67
BIC for Thermostat AIC for Thermostat
DI 24484.42 24452.73 15129.74 15098.06
D2 37613.51 27006.72 27304.03 17400.79
D3 50339.68 32269.64 39472.00 2226751
D4 63021.79 40172.98 51758.13 2973234
D5 75463.96 49776.94 63893.13 38932.42
D6 87901.26 59658.61 76079.50 48483.76

order of phases. As the incremental learning is a modular
approach which requires the use of sub-datasets for the subse-
quent phase of training [14], [15], we subdivide the available
dataset into six groups chronologically. Thus, the groups of
the dataset represent real-time batches of data that arrived
at different time sequences and are labeled as D1, D2, D3,
D4, D5, and D6. Therefore, both the weather monitoring
system dataset and the smart thermostat dataset, which are
used in this experiment, have been grouped into six sub-
datasets. The ways of feeding the subgroup of datasets to
the algorithm is not the same for the proposed and existing
methods. The existing method which is used as a baseline
applies direct concatenation of the available sub-datasets for
the current phase of training. However, the proposed method
takes sample of the former sub-datasets during the instant
training phases. Table (1) presents the experimental settings
for the proposed model.

The processing time, accuracy, precision, recall, informa-
tion criteria (Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC)) have been used for comparative
evaluation [2], [30]. Accuracy, precision, and recall are com-
mon metrics for evaluating the performance of a classification
model and processing time has been applied for evaluating the
resource utilization. Accuracy measures the model’s ability to
predict correct classifications. Precision is the proportion of
positive predictions that are actually correct whereas recall
measures the model’s ability to correctly identify existing
positives. We also undertake a comparison using AIC and
BIC for measuring the complexity of the model and how the
model fits the data.

Fig. 2. illustrates the processing time of the six sub-datasets
for both existing and proposed methods. The proposed
approach shows a significant result from the second sub-
dataset. The reason behind this significant change is due to
the proposed approach’s systematic sampling technique in
order not to feed the whole available dataset at the given phase

VOLUME 11, 2023

Sub- Accuracy Precision Recall
datase
t
Existing Propose Existing Propose Existin Proposed
LSTM- d LSTM- d g LSTM-
AutoEn LSTM- AutoEn LSTM- LSTM- AutoEn
AutoEn AutoEn AutoEn
DI 65 69 59 61 59 62
D2 67 65 58 59 63 64
D3 67 70 69 68 66 68
D4 68 69 56 58 59 70
D5 70 73 67 70 74 78
D6 71 68 57 60 70 68
TABLE 4. Performance comparison on thermostat dataset.
Sub- Accuracy Precision Recall
dataset
Existing Proposed Existing Proposed Existing Proposed
LSTM- LSTM- LSTM- LSTM- LSTM- LSTM-
AutoEn AutoEn AutoEn AutoEn AutoEn AutoEn
D1 64 63 57 61 59 62
D2 63 65 59 58 60 58
D3 68 67 65 66 64 68
D4 73 72 68 69 70 69
D5 67 65 62 60 68 62
D6 70 70 57 55 70 70

of training. Table (3) and (4) shows the accuracy, precision,
and recall of both the existing and proposed approaches.
As clearly shown in both tables, there is no significant change
observed in the existing and proposed approach. Table (2)
presents the results of a comparative evaluation for the pro-
posed and existing approaches using AIC and BIC metrics.
The proposed approach achieves lower AIC and BIC values
compared to the existing approach. With this, we prove that
the proposed method would improve the resource required for
training without losing prediction performance.

V. CONCLUSION

Industrial control systems require intelligent data process-
ing mechanisms to be deployed closer to the edge of the
network in order to improve their efficiency and minimize
delays. Incremental learning is the most effective way to
analyze industrial data at the edge, but it requires careful
resource optimization. This study presented resource effi-
cient LSTM-autoencoder model using statistical dispersion in
order to sparse the network weights and take samples of previ-
ously processed data for resource-deficient edge devices. The
experimental demonstration with two IloT-related testbed
datasets proved the effectiveness of the proposed approach
by reducing computational time without compromising per-
formance. Such a lightweight approach enables real-time
data processing and decision-making which is a crucial for
industrial control applications.

