
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 16 September 2023, accepted 25 November 2023, date of publication 5 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339574

Enhancing Ocular Healthcare: Deep
Learning-Based Multi-Class Diabetic Eye
Disease Segmentation and Classification
MANEESHA VADDURI AND P. KUPPUSAMY , (Member, IEEE)
School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522237, India

Corresponding author: P. Kuppusamy (kuppusamy.p@vitap.ac.in)

This work was supported by VIT-AP University.

ABSTRACT Diabetic Eye Disease (DED) is a serious retinal illness that affects diabetics. The timely
identification and precise categorization of multi-class DED within retinal fundus images play a pivotal
role in mitigating the risk of vision loss. The development of an effective diagnostic model using
retinal fundus images relies significantly on both the quality and quantity of the images. This study
proposes a comprehensive approach to enhance and segment retinal fundus images, followed by multi-class
classification employing pre-trained and customized Deep Convolutional Neural Network (DCNN) models.
The raw retinal fundus dataset was subjected to experimentation using four pre-trained models: ResNet50,
VGG-16, Xception, and EfficientNetB7, and the optimal performing model EfficientNetB7 was acquired.
Then, image enhancement approaches including the green channel extraction, applying Contrast-Limited
Adaptive Histogram Equalization (CLAHE), and illumination correction, were employed on these raw
images. Subsequently, image segmentation methods such as the Tyler Coye Algorithm, Otsu thresholding,
and Circular Hough Transform are employed to extract essential Region of Interest (ROIs) like optic nerve,
Blood Vessels (BV), and the macular region from the raw ocular fundus images. After preprocessing,
the model is trained using these images that outperformed the four pre-trained models and the proposed
customized DCNN model. The proposed DCNN methodology holds promising results for the Cataract
(CA), Diabetic Retinopathy (DR), Glaucoma (GL), and NORMAL detection tasks, achieving accuracies of
96.43%, 98.33%, 97%, and 96%, respectively. The experimental evaluations highlighted the efficacy of the
proposed approach in achieving accurate and reliable multi-class DED classification results, showcasing the
promising potential for early diagnosis and personalized treatment. This contribution could lead to improved
healthcare outcomes for diabetic patients.

INDEX TERMS Deep convolutional neural network, diabetic eye diseases, image enhancement, image
segmentation, retinal fundus images.

I. INTRODUCTION
According to the World Health Organization (WHO), around
2.2 billion people throughout the world are limited vision or
visually challenged [1]. Among them, at least 1 billion are
avoidable. It is believed that diabetes mellitus usually called
diabetes has a role in these occurrences of blindness [2]. Most
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people with diabetes will eventually develop DED, and due
to its high sensitivity in the diagnosis of DED, retinal fundus
imaging has become the most widely used technology for
detecting DED [2].

DED encompasses CA, DR, GL, and some examples
of lesions that must be recognized from retinal images
are shown in Fig. 1 These include deterioration of the
lens (CA), abnormal BV growth and, narrow bulges or the
retina’s tiny BV rupturing (microaneurysms), (DR) in its
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earliest stages, Low intraocular pressure (GL) is the leading
cause of irreversible optic nerve damage and blindness.
To effectively treat these conditions, accurate diagnosis
and identification are essential [1], [2]. Inspiring proactive
solutions for detection and prevention that fulfill many
needs associated with retinal diseases and visual disabilities
throughout a person’s life. The application of Deep Learning
(DL) in automated DED diagnostics is crucial for solving
these problems [3], [4]. Professional ophthalmologists agree
that timely screening for DED is essential for an effective
diagnosis, but this screening takes a lot of time and effort [5].

FIGURE 1. Fundus images with problems caused by DED.

While DL has shown outstanding validation accuracies
for binary (healthy or diseased) classification, findings for
moderate and multi-class classification have been lower
striking, especially for mild impairment. Therefore, this
study introduces an automatic multi-class DED classification
model based on DCNN that can distinguish normal from
diseased tissue in images. First, a comparison of diverse
Convolutional Neural Network (CNN) architectures is con-
ducted to determine the optimal one for classifying mild
and multi-class DED. This model’s goal is to improve
upon the already impressive performance levels observed
in the aforementioned works. Therefore, moderate and
multi-class classification models were trained and tested
to enhance sensitivity for the different multi-class DED.
This involved implementing various pre-processing and
augmentation strategies to enhance result accuracy further
and ensure a sufficient sample size for the dataset. Treating
ocular diseases as soon as possible is crucial, but doing
so with the aid of neural networks consumes a significant
amount of time and storage space.

Rapid diagnosis and treatment of retinal diseases are
essential, but doing so with the use of neural networks is
resource-intensive. Because of this, a relatively pre-trained
model can improve the process by adjusting the design to
cut down on losses. Pre-trained CNN networks are useful
in DL because they allow knowledge to be transferred from
one task to another with a smaller set of data or less time
spent on training [6]. Fine-tuning the pre-trained network
is widely recognized as a prominent strategy in transfer
learning. It is standard practice to apply various preprocessing
techniques to image datasets, including resizing, quantifying,
standardizing, and enhancing images. These steps are taken
prior to training CNN architectures, regardless of whether the
training employs a pre-existing model or a newly developed

model. Improving the CNN model’s classification accuracy
is an endless pursuit, moreover, the model’s accuracy relies
heavily on the quality of both the training dataset and the
images within it.

A. MOTIVATION
The recent advances in the domains of artificial intelligence,
DL, and the computer vision have allowed DL to be applied
to produce outstanding outcomes in image categorization and
vision applications. Early detection of lesions and anomalies
in ocular fundus images is still an outstanding issue. They
found that 93% of moderate cases are incorrectly categorized
as normal eyes and that deep neural networks have trouble
learning enough detailed information to recognize compo-
nents of mild disease [7]. Therefore, this study presents a
system that combines standard image processing methods
with the most cutting-edge CNN to assess multi-class DED.

B. CONTRIBUTIONS
The contributions made by this research are as follows:
• Integrate a holistic strategy for the accurate diagnosis of

multi-class DED through the utilization of retinal fundus
images. This approach encompasses image enhance-
ment, segmentation, and classification techniques to
achieve enhanced diagnostic accuracy.

• Employ four pre-trained models, ResNet50, VGG-16,
Xception, and EfficientNetB7, and experiment with the
raw ocular fundus dataset, and acquire the optimal
performing model.

• Develop a new customized DCNN model, and train
using images of the retina that have undergone pre-
processing and segmentation.

• Investigate and compare the pre-trained optimal model
and the new customized DCNN model. This demon-
strated the significance of the preprocessing steps in
improving the overall classification accuracy.

II. LITERATURE REVIEW
To spot DED in ocular fundus images early on, clinicians
need amethod that lets them see a full complement of features
and pinpoint their precise location within the image [8].
Lens degeneration, dilated BV (microaneurysms), vascular
leakage, and impairment of the optic nerve, all need to be
present on retinal fundus images to diagnosemulti-class DED
in diabetic individuals. Fig. 1 depicts the progression of DED.
Previously, automated DED diagnoses were examined

to reduce ophthalmologist’s workload and improve the
consistency of diagnosis [9]. Lesion-based detection has
been applied in previous research; for example, a novel
model was proposed for identifying microaneurysms in
ocular fundus images. Methods such as BV segmentation,
localization, and elimination of the fovea are used as part of
their preprocessing effort. Following that, a hybrid system
comprising neural networks and fuzzy logic models was
employed to accomplish the aforementioned tasks of feature
extraction and classification [5].
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Their research looked at the problem of dividing DR into
two groups defined by the presence or absence of microa-
neurysms. In addition, diagnosis of the DED can be made
with a variety of additional features than microaneurysms.
Similar to how a classification model based on pixels was
presented to evaluate the intensity of ocular illness after
segmenting the affected area and pinpointing the anomaly
[10]. Used backpropagation neural networks fed data from
decision trees and GA-CFS (Genetic Algorithm- Correlation
based Feature Selection) methods to identify exudates in
DR. Divided healthy eyes and those with exudates into
two groups. The achieved results did not give sufficient
classification accuracy and did not lead to effective noise
removal [11].

Employed a Fuzzy C-Means algorithm and clustering
analysis to create a method for identifying exudates. Optic
Disc (OD) finding and cauterization of the BV are crucial
to their work. The results obtained allow the exudates to
be classified without relying on any defining criteria [12].
The technique presented relies on segmenting both the OD
and the Optic Cup (OC). The suggested model makes use
of two neural networks simultaneously operating with one
focusing on the OC and the other on the OD. With the
goal of proficiently segmenting, the suggested method targets
the OD and the OC within an ocular fundus image. There
are no available outcomes from a classification of GL in
multiple stages [13]. The use of CNN to recognize DR
in the fundus images was presented. They were able to
achieve 90% specificity and sensitivity by using larger non-
public datasets consisting of 80,000 to 120,000 ocular fundus
images for binary classification between ‘‘normal,’’ ‘‘mild,’’
and ‘‘severe’’ [14], [15].

To identify retina BV 2D matching filters were used [16].
Gabor filter bank outputs were employed to automatically
detect and classify anomalies in the vascular network,
allowing the recognition of all stages of retinopathy [17].
There are numerous conventional methods for diagnosing
and categorizing DED. The majority of methods make use
of Fuzzy C-Means clustering, region-of-interest algorithms,
mathematical morphology, neural networks, pattern recogni-
tion, and Gabor filtering methods [16], [17].
Numerous methods have been suggested to identify

OD, and one such approach is the utilization of Principal
Component Analysis (PCA) to determine potential optical
disc areas by clustering pixels of a similar brightness.
Hough Transform was utilized to detect optical discs [18].
An artificial neural network-driven method is employed for
exudate identification [19]. Exudate detection was carried
out using a method based on Fuzzy C-Means clustering
[20]. A computational intelligence-basedmethodwas utilized
[21]. Automated categorization of DR is attained through the
evaluation of distinct attributes, which encompass exudates,
hemorrhages, microaneurysms, and BV. This classification
process is carried out utilizing a support vector machine [22].
To address the constraints posed by manually crafted

features and make them applicable across a range of medical

imaging techniques, the adoption of DL-based approaches
becomes a feasible option. These approaches entail the acqui-
sition of critical features through learning and then integrating
these feature-learning processes into the model development
process [23], [24]. A DL approach was investigated to assess
the degree of nuclear CA severity from slit-lamp images. This
technique involves inputting image patches into a CNN to
generate the local filters. Furthermore, higher-order features
were extracted using a set of Recursive Neural Networks
(RNNs). The grading of CA was achieved using Support
Vector Regression [25]. A CA detection experiment was
conducted, utilizing the Kaggle dataset of 200 images. In this
study, AlexNet the CNN architecture was combined with
various common classifiers, including Adaptive Moment
Estimation (Adam), SGD, and others. The recommended
system achieved a 77% accuracy when employing the Adam
optimizer and an impressive 97.5% accuracy when utilizing
the Lookahead optimizer with the AlexNet architecture [26].
A unique CNN model architecture (‘‘Cataract Net’’) was
formulated, characterized by its compact size, reduced layers,
and training parameters, as well as the use of smaller
kernels to enhance computational efficiency. The approach
demonstrated a remarkable accuracy of 99.13% for the two
classes under study [27]. To identify CA severity from
mild to severe, a computer-aided technique using fundus
images was proposed. A CNN that had already been trained
was transferred to the automated CA classification task as
part of this strategy [28]. A classifier employing a Support
Vector Machine (SVM) and achieving a four-stage Correct
Classification Rate (CCR) of 92.91% was utilized for the
classification task. A method for classifying CA disease
known as Tournament-based Ranked CNN was introduced.
This method employs a tournament structure along with
binary CNN models for the classification process [29]. The
CNNs and Res-Net-based trained classifier model enabled a
system for automated CA identification with an accuracy of
95.78 percent [30].

Recently, a technique utilizing multiple models with atten-
tion mechanisms was presented for automated CA disease
identification in ultrasound images, achieving an accuracy
of 97.5% [31]. Using a pre-trained VGG-19 architecture on
a dataset available on KAGGLE, a comparable accuracy of
97.47% was achieved for fundus images [32], [33].

People with diabetes may become limited vision from DR
since it has no early warning signs. Yet, DR’s effects may
be mitigated with early diagnosis. Automated DR diagnosis
and classification were suggested [34]. Pre-processing, seg-
menting of images, extraction of features, and categorization
are all rolled into one using this approach. A technique for
enhancing local contrast was used on the greyscale images
to make the area of interest more visible. Using an adaptive
threshold approach and mathematical morphology, the lesion
area was accurately segmented. Finally, Enhanced catego-
rization was achieved by merging statistical and geometric
characteristics, leading to more accurate outcomes. Those
with DR are at risk for developing retinal complications

VOLUME 11, 2023 137883



M. Vadduri, P. Kuppusamy: Enhancing Ocular Healthcare: DL-Based Multi-Class DED Segmentation and Classification

including blood clots, lesions, and retinal hemorrhages.
Retinal images are used to get a DR diagnosis. An approach
for DR identification and categorization using a pre-trained
CNNwas developed. To improve the retrieved characteristics,
a data refinement and augmentation technique was first used.
Gaussian blur was used on the fundus image to decrease the
quantity of noise in the picture. Accuracy was computed in
the experimental setting [35].

An approach-based DL was suggested for DR classifica-
tion, which would include the feature extraction of segmented
fundus images. This method began with pre-processing the
fundus image and then continued with segmentation. With
the advent of the maximum principal curvature model,
which prioritizes the greatest Eigenvalues, the branching
blood veins can now be eliminated. To enhance the quality
and eliminate inaccuracies within the region, morphological
opening, and adaptive histogram equalization techniques
were employed. Diabetes has been linked to increased optic
nerve proliferation. The categorization of DR was carried
out using a CNN which consists of three primary functional
components: The investigation focused on the pooling layer,
convolution layer, and the bottleneck layer. The results
demonstrated a precision(pre) rate of 97.2% and an accuracy
of 98.7%. Unfortunately, it was not possible to determine the
duration of patients’ distress [36].

Using an Adaptive machine-learning technique, a DR
categorization model was created. By this method, DR pic-
tures may be recognized using their own classifiers and
characteristics. Diabetic Retinopathy Estimation (DRE) at the
segment level was achieved by using a modified, previously
trained CNN. After that, the categorization of DR images
was established by connecting lines between all DR maps
at each segmentation level. In addition, a learning method
was used end-to-end to deal with the non-uniform lesions.
Acquired sensitivity of 97% and a specificity of 96.37 %.
Also, proliferative diabetic retinopathy was not taken into
account by this approach [37].