The amount of data increases through time which needs
significant amount of resource for data analytics and storage
space. Hence, excluding older sub-datasets from data sam-
pling could be a future direction of this study, as it saves
resources without harming prediction performance. Further-
more, the experiment can be extended by incorporating data
streams with real edge devices using different programming
languages and platforms.

137935

IEEE Access

A. K. Takele, B. Villany: LSTM-Autoencoder-Based Incremental Learning for Industrial Internet of Things

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Benaddi, M. Jouhari, K. Ibrahimi, J. Ben Othman, and E. M. Amhoud,
“Anomaly detection in industrial IoT using distributional reinforcement
learning and generative adversarial networks,” Sensors, vol. 22, no. 21,
p- 8085, Oct. 2022, doi: 10.3390/s22218085.

A. K. Takele and B. Villanyi, “Resource aware long short-term memory
model (RALSTMM) based on-device incremental learning for industrial
Internet of Things,” IEEE Access, vol. 11, pp. 63107-63115, 2023, doi:
10.1109/ACCESS.2023.3289076.

X. Wang, S. Garg, H. Lin, J. Hu, G. Kaddoum, M. J. Piran,
and M. S. Hossain, “Toward accurate anomaly detection in indus-
trial Internet of Things using hierarchical federated learning,” IEEE
Internet Things J., vol. 9, no. 10, pp.7110-7119, May 2022, doi:
10.1109/J10T.2021.3074382.

A. K. Takele and B. Villanyi, “Anomaly detection using hybrid
learning for industrial IoT,” in Proc. IEEE 2nd Conf. Inf. Technol.
Data Sci. (CITDS), Debrecen, Hungary, May 2022, pp. 262-266, doi:
10.1109/CITDS54976.2022.9914338.

W. Wu, L. Shen, Z. Zhao, M. Li, and G. Q. Huang, “Industrial IoT and long
short-term memory network-enabled genetic indoor-tracking for factory
logistics,” IEEE Trans. Ind. Informat., vol. 18, no. 11, pp. 7537-7548,
Nov. 2022, doi: 10.1109/TI1.2022.3146598.

R. Taheri, M. Shojafar, M. Alazab, and R. Tafazolli, “Fed-IloT: A
robust federated malware detection architecture in industrial IoT,” IEEE
Trans. Ind. Informat., vol. 17, no. 12, pp. 8442-8452, Dec. 2021, doi:
10.1109/T11.2020.3043458.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICaRL:
Incremental classifier and representation learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 5533-5542, doi: 10.1109/CVPR.2017.587.

A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar,
“TON_IoT telemetry dataset: A new generation dataset of IoT and
IIoT for data-driven intrusion detection systems,” IEEE Access, vol. 8,
pp. 165130-165150, 2020, doi: 10.1109/ACCESS.2020.3022862.

L. Melgar-Garcia, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Tron-
coso, “Identifying novelties and anomalies for incremental learning in
streaming time series forecasting,” Eng. Appl. Artif. Intell., vol. 123,
Aug. 2023, Art. no. 106326, doi: 10.1016/j.engappai.2023.106326.

A. Kulshrestha, L. Chang, and A. Stein, “Use of LSTM for sinkhole-
related anomaly detection and classification of InNSAR deformation time
series,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4559-4570, 2022, doi: 10.1109/JSTARS.2022.3180994.

S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang, “Acceler-
ation of LSTM with structured pruning method on FPGA,” IEEE Access,
vol. 7, pp. 62930-62937, 2019, doi: 10.1109/ACCESS.2019.2917312.

P. Narkhede, R. Walambe, S. Poddar, and K. Kotecha, “Incremental learn-
ing of LSTM framework for sensor fusion in attitude estimation,” PeerJ
Comput. Sci., vol. 7, p. €662, Aug. 2021, doi: 10.7717/peerj-cs.662.

B. Yang, M. Lin, Y. Zhang, B. Liu, X. Liang, R. Ji, and Q. Ye, “Dynamic
support network for few-shot class incremental learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 2945-2951, Mar. 2023, doi:
10.1109/TPAMI.2022.3175849.