Screening for DR by ophthalmologists is difficult and
time-consuming due to blurred retinal images that make it
difficult to see signs like microaneurysm, hemorrhage, etc.
Because of this, a machine-learning technique that could
automatically identify DR in fundus images. Classification
of DR images using DL was made more precise by using a
pre-processing improvement strategy. To improve the fundus
image’s clarity for the viewer, Histogram Equalization (HE),
de-haze algorithm, and high pass filter were used. Four-layer
convolution was used for image categorization. In the end,
a satisfactory level of precision was achieved [38].
A context-aware graph network for tuberculosis detection

was presented. Because of training limitations and overfitting
issues, the traditional CNN model suffered greatly. For this
reason, this study presents transfer learning-based strategies
for extracting some of the sample-level characteristics.
However, given the large number of pictures used for training,
it was urged that EfficientNet be used as a pre-trained
model. The categorization benefitted significantly from the

spatial relationship between feature vectors, which helped
tremendously. Each of these feature vectors has the potential
to supply information that is analogous to that provided by
the vectors to either side. Here, a feature graph was provided
to keep the image’s spatial details intact [39].

Using a chaotic bat algorithm, a refined version of AlexNet
as well as Ensemble Learning Model (ELM). Here, a pre-
trained AlexNet is used, involving dataset training using
images. The process of training the parameters was laborious
and time-consuming. To make the AlexNet model more
stable, Batch Normalization (BN) was implemented here.
As an additional step, the AlexNet model had multiple layers
replaced with the ELM. Thus, the model’s precision improves
as a result [40].
The initial presentation of DR detection through BV and

OD segmentation, alongside the identification of retinal
anomalies, was introduced. This approach encompasses three
fundamental components: pre-processing, segmentation, and
the classification, each playing a pivotal role. During the
pre-processing stage, the CLAHE method was utilized to
process and enhance the green channel component within
the Red, Green, Blue (RGB) scale. Once the OD and the
BVwere primed for segmentation, Subsequent steps involved
devising methodologies like the top hat transformation
and the Gabor filtering to efficiently identify and isolate
anomalies. Throughout the segmentation process, various
attributes such as TEM (Texture Energy Measurement),
Entropy, and LBP (Local Binary Pattern) were extracted.
Moreover, the approach incorporated the Trial-dependent
Bypass with an enhanced Dragonfly Algorithm (TB-DA)
for optimal feature selection. For distinguishing between
different severity levels (light, moderate, and severe), the
hybrid neural network method was employed. The exper-
imental outcomes were compared to established methods,
assessing various metrics including accuracy, NPV (Neg-
ative Predictive Value), precision, FDR (False Discovery
Rate), FNR (False Negative Rate), MCC (Matthews Cor-
relation Coefficient), FPR (False Positive Rate), and the
F1-score [41].

Recent studies have investigated the feasibility of employ-
ing automatic ocular processing of images for GL screening,
with results that vary. The techniques covered below span
a variety from simpler machine learning methods to more
advanced ones, such as DL. GL has been detected using both
open and combined datasets. Some research has tried to use
a composite of retinal scans from several public sources to
diagnose GL. For example, a combination of DRISHTI, and
RIMONE V3 publicly available datasets extracted features
from the OD and the optic cup to identify GL [42].

An automated GL diagnosis system using three distinct
CNN model learning techniques, with results validated by
ophthalmologists. The researchers utilized a wide array of
neural networks, including Transfer Convolutional Neural
Networks (TCNNs), Semi-Supervised Convolutional Neural
Networks (SSCNNs) with self-learning, Denoising Auto
Encoders (DAE) that relied on both labeled and unlabeled
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FIGURE 2. The overall process flow.

input data. Their models, when run on the RIMONE and
RIGA open-source datasets, showed convincing results and
proved that DL models are good at finding GL. The authors
say that the TCNN, SSCNN, and SSCNN-DAE all had an
overall accuracy of 91.5%, 92.4%, and 93.8%, respectively
[43]. A transfer learning-based model was utilized to do
automatic GL categorization. Color fundus pictures from
the RIM-ONE and DRISHTI-GS databases were used. They
added images from two more campaigns in Barcelona,
Spain, to their original dataset. Subsequently, using a transfer
learning method, they performed image preprocessing and
fine-tuned five distinct CNN models. The study revealed
that the VGG-19 architecture exhibited the most favorable
performance, reaching an Area Under the Curve (AUC) of
94%, accompanied by a sensitivity of 87% and a specificity
of 89% [44]. VGG16, VGG19, Xception, InceptionV3,
and ResNet50 are pre-trained architectures on ImageNet
for GL detection, eliminating the requirement for feature
extraction or estimating geometric Optic Nerve Head (ONH)
parameters like Cup-to-Disc Ratio (CDR). Combining five
publicly accessible datasets of 1,707 fundus pictures created
the ACRIMA dataset. The ACRIMA dataset, which con-
tains 396 GL pictures and 309 normal eye images, performed
at 0.7678 with an accuracy of 70.2% on the test dataset.
The additional open-source datasets in this analysis (HRF,
sjchoi86-HRF, RIM-ONE, and DRISHTI-GS1) have AUC
values of 0.8354, 0.7739, 0.8575, and 0.8041 [45].

III. MATERIALS AND METHODS
The fundamental objective of this research is to enhance the
efficiency of timely identification of multi-class DED utiliz-
ing ocular fundus images by experimentally evaluating image
preprocessing and classification enhancement strategies.

The aims in this area may be summed up as follows:
• Deploy conventional techniques of image processing

like improving image quality, expanding dataset through
augmentation, and segmenting images.
• Exploring different model configurations to observe their

impact on CNN outcomes.
• Compare the accuracy of the original and pre-processed

fundus images using the pre-trained CNN models Xception,
ResNet50, VGG-16, and EfficientNet B7.
• Training pre-processed fundus images involves utilizing

a DCNN model to improve classification accuracy.
• Performance measures are utilized to assess and compare

the outcomes of the pre-trained model with those of the new
model.

The pipeline illustration in Fig. 2 illustrates the overall
process flow. The dataset consisting of raw retinal fundus
images was subjected to testing using four different pre-
trainedmodels, namely ResNet50, VGG-16, EfficientNet B7,
and Xception, in order to identify the most effective Model.
The raw fundus pictures were subjected to normal image
processing techniques, and the dataset was then trained using
the most effective model identified in the prior experiment.
Additionally, a custom-built DCNN was employed to train
pre-processed data. Ultimately, a comparison of outcomes
was conducted to evaluate whether the execution accuracy
of the models improved with the utilization of pre-processed
images.

A. DATASET DESCRIPTION
The dataset comprises Retinal images categorized into CA,
DR, GL, and NORMAL as shown in Fig. 3.
• Images were collected from publicly available datasets,

including IDRiD, Oculur recognition, DRISHTI-GS,
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Retinal Dataset on GitHub, Messidor, and the
Messidor-2.

• Each of the images is labeled by ophthalmologists,
and its lesion grade is determined based on new BV,
hemorrhages, and microaneurysms.

• TheMessidor Dataset comprises of 1200 ocular fundus
images of the back part of the eye’s interior, which were
taken using a 3CCD color video camera attached to a
Topcon TRC NW6 non-retinograph with a 45-degree
Field of View (FOV). It was designed to facilitate
computer-assisted DED studies.

• The Messidor-2 Dataset is an openly accessible dataset
with 1,748 color images of retinas from 874 subjects.
Each subject contributes two images, one for each
eye. It uses International Clinical Diabetic Retinopathy
(ICDR) and Diabetic Macular Edema (DME) grades to
assign four disease rates per subject.

• The dataset known as DRISHTI-GS includes 101 ocu-
lar images, consisting of 31 normal and 70 showing
GL-induced damage. To address limited images,
an upsampling technique was used, selecting 1000
images from each class for experimentation.

FIGURE 3. Data distribution.

B. IMAGE PRE-PROCESSING
The purpose of the pre-processing phase is to eliminate noise
and irregularities from the ocular fundus image, thereby
enhancing its quality and contrast. Along with contrast
improvement, noise reduction, and image normalization,
this pre-processing step can help mitigate irregularities and
enhance the accuracy of subsequent stages in the process.
In the quest to detect clinical features related to DED, image
processing aims to elevate and refine the quality of the ocular
fundus image. Fig. 4 shows a flowchart of the method for
segmenting and processing images.

Furthermore, DED characteristics from fundus images are
localized, retrieved, and segmented for further classification
in pre-trained models. This section briefly discusses the
preprocessing methods used in this study.

1) IMAGE ENHANCEMENT
Prior to processing, image-enhancing techniques were
applied, including contrast enhancement and lighting
adjustments, to improve the informational content and visual

FIGURE 4. The workflow of data preprocessing.

quality of the original images. The technique of CLAHE [19],
[61] are used to enhance the visual clarity of the images.
The CLAHE technique constitutes a modified component
inside the Adaptive Histogram Equalization (AHE) process.
The suggested approach encompasses the application of
the boosting function to each individual pixel inside the
designated region, followed by the identification of the
corresponding transformation function. This phenomenon
exhibits dissimilarities in comparison to AHE due to its
relatively diminished level of contrast. In CLAHE, Contrast-
Limited Histogram Equalization (CLHE) is employed as a
method to improve an image’s contrast. This is achieved by
applying CLHE to smaller regions of the image known as
tiles, as opposed to the whole image. Bilinear interpolation
is then used to put the tiles back together in a perfect
way. CLAHE was used on grayscale images of the retina.
A function called ‘clip limit’ is used to limit the amount
of noise in an image, clip the histogram, and make a grey-
level mapping. In the contextual area, the number of pixels is
split evenly between each level of grey, in order to obtain an
average pixel value that is grey, as indicated by:

Navg =
(Ncr − xp)× (N cr − yp)

Ng
(1)
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where Navg represents the number of pixels on average, Ng
denotes the number of grey levels inside the contextual zone.
Ncr − xp represents the amount of pixels in the contextual
region’s x direction. Ncr − yp represents the amount of pixels
in the contextual regions y direction, then figure out the real
clip limit.

Ncl = Nclip × Navg (2)

CLAHE [55] is a helpful method in biological image
processing since it effectively highlights the key parts of an
image as shown in Fig. 5

FIGURE 5. Sample retinal fundus image and Enhanced image.

Illumination Modification: This preprocessing approach
attempts to minimize the scenario effect introduced by retinal
images with inconsistent illumination [48]. The following
formula is used to determine the intensity of each pixel:

pi = p0 + µd − µl (3)

where p0 and pi represent the initial and current pixel sizes,
µd represents the target average intensity, and µl represents
the local average intensity, respectively [49]. This procedure
amplifies the appearance of formattedmicroaneurysms on the
retinal surface.

2) IMAGE AUGMENTATION
DLmodels exhibit superior performance when provided with
substantial volumes of data for learning purposes [50], [51].
Hence, the term ‘‘data augmentation’’ encompasses a group
of procedures used to expand the training data size without
adding any new examples. As a result, geometric changes
including flipping, rotation, mirroring, and cropping are dis-
cussed as part of the picture augmentation methods covered
in this study. Real-time image augmentation was facilitated
using the Keras Image Data Generator class, ensuring that
the selected model would obtain image variations during each
iteration. In this study, the utilized Image Data Generator
class possesses the capability to mitigate overfitting of the
selected model by maintaining a consistent dynamic range in
the generated images as compared to the originals.

3) IMAGE SEGMENTATION
While designing a classification system for DL-based
moderate DED detection, it is critical to consider both the

network design and input data quality. For the results to
be accurate, the input image quality is a crucial element.
The outcome of an automated disease diagnosis method
for retinal fundus images is contingent on factors such
as the number of images available, the image brightness
and contrast, and the presence of anatomical characteristics.
Therefore, the process of feature segmentation enhances
the utility of images in classification tasks and contributes
to the enhancement of accuracy. The procedure is used
with the corresponding theoretical framework, is outlined
below.

a: EXTRACTION OF BV
for diagnosing DR at its earliest stages, Retinal BV is
a key anatomical characteristic in images of the retina.
Following these stages accomplishes segmentation of retinal
BV: Improved outcomes can be attained by the use of (i)
image enhancement, (ii) Tyler Coye algorithm [52], and (iii)
morphological operations [46].
After applying the aforementioned image processing

methods, the green RGB channel provided the most effective
comparison between the vascular network and the backdrop.
The methods presented by Zuiderveld [19] and Youssif et al.
[49] are used to estimate the contrast and brightness changes
in a fundus image’s backdrop. ISODATA in the Tyler Coye
algorithm is then utilized to retrieve the threshold level once
contrast and brightness have been adjusted. Morphological
operation (erosion and dilation) was utilized to improve upon
the Tyler Coye algorithm’s work. These two basic procedures
are crucial for eliminating background noise and filling
in foreground details. The following equation depicts the
process of erosion, which is utilized to eliminate or enhance
the border of the region.

M ⊖ N = {p|Np ⊆ M} (4)

M ⊕ N = {x|Nx ∩ X ̸= 0 (5)

M · N = (M ⊖ N )N (6)

In which, the dilation is represented by ⊖, and the erosion
is represented by where M is the structural element, and N
is the dilatation of that set’s erosion. Unfortunately, Tyler
Coye algorithm still has a few gaps. As seen in Fig. 6,
this morphological procedure fills up the microscopic gaps,
covering a portion of the essential BV areas.

FIGURE 6. Sample retinal fundus image and extracted.
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b: IDENTIFICATION AND EXTRACTION OF THE OD
GL is a condition that arises due to optic nerve injury.
Segmentation ofOD is a useful technique for investigating the
sharper anatomical changes in the optic nerve. Fig. 7 displays
anatomically accurate retinal fundus images obtained from
the data set including the OD. The CHT (Circular Hough
Transform) was employed to identify the circular objects, and
then the median filter was utilized to reduce the noise, and
threshold values were applied to segment the OD, as depicted
in Fig. 8, for the purpose of OD segmentation. CLAHE can
only be applied on a specified section, or ‘‘tile,’’ of the image.
It cannot be used on the entire image.

FIGURE 7. Sample retinal fundus image and optical nerve damage in
Glaucoma (GL).