H. Wang, M. Li, and X. Yue, “IncLSTM: Incremental ensemble LSTM
model towards time series data,” Comput. Electr. Eng., vol. 92, Jun. 2021,
Art. no. 107156, doi: 10.1016/j.compeleceng.2021.107156.

A. C. L. Neto, R. A. Coelho, and C. L. D. Castro, “An incremental
learning approach using long short-term memory neural networks,” J. Con-
trol, Autom. Electr. Syst., vol. 33, no. 5, pp. 1457-1465, Oct. 2022, doi:
10.1007/540313-021-00882-y.

D. Kong, X. Li, and W. Chen, “Automatic model adaption method
based on few-shot incremental learning for IoT applications,” in Proc.
IEEE/CIC Int. Conf. Commun. China (ICCC), Foshan, China, Aug. 2022,
pp. 417-422, doi: 10.1109/ICCC55456.2022.9880763.

H. R. Tavakoli, J. Wabnig, F. Cricri, H. Zhang, E. Aksu, and I. Saniee,
“Hybrid pruning and sparsification,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Anchorage, AK, USA, Sep. 2021, pp. 3542-3546, doi:
10.1109/1C1P42928.2021.9506632.

H. T. Truong, B. P. Ta, Q. A. Le, D. M. Nguyen, C. T. Le, H. X. Nguyen,
H.T.Do, H. T. Nguyen, and K. P. Tran, “Light-weight federated
learning-based anomaly detection for time-series data in industrial con-
trol systems,” Comput. Ind., vol. 140, Sep. 2022, Art. no. 103692, doi:
10.1016/j.compind.2022.103692.

137936

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

H. Liu, Y. Zhou, B. Liu, J. Zhao, R. Yao, and Z. Shao, “Incremental
learning with neural networks for computer vision: A survey,” Artif. Intell.
Rev., vol. 56, no. 5, pp. 4557-4589, May 2023, doi: 10.1007/s10462-022-
10294-2.

X. Yu, X. Yang, Q. Tan, C. Shan, and Z. Lv, “An edge comput-
ing based anomaly detection method in IoT industrial sustainabil-
ity,” Appl. Soft Comput., vol. 128, Oct. 2022, Art. no. 109486, doi:
10.1016/j.as0c.2022.109486.

F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-based
deep learning in industrial Internet of Things,” IEEE Internet Things J.,
vol. 7, no. 5, pp. 4329-4341, May 2020, doi: 10.1109/JI0T.2019.2963635.
Y. Zhao, D. Saxena, and J. Cao, “Memory-efficient domain incremental
learning for Internet of Things,” in Proc. 20th ACM Conf. Embedded
Netw. Sensor Syst., New York, NY, USA, Nov. 2022, pp. 1175-1181, doi:
10.1145/3560905.3568436.

S.Dang, Z. Cao, Z. Cui, Y. Pi, and N. Liu, “Class boundary exemplar selec-
tion based incremental learning for automatic target recognition,” IEEE
Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5782-5792, Aug. 2020,
doi: 10.1109/TGRS.2020.2970076.

X. Dai, H. Yin, and N. K. Jha, “Grow and prune compact, fast, and accurate
LSTMs,” IEEE Trans. Comput., vol. 69, no. 3, pp. 441-452, Mar. 2020,
doi: 10.1109/TC.2019.2954495.

W. Yu, Y. Liu, T. Dillon, and W. Rahayu, “Edge computing-assisted
ToT framework with an autoencoder for fault detection in manufactur-
ing predictive maintenance,” /[EEE Trans. Ind. Informat., vol. 19, no. 4,
pp. 5701-5710, Apr. 2023, doi: 10.1109/TI1.2022.3178732.

X. Li, S. Dong, Q. Su, M. Yu, and X.Li, “Adaptive threshold
hierarchical incremental learning method,” [IEEE Access, vol. 11,
pp. 12285-12293, 2023, doi: 10.1109/ACCESS.2023.3242688.

I. Priyadarshini, R. Kumar, A. Alkhayyat, R. Sharma, K. Yadav,
L. M. Alkwai, and S. Kumar, “Survivability of industrial Internet
of Things using machine learning and smart contracts,” Comput.
Electr. Eng., vol. 107, Apr. 2023, Art.no. 108617, doi: 10.1016/].
compeleceng.2023.108617.