Setting the maximum contrast rate to L, 0 ≤ L ≤ L
[53] adapts the image enhancement computation to the
user-specified maximum contrast level. Additional contrast
enhancement is applied to images with low contrast measured
by

φ (a, b) =
(

µ (a, b)
δ −1

)
(0 − 1) (7)

where, φ (a, b) and µ (a, b) denote the pixels after trans-
formation and the pixels before transformation in the (a, b)
coordinates, respectively. 1 is the highest pixel value, δ is
the lowest pixel value of the input image and 0 is the highest
value of the grayscale image.

The use of median filtering is prevalent in the domain of
image processing due to its notable efficacy in reducing noise.
Using the median filtering, the median pixel value of the
window is used to replace the value at the window’smidpoint.
Median filtering may be expressed mathematically as,

F (a, b) = median(s,t)∈Sab {g(s, t)} (8)

Extraction of objects or segmented areas with similar
attributes from the background is the goal of segmentation,
using a pixel classification approach [54], [62]. Conse-
quently, the identification of OD was facilitated using the
CHT. Circular shapes in images are easy targets for the
CHT technique. The CHT method improves compared to
alternatives because the model demonstrates a significant
level of sensitivity to variations in the feature specification

descriptions while being moderately resistant to the presence
of image noise. The computation of the CHT is performed
using the following formula:

(m− a)2 + (n− b)2 = c2 (9)

The following are the stages in the process of circle
detection (i) the image’s binary edges are extracted, (ii) the
parameters ‘a’ and ‘b’ are given values, (iii) determine the
radius value of ‘c’, (iv) modify the accumulator in accordance
with (a), (b), and (c), (v) within the scope of interest, replace
‘a’ and ‘b’ values and proceed to stage that computes ‘c’.

FIGURE 8. Sample retinal fundus image and segmented optic disc.

c: LOCALIZATION AND DETECTION OF EXUDATE
Exudates may be seen as bright patches of varied size,
brightness, position, and form in two-dimensional ocular
images taken using a digital fundus camera. Accurate
exudate segmentation is difficult because of the vast variation
in exudate size, intensity, contrast, and shape. Given the
wide range of size, intensity, contrast, and form, precise
segmentation of exudates is a challenging task. There
are three main processing processes: (1) improving image
quality; (2) detecting and eliminating the OD; (3) eliminating
BV; and (4) extracting exudates. Classification of DR can be
accomplished by applying the evaluation standards outlined
in the Messidor dataset after exudates have been obtained
from the mild dataset. Fundus images may be utilized to
identify the existence of the exudates, allowing for a timely
diagnosis of early DR. When the OD is found and detached,
Otsu thresholding is used to identify potential exudate
regions. The Otsu technique can automatically estimate a
threshold value of T from the provided input ocular image.
Then, (10) represents the histogram uses to calculate its
intensity value,

P (i) =
ni
N

,P (i) ≥ 0,
256∑
1

P (i) = 1 (10)

The number of pixel images N , as well as the number of
pixels ni with intensity I . Equations (11) and (12) describe
the subject weight and background.

W1 (t) =
t∑
i=1

P (i) (11)

W2 (t) =
L∑

i=t+1

P (i) = 1−W1 (t) (12)
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Here, the gray level number is L. The background and the
objectmean is determined by using (13) and (14) respectively.

M1 (t) =
t∑
i=1

i ·
P (i)
W1 (t)

(13)

M2 (t) =
t∑
i=1

i ·
P (i)
W2 (t)

(14)

Thus, variance is evaluated by (15), (16) respectively, while
the (17) represents the expression for the sum of variance.

σ 2
1 (t)

t∑
i=1

(1−M1)
2
·
P (i)
W1 (t)

(15)

σ 2
2 (t)

t∑
i=1

(1−M2)
2
·
P (i)
W2 (t)

(16)

σ 2 (t) = σ 2
W (t)+ σ 2

B (t) (17)

Thus, σ 2
W is referred to as the WVC (Within-Class

Variance) and represented in the (18), where σ 2
B is referred

to as the BVC (Between-Class Variance) and is represented
in (19). The WVC is the total amount of variance between
classes after the probability of each class has been applied
to the total amount of variation. Equation (20) is used to
compute the average total. The threshold value may be
reached by minimizing WVC or maximizing BVC, however
BVC requires less computing time.

σ 2
W (t) = W1 (t) · σ1 (t)2 +W2 (t) · σ2 (t)2 (18)

σ 2
B (t) = W1 · [M1 (t)−MT ]2 +W2 · [M2 (t)−MT ]2

(19)

MT =

N∑
i=1

i.p(i) (20)

Morphology encompasses a group of distinct parameters
that pertain to the pixel entity inside an image, using logical
operations such as ‘‘or’’, ‘‘and’’. The opening procedure
seeks to remove pixel areas that are smaller than structural
elements and refine and restore object shape. Equation (21)
is used to represent opening operation.

MoN = (M2N )⊕ N (21)

The segmentation of exudates in the macula is shown
in Fig. 9.

C. TRANSFER LEARNING
This study employs CNN-based transfer learning to establish
a classificationmethod forDED retinal fundus images. Trans-
fer learning strategies are explored, leveraging pre-trained
CNNmodels to achieve optimal classification outcomes. The
following section will provide an in-depth exploration of
the specifics related to the pre-trained models. Pan et al.
[55] provide the following definition of transfer learning:
D = 8,P(X ) where X = x1, x2, . . . , xnϵ8, where D is
the domain, 8 is referred to feature space, and P(X ) is the

FIGURE 9. Sample retinal fundus image and segmented exudates.

marginal distribution of probabilities. T = Y ,F (·) is a learnt
objective predictive function from the feature vector and label
pairs, where T is the task and Y is the label space.

To be more precise, given Ds, a source domain and Ts,
a learning task, and Dt , a target domain and Tt , a learning
task, transfer learning is a procedure of enhancing the
target predictive function learning Ft (·) in Dt based on
the knowledge gained from the source domain Ds and the
learning task Ts, whereDs ̸= Dt , or Ts ̸= Tt . It is important to
acknowledge that the aforementioned single source domain
has the potential to include a multitude of other source
domains.

In image classification, transfer learning is based on the
idea that a neural network performs better when it is given
a large and varied dataset to learn from, such as ImageNet,
it can effectively excel in a particular target task, despite the
other having fewer labelled instances than the pre-training
dataset. Using these acquired feature maps is advantageous
in comparison to building a massive architecture from the
scratch using a massive dataset.

In this research, two approaches will be employed to
fine-tune existing trained models: (1) Feature extraction, the
process of using features discovered in the primary task to
draw out pertinent characteristics from the destination task.
To adapt the feature mappings learned from the sample data,
a new classifier was layered atop the pre-trained network,
with the option for training from scratch.

(2) The fine-tuning process, certain previously frozen lay-
ers within the base network are unfrozen, allowing training of
these unfrozen layers concurrently with the newly introduced
classifier layers. This fine-tuning procedure refines the base
network’s higher-level feature representations to make them
better fit to the target task. To accomplish DED image
classification, four CNN models that have been pre-trained
include ResNet50, VGG-16, Xception, and EfficientNetB7
are fine-tuned. The properties of four Image-Net pre-trained
CNN networks are listed in Table 1.

IV. PROPOSED DCNN ARCHITECTURE
In order to classify medical visual abnormalities, CNNs are
the most often used DL method [56]. This is because CNN
maintains individual characteristics when examining input
images. The following discussion highlights the relevance of
spatial connections in retinal images, such as the location
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TABLE 1. Three CNN models pre-trained using ImageNet and its features.

of BV rupture or the buildup of a yellowish fluid in the
macula. Fig. 10 depicts the whole procedure architecture.
Fundus images that have been processed using a DCNN
are automatically probed for their feature patterns, using the
network’s many layers and filters. The suggested framework
comprises a set of 2D convolutional layers, max-pooling
layers, and the batch normalization layers. These components
have been fine-tuned with carefully selected hyperparameters
to effectively capture features from input fundus images
spanning various categories. To facilitate the diagnosis
of eye diseases, we incorporated a fully connected layer
to serve as a classifier, which accepts the feature maps
generated by the CNN as input. The network consists a
total of seventeen weighted layers, constituting the proposed
model. This includes fourteen convolutional layers, two fully
connected layers, and one classification layer. Additionally,
the network is enhanced using batch normalization, max-
pooling, dropout, and flattening. In order to classify fundus
images, the most crucial and difficult step is to extract
features from them. In contrast to numerous manual and
machine learning-basedmethods for extracting features, deep
neural networks serve as automated feature extractors. The
convolutional operation, represented by (×), is a built-
in function and a fundamental component of deep neural
networks, essential for feature extraction. Mathematically,
it involves multiplying two functions (a and b) to generate
a third function (a × b). The use of a k × k window size
or kernel in convolution is preferred, with k ideally being
an odd integer for improved symmetry around the origin and
reduced aliasing errors. Convolutional layers store high-level
extracted features, with the kernel sliding across image pixels
to produce feature maps for each of the N filters in every
layer. If the input dimension of the fundus image is (P1×P2)
andN kernels with a k×kwindow are employed, the resulting
image shape will be N × ((P1− K + 1)× (P2− K + 1)).
This iterative process continues until precise feature patterns
are extracted from the input fundus image. The design
parameters proposed in this approach are carefully selected
in a systematic manner to fine-tune the DL model and
achieve effective results. Several locations from the parameter
combination are uniformly picked to provide the best
possible hyperparameter combinations. The best parameter
for controlling the dataset’s complexity is determined by
cross-validation for every feasible parameter combination.

The proposed DCNN architecture employed a constant
fundus image size of pixels, utilizing a 3 × 3 filter window
size across the entire network. This size choice provides
a relatively limited visual field, but it was sufficient for

preserving the image’s indications of vertical and horizontal
orientation, as well as its 224 × 224 × 3 central features.
In the convolutional layers of this proposed network, a stride
value of 1 pixel was applied, causing the kernel to shift by
1 pixel when padding was employed to retain information
at the image borders. Since the network-wide padding value
is uniform, an extra 1 pixel is appended to all four image
borders.

Training a deep neural network gets more difficult as the
number of parameters increases. To address this issue, pool-
ing layers are commonly employed to decrease the parameter
count. One popular pooling technique is max pooling, where
a window slides across the feature map generated from ocular
fundus images, selecting the highest point value within the
window. This method is often favored over other pooling
algorithms. In the proposed architecture, five max-pooling
layers were incorporated at different points after sets of
convolutional blocks. Thesemax-pooling layers utilize a 2×2
pixel window, a stride of 2, and maintain the same padding.
After each max-pooling layer is applied, DCNN increases
the total number of filters in use from 32 to 512 through
a series of weighted block configurations. Since the input
feature mapping can change as the network’s weights are
updated during training, this can add complexity to training
a deep neural network. Therefore, the proposed architecture
incorporates batch normalization, as it helps mitigate this
issue [57]. Batch normalization works by standardizing and
normalizing the input to a layer based on mini-batches of
data instead of the entire training dataset. This approach
enhances the robustness of the neural networks. It effectively
tackles the problem of the internal covariate shift by ensuring
that the input to each layer maintains a consistent mean
and standard deviation, which are representative of a normal
distribution. Gradients are less sensitive to changes in their
starting values and parameter sizes after being normalized
in batches. It initiates training for a deep neural network
with the activation function having a Gaussian distribution
of one unit. The DCNN was constructed using the optimizer
(Adam).

The training loss was minimized by optimizing the
learning rate and weights using the Sparse Categorical
Cross-Entropy function, which was employed along with
the Adam optimization function. The proposed architecture
uses dropout for regularization to reduce the possibility
of overfitting in situations when the system is required to
make a decision relying on an exceptionally extensive set of
parameters.

In order to retain neurons that can store patterns related
to eye diseases, a more pronounced utilization of dropout
is necessary during the classification phase. This differs
from the convolutional layer blocks responsible for feature
extraction [58]. To ensure training regularization, a dropout
value of 0.5 is employed in the initial two fully connected
layers, and a batch size of 32 is used.

Rectified Linear Units (ReLU) [59] are used to activate
all of the proposed architecture’s intermediate layers, and the
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FIGURE 10. The proposed DCNN layered architecture.

Softmax function [47] is used to activate the network’s output
layer since the dataset is nonlinear. ReLU is a nonlinear
activation function that outperforms Sigmoid and Tanh in
terms of performance and convergence speed. As shown
in (22) below, ReLU rectifies all the values that are negative
in the extracted feature map, which boosts accuracy and
shortens the training time.

ReLU (a) =
{
0, if a ≤ 0
a, if a ≥ 0

}
(22)

In the network’s output layer, Softmax activation function
was employed to transform the outcome into probabilities
for the classification of ocular fundus images into four
distinct categories: CA, DR, GL, and NORMAL. The initial
convolutional layer used 32 filters for feature extraction, with
an input shape of (224× 224× 3).

Throughout the proposed architecture, all convolutional
layers share common characteristics: they have a kernel size
of 3 × 3, use the same padding, employ a stride value of 1,
and utilize the ReLU activation function as specified in (23).

a11 a12 a13 a14 · · · a1n
a21 a22 a23 a24 · · · a2n
a31 a32 a33 a34 · · · a3n
a41 a42 a43 a44 · · · a4n
...

...
...

... · · ·
...

an1 an2 an3 an4 · · · ann


×

K1 K2 K3
K4 K5 K6
K7 K8 K9



Image Kernel

→

[
F1 F2
F3 F4

]
(23)

Extracted features

After every convolutional layer, batch normalization is
used to standardize and normalize the output of each
convolutional layer for training, as specified in (24).

a→ â =
a− µ

σ
→ b = γ â+ β (24)

In this context, (µ, σ ) represents the mean and the standard
deviation of a specific parameter within the β-shifted mini-
batch. Algorithm 1 determines the steps involved in mini-
batch batch normalization in detail.

The second convolutional layer also received identical
configurations, featuring 32 filters. To process the output
from the previous layer and decrease the dimensionality of
the feature maps, a max-pooling layer with a 2 × 2 kernel
size and a stride value of 1 was introduced. This particular
pooling layer setup is applied consistently after each pair of
convolutional layers within the architecture. The third and
fourth convolutional layers employed a set of 64 filters each.,
arranged in a 112×112×32 format. The shape of the output
from the previous layer was then reduced to (56×56×64) as
a result of the max-pooling layer’s operation, which used a
2 × 2 kernel size and a stride value of 1. The fifth
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TABLE 2. Various parameters in the proposed architecture.