C. Zhang, H. Pang, J. Liu, S. Tang, R. Zhang, D. Wang, and L. Sun,
“Toward edge-assisted video content intelligent caching with long short-
term memory learning,” IEEE Access, vol. 7, pp. 152832-152846, 2019,
doi: 10.1109/ACCESS.2019.2947067.

H. Zhu, S. Liu, and F. Jiang, “Adversarial training of LSTM-ED based
anomaly detection for complex time-series in cyber-physical-social sys-
tems,” Pattern Recognit. Lett., vol. 164, pp. 132-139, Dec. 2022, doi: 10.
1016/j.patrec.2022.10.017.

S. Chaturvedi, E. Rajasekar, S. Natarajan, and N. McCullen, “A com-
parative assessment of SARIMA, LSTM RNN and fb prophet models to
forecast total and peak monthly energy demand for India,” Energy Policy,
vol. 168, Sep. 2022, Art. no. 113097, doi: 10.1016/j.enpol.2022.113097.

ATALLO KASSAW TAKELE received the M.Sc.
degree in computer science (computer networking
stream) from Jimma University, Jimma, Ethiopia,
in 2018. He is currently pursuing the Ph.D. degree
in computer engineering with the Budapest Uni-
versity of Technology and Economics, Budapest,
Hungary. His research interests include machine
and deep learning, the IoT, Industry 4.0, security,
and enterprise application integration.

BALAZS VILLANYI received the Ph.D. degree in
computer science from the Budapest University of
Technology and Economics, Budapest, Hungary.
He is currently an Associate Professor and a
Doctoral Advisor with the Faculty of Electrical
Engineering and Informatics, Budapest University
of Technology and Economics. His research inter-
ests include machine learning, schema matching
algorithms, enterprise application integration, the
Industrial IoT, and Industry 4.0.

VOLUME 11, 2023

http://dx.doi.org/10.3390/s22218085
http://dx.doi.org/10.1109/ACCESS.2023.3289076
http://dx.doi.org/10.1109/JIOT.2021.3074382
http://dx.doi.org/10.1109/CITDS54976.2022.9914338
http://dx.doi.org/10.1109/TII.2022.3146598
http://dx.doi.org/10.1109/TII.2020.3043458
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/ACCESS.2020.3022862
http://dx.doi.org/10.1016/j.engappai.2023.106326
http://dx.doi.org/10.1109/JSTARS.2022.3180994
http://dx.doi.org/10.1109/ACCESS.2019.2917312
http://dx.doi.org/10.7717/peerj-cs.662
http://dx.doi.org/10.1109/TPAMI.2022.3175849
http://dx.doi.org/10.1016/j.compeleceng.2021.107156
http://dx.doi.org/10.1007/s40313-021-00882-y
http://dx.doi.org/10.1109/ICCC55456.2022.9880763
http://dx.doi.org/10.1109/ICIP42928.2021.9506632
http://dx.doi.org/10.1016/j.compind.2022.103692
http://dx.doi.org/10.1007/s10462-022-10294-2
http://dx.doi.org/10.1007/s10462-022-10294-2
http://dx.doi.org/10.1016/j.asoc.2022.109486
http://dx.doi.org/10.1109/JIOT.2019.2963635
http://dx.doi.org/10.1145/3560905.3568436
http://dx.doi.org/10.1109/TGRS.2020.2970076
http://dx.doi.org/10.1109/TC.2019.2954495
http://dx.doi.org/10.1109/TII.2022.3178732
http://dx.doi.org/10.1109/ACCESS.2023.3242688
http://dx.doi.org/10.1016/j.compeleceng.2023.108617
http://dx.doi.org/10.1016/j.compeleceng.2023.108617
http://dx.doi.org/10.1109/ACCESS.2019.2947067
http://dx.doi.org/10.1016/j.patrec.2022.10.017
http://dx.doi.org/10.1016/j.patrec.2022.10.017
http://dx.doi.org/10.1016/j.enpol.2022.113097