FIGURE 11. Segmentation Results.

convolutional layer makes use of 128 filters of size 3 × 3.
The layer receives a 56 × 56 × 64 input shape, performs
a convolutional operation on the feature maps results in
an output shape of 56 × 56 × 128. The convolutional
layer’s output was normalized using batch normalization,

which extracted 512 parameters. Having an input shape of
56× 56× 128, and then applying batch normalization, sixth,
seventh, and the eighth layers are all identical to the fifth.
The ninth layer uses 256 filters and a 3 × 3 filter size as
input and output shape of the maxpool layer, which has the
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Algorithm 1 Technique of Batch Normalization Across a
Mini-Batch

Input: value of a over a mini-batch: β = {a1...n}; learnable
parameters: γ, β

Output: bi

1: µβ ←
1
p

∑p
j=1 aj

2: σ 2
β ←

1
p

∑p
j=1 (aj − µβ )2

3: âj←
aj−µβ√
σ 2

β+ϵ

4: γj← γ âj + β ≡ BNµ,β (aj)
5: return γj

dimensions of 28× 28× 128. After the convolutional layer,
1024 parameters are extracted using batch normalization.
With an input shape of 28 × 28 × 256 and then batch
normalization, the tenth and eleventh layers are identical to
the ninth. The output of the max-pooling layer is a feature
map with a shape of 14 × 14 × 256. The input shape
of the twelfth layer is 14 × 14 × 256 and 512 filters.
After batch normalization, the convolutional layer’s output is
normalized and 2048 parameters are extracted. The thirteenth
and fourteenth layers are identical to the prior layer. Max-
pooling serves to decrease the dimensions of the feature
map to 7 × 7 × 512 by employing the same window
size. Following a DCNN, a flattened layer is introduced to
transform the output into a one-dimensional vector. This
vector is subsequently employed for classification by means
of a fully connected layer. The first and second dense layers
use the ReLU activation function. These two dense layers
have a dropout layer inserted in between them with a dropout
rate of 50%. The output classification layer is built as a
densely connected layer, and it consists of four output neurons
that reflect the probability of each class during predictions.
Table 2 provides comprehensive details of the proposed
architecture’s configuration and parameters, including the
layer-by-layer output structure with weights.

V. EXPERIMENTAL DETAILS
A. HARDWARE AND SOFTWARE
All of the experiments are executed on a Jupyter notebook
using Python 3.8, running on hardware with a 2.3 GHz
Intel Core i9 processor, 16 GB of 2400 MHz DDR4 RAM,
and Intel UHD Graphics 630 with 1536 MB of memory.
MatLab was utilized for both the front-end and back-end
in the experiments. The data was divided into an 70/10/20
ratio, with 70% used for training, 10% for validation, and the
remaining 20% for testing. To ensure a balanced distribution
of classes, a generic selection method was employed for
data segregation. A mini-batch size of 32 was used, and
the categorical cross-entropy loss function was applied.
Adam, the default optimizer is used to generate DCNN with
60 epochs. Results were validated using the test dataset’s

accuracy, sensitivity, and specificity metrics, which are
standard performance assessment metrics.

B. EVALUATION CRITERIA
Themost effective DLmodel has undergone a comprehensive
evaluation using various metrics. This evaluation aims to
determine the accuracy of classifying DED as either true or
false. Initially, we present the confusion matrix in Table 3,
obtained through 10-fold cross-validation estimation [60].
This confusion matrix provides predictions for the following
outcomes: True Positive (TP): Correct diagnosis with the
identification of anomalies, True Negative (TN): Accurate
exclusion of periodic instances, False Positives (FP):
Instances incorrectly grouped as periodic. The values within
the confusion matrix are calculated using the performance
metrics outlined below.

1) ACCURACY
Accuracy (Acc) serves as a crucial metric when evaluating
the performance of DL classifiers. It is a representation of
the correct predictions, encompassing both true positives and
true negatives, divided by the total number of elements in
the matrix. While a highly accurate model is desirable, it’s
important to ensure the use of balanced datasets, where false
positive and false negative values are approximately equal.
To evaluate the effectiveness of the proposed classification
model on the DED dataset, we will calculate the elements of
the previously mentioned confusion matrix.

Acc (%) =
TP+ TN

TP+ FN + TN + FP
(25)

2) SENSITIVITY
Sensitivity (Sen) is determined by dividing the count of
accurate positive predictions by the total count of positive
predictions. Sen ranges from 0.0 (lowest) to 1.0 (highest). The
following equation is utilized to compute sen:

Sen =
TP

TP+ FN
(26)

3) SPECIFICITY
Specificity (Spe) is determined by dividing the count of
correct negative predictions by the total count of negatives.
Spe also ranges from 0.0 (lowest) to 1.0 (highest). The
following equation is used to calculate Spe:

Spe =
TN

TN + FP
(27)

TABLE 3. Illustration of a confusion matrix.
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C. RESULTS
In this study, the performance Acc of three distinct pre-
trained DL models, namely ResNet 50, VGG-16, Xception,
and EfficientNet B7, was compared and analyzed against
the new DCNN model. Large-scale ImageNet data was
used to train and evaluate the pre-trained models used in
this study. This data includes images of vehicles, animals,
flowers, and more. While models are successful in object
image categorization, their use is limited to specific domains
like medical lesion (DED) detection. Retinal fundus images
include a variety of complicated characteristics and lesion
localization that influence the prediction of pathological
indications. Each CNN layer creates a unique representation
of the input image by successively extracting its most
salient features. For example, the first layer can learn edges,
whereas the last layer can recognize a lesion as a DED
classification characteristic. As a consequence, the following
conditions were tested: BV, macular areas, and the OD have
all been recognized, localized, and segmented as regions of
interest.

For each phase of the proposed system, a blend of
standard image segmentation methods was employed. All of
these algorithms yielded successful segmentation outcomes,
demonstrated in Fig. 11, for the specified area of interest.
To establish a high-performance system, a series of steps were
taken, encompassing the image enhancement, segmentation
of BV, OD identification and the extraction, macular region
extraction, BV removal, OD elimination, feature extraction,
and feature classification. Following segmentation, the image
size was optimized to a feasible dimension based on the input
specifications of each network. The Image Data Generator
class in Keras was used to augment the imbalance dataset in
real time, reducing the possibility of model overfitting. Pre-
trained models were utilized for fine-tuning after having n
layers (CNN layer dependent) discarded and re-trained.

Table 4 and 5 display the conclusive results for each model
used for comparison, presenting Acc percentages as the key
metric. Among the four fully trained DLmodels, EfficientNet
B7 exhibited superior classification performance, surpassing
ResNet 50, VGG-16, and Xception. Similarly, the newly
developed CNN model, leveraging pre-processed retinal
images, demonstrated exceptional performance, aligning
with the proficiency of the other pre-trained models.

Table 4 and 5 display the conclusive results for each model
used for comparison, presenting Acc percentages as the key
metric. Among the four fully trained DLmodels, EfficientNet
B7 exhibited superior classification performance, surpassing
ResNet 50, VGG-16, and Xception. Similarly, the newly
developed CNN model, leveraging pre-processed retinal
images, demonstrated exceptional performance, aligning
with the proficiency of the other pre-trained models.
Ablation Analysis: To explore the effectiveness of the key

components in the proposed DCNN structure, an ablation
study is conducted and the results are shown in Tables 6 and 7.
Initially, the preprocessing components image enhancement
filters, and morphological operators are removed from this

TABLE 4. Model’s average performance on original images.

TABLE 5. The efficientNetB7 Model’s average performance on
pre-processed images.

TABLE 6. The DCNN model’s average performance on original images.

TABLE 7. DCNN model’s average performance on pre-processed images.

framework and train the model with original retinal input
images. As observations from Tables 6 and 7, the average
performance on original images like Acc, Prec, Sen, Spe
is downgraded than the performance of the pre-processed
retinal images.
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FIGURE 12. EfficientNet B7 model performance.

FIGURE 13. Proposed DCNN model performance.

For example, the performance of the model in classifying
the DED’s class CA is downgraded by Acc 28.1%, Sen
41.13%, Spe 14.71%, and Prec 18% than pre-processed
retinal fundus images.

It shows the importance of the pre-processing in the
DCNN framework. For the multi-class classification of
healthy and various DED statuses, the ROC curves and
confusion matrices of EfficientNetB7, best performed pre-
trained DL model and a built DCNN model are depicted
in Fig. 12 and Fig. 13.

D. DISCUSSION
This research investigates the application of multi-class
classification using DL techniques to automatically detect

three distinct DEDs. The findings of this study highlight
that the intricacy of DL algorithms is primarily affected by
the quality and the quantity of available data, specifically
ocular fundus images, rather than the inherent method itself.
In this study, publicly accessible annotated fundus image
data were utilized for experimentation. It is worth noting
that labeled hospital fundus images could potentially yield
more robust, practical, and realistic results for computer-
aided clinical applications. CA, DR, and GL are three of
the most common retinal disorders associated with diabetes.
Without timely assessment and intervention, these conditions
have the potential to cause significant and irreversible
visual impairment [1], [2]. Increasing life expectancy, busy
lifestyles, and various other variables all point to a rise in
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the number of diabetics [1]. Early detection of abnormal
symptoms reduces the future progression of the disease,
its impact on affected persons, and associated medical
expenses. Consequently, the DED identification system has
the potential to fully automate or partially automate the eye-
screening process. The first approach necessitates a high level
of Acc, similar to that of retinal specialists. In line with the
guidelines of the British Diabetic Association (BDA), the
chosen approach must meet the lowest threshold of 95%
Spe, and 80% Sen for the detection of vision-threatening
DR method. It condenses the results of massive screening
efforts to identify possible DED instances for further study
in humans. Both of these alternatives substantially reduce
the need for trained ophthalmologists and specialist facilities,
opening up the procedure to a much larger population and
making it more feasible in areas with limited resources.
Additionally, addressing early categorization issues remains
a key clinical concern.

Risk Analysis: As observed, DED progression is a risk
factor with a long history of diabetes, age over 40, anemia,
obesity, and other risk factors. Patients with DED should be
screened at least once a year. However, the DED patient’s
history is required to analyze the disease’s progression. This
DED is classified into four classes according to its severity.
The DCNN-based framework provides a solution but it needs
a large dataset to develop the optimal model which includes
numerous training parameters. The collection of numerous
labeled diabetic retinal fundus images is a challenging
task. Because it needs many ophthalmologists to annotate
numerous ground truth images. The proposed framework
utilizes augmentation methods to deal with the inadequacy
of the retinal images. The identification of lines, curves,
orientation, and textures in ground truth retinal images is
a challenging task. On the other hand, feature maps are
generated by convolution layers through the extraction of
those features more accurately than handcrafted features. The
DCNN fully-connected layer learns the pattern of the features
and classifies the disease in the output layer.

Previous studies predominantly centered on binary clas-
sification for predicting diabetic eye diseases. It’s worth
noting that even though Google has developed a DL model
that surpasses the performance of ophthalmologists, their
‘Inceptionv3’ model was specifically optimized for binary
classification in the context of DR identification [14]. Due to
the very minor signs of the impairment, multi-class DED is
sometimes very difficult to distinguish from a normal retina,
therefore an enhancement in the data quality was anticipated.
To make abnormal features more visible, CNN architecture’s
top layer was removed and retrained EfficientNetB7, which
produced Acc values of 94.13%, 88.43%, 93%, and 90%
for each (Table 5). Xception and ResNet50 achieved the
lowest performance. The effect of the fine-tuning differed
throughout the models. The observed Acc pick-up was
minimal, confirming the suitability of networks that are pre-
trained by default for DED classification tasks. In simpler
terms, even though these CNN networks underwent training

on a diverse range of images from the ImageNet library, they
exhibited the capability to differentiate between multi-class
DED and a healthy retina. Unfreezing is not recommended
if it does not increase in Acc, since this would waste
computing resources and time. Comparisons of the study’s
results with existing works reveal notable achievements. The
DCNN model outperforms other models in DR detection
with an Acc rate of 98.33% compared to the existing work’s
range between 93% and 96% [14]. Additionally, for CA
detection, the DCNN model achieved an Acc of 96.43%,
aligning closely with existing studies reporting rates ranging
from 92.91% [29] to 95.78% [30]. The DCNN model also
demonstrates superior performance in GL detection with
an accuracy of 97%, surpassing existing studies reporting
accuracies of 91.5%, 92.4%, and 93.8% [43]. The Acc
of the proposed DCNN model was 96.43 %, 98.33 %,
97%, and 96% respectively. The performance of the utilized
models was compared using two scenarios: (1) before image
preprocessing and (2) after image preprocessing. To address
overfitting, models underwent training on a raw dataset with-
out preprocessing, including data augmentation involving
geometric transformations applied to theMessidor,Messidor-
2, and DRISTI-GS datasets. Post-image preprocessing, the
datasets were subjected to various conventional image
processing techniques, resulting in an enhanced classification
performance of 98.33% (the greatest Acc obtained for DR).
After evaluating the high-performing technique on the CA,
DR, GL, and NORMAL detection tasks, maximum Sen of
99.46%, 99.32%, 98%, and 93% were achieved, along with
maximum Spe of 93.24%, 91.67%, 88.24%, and 94.65%.
Therefore, early DED detection met the BDA requirements
sufficiently, although Spe was deficient by 9% and 6%.

VI. CONCLUSION
This work presents a method for identifying multi-class
DED, which has not been thoroughly described in ear-
lier research. A number of DL performance optimization
strategies have been used, including image enhancement
methods, like extracting the green channel, CLAHE, and
illumination correction, were applied. Subsequently, image
segmentation methods such as the Tyler Coye Algorithm,
Otsu thresholding, and Circular Hough Transform are applied
to extract the essential ROI’s such as extraction of features
like BV, the macular region, and the optic nerve from the
raw ocular fundus images. After preprocessing, these images
are trained using EfficientNetB7 model that outperformed
among the four pre-trained models ResNet50, VGG-16,
Xception, and EfficientNetB7 and the proposed DCNN
model. The proposed DCNN methodology holds promising
results for the CA, DR, GL, and NORMAL detection tasks,
achieving accuracies of 96.43%, 98.33%, 97%, and 96%,
respectively. Automatic identification capabilities that are
highly selective across categories are another advantage of
DL. This approach helps overcome the technical constraints
linked to the analytical and frequently subjective process of
manual feature extraction. Moreover, the study incorporated
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comprehensive datasets from various origins to assess the
system’s robustness and its capacity to handle real-world
scenarios. The proposed model streamlines labor-intensive
eye-screening procedures and acts as a supplementary
diagnostic tool, minimizing human subjectivity.
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