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ABSTRACT A printed circuit board (PCB) functions as a substrate essential for interconnecting and
securing electronic components. Its widespread integration is evident in modern electronic devices, spanning
computers, cell phones, televisions, digital cameras, and diverse apparatus. Ensuring product quality man-
dates meticulous defect inspection, a task exacerbated by the heightened precision of contemporary circuit
boards, intensifying the challenge of defect detection. Conventional algorithms, hampered by inefficiency
and limited accuracy, fall short of usage benchmarks. In contrast, PCB defect detection algorithms rooted in
deep learning hold promise for achieving heightened accuracy and efficiency, bolstered by their adeptness at
discerning novel defect types. This review presents a comprehensive analysis of machine vision-based PCB
defect detection algorithms, traversing the realms of machine learning and deep learning. It commences by
contextualizing and elucidating the significance of such algorithms, followed by an extensive exploration of
their evolution within the machine vision framework, encompassing classification, comparison, and analysis
of algorithmic principles, strengths, and weaknesses. Moreover, the introduction of widely used PCB defect
detection datasets and assessment indices enhances the evaluation of algorithmic performance. Currently,
the detection accuracy can exceed 95% at an Intersection over Union (IoU) of 0.5. Lastly, potential future
research directions are identified to address the existing issues in the current algorithm. These directions
include utilizing Transformers as a foundational framework for creating new algorithms and employing
techniques like Generative Adversarial Networks (GANs) and reinforcement learning to enhance PCB defect
detection performance.

INDEX TERMS Deep learning, defect detection, machine vision, neural networks, PCB.

I. INTRODUCTION

In recent years, electronic products have witnessed
widespread utilization and popularity, driven by the rapid
expansion of the global economy and the swift evolution of
information technology [1], [2]. With continuous upgrades
and enhanced functionalities of electronic products, the req-
uisites for performance and quality in printed circuit boards
(PCBs) are on the rise [3]. Functioning as foundational
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underpinnings and pivotal components within electronic
products [4], PCBs must demonstrate robust stability,
pronounced resistance to interference, and excel in charac-
teristics encompassing high-speed transmission, heightened
integration levels, and compact dimensions [5]. Furthermore,
PCB layout encompasses the strategic arrangement of PCBs,
constituting a critical stage in electronic device manufactur-
ing. Key concepts in the PCB layout process include:

1) Layout: This involves planning and organizing the
placement of electronic components, connection lines, holes,
and other specific elements on a PCB. The quality of the
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layout directly influences circuit performance, electromag-
netic interference (EMI), thermal performance, and mainte-
nance challenges.

2) Component placement: An essential phase in the layout
process, which includes the positioning of electronic compo-
nents (such as chips, resistors, capacitors, connectors, etc.) on
the PCB. Proper component placement is integral to ensuring
optimal circuit performance and signal transmission.

3) Routing: Upon completion of the layout, the wiring
routes must be established to interconnect the various compo-
nents and form the circuit. Routing requires consideration of
factors like signal integrity, power supply, ground, and signal
transmission lines.

4) Power distribution: The layout process must include a
rational plan for the distribution of power and ground lines
to ensure that electronic components receive a stable power
supply and to minimize noise and interference within the
circuit.

Therefore, PCB layout is a pivotal step in the design and
manufacture of electronic products. It demands that engi-
neers consider multiple factors concurrently—performance,
heat dissipation, and maintainability—to ensure the ratio-
nal layout and connection of electronic components. This
careful planning ensures that the PCB meets the design
requirements and facilitates smooth manufacturing. Hence,
ensuring defect detection and implementing quality con-
trol measures for PCBs assume paramount significance
in the domain of PCB manufacturing and production
processes [6].

Nevertheless, due to the diminishing size of components,
amplified component density, and intricate and diverse nature
of PCB manufacturing, PCBs become susceptible to a range
of factors, including mechanical friction, electrostatic inter-
ference, and chemical corrosion, during production. These
factors can readily give rise to a spectrum of defects, such
as missing holes, mouse bites, open circuits, shorts, spurs,
spurious coppet, and broken holes [1], [7]. Figure 1 illustrates
a variety of PCB defect types. These defects substantially
undermine the quality and performance of PCBs. Failure to
detect and address these issues promptly can directly impede
the regular operation and service life of electronic devices,
potentially resulting in severe accidents and incidents. Con-
sequently, swiftly and accurately detecting and locating PCB
defects during the manufacturing process holds paramount
significance.

Presently, the detection of PCB defects stands as a crucial
concern within the electronics manufacturing sector. Various
inspection methods have been researched and developed to
address diverse PCB defects and align with the demands
of industrial production. These include the functional test
method, visual inspection technology, instrument on-line
inspection method, and manual visual subjective determi-
nation method [9], [10], [11]. Among these, the functional
test method involves utilizing a fault simulator to assess the
circuit board’s functionality and identify potential defects.
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Although offering commendable reliability and accuracy, this
approach necessitates specialized equipment and intricate
testing procedures, resulting in a laborious and time-intensive
process. Visual inspection technology primarily relies on arti-
ficial intelligence algorithms, utilizing image processing and
pattern recognition techniques for swift and automated identi-
fication of PCB defects [12]. However, its effectiveness relies
on ongoing optimization and enhancement of the detection
algorithm. The instrument on-line detection method serves
primarily to oversee PCB defects via various instruments,
including the high-voltage detection and insulation hydro-
carbon detection methods. This approach offers the benefits
of convenient operation and rapid detection but occasionally
faces challenges of misjudgment. The artificial visual subjec-
tive judgment method predominantly hinges on experiential
and perceptual assessment, rendering it susceptible to human
influence; nevertheless, it finds applicability in certain spe-
cialized inspection scenarios.

Despite the array of PCB defect detection methods, each
approach presents inherent limitations and deficiencies. The
selection of the suitable method must align with specific
requirements and circumstances. In recent years, propelled
by the continual progress and integration of technology, deep
learning-based algorithms have progressively gained promi-
nence across diverse industries. Within the industrial sector,
these algorithms find utility in processing and positioning
tasks [13], [14], while also capable of identifying defects in
3C products [15], [16], [17]. Similarly, within the medical
field, deep learning-based algorithms aid doctors in analyzing
medical images for diagnostic support [18], [19]. In agri-
culture, these algorithms contribute to crop monitoring [20],
[21], [22], [23]. Additionally, in the military domain, deep
learning-based algorithms analyze remote sensing images to
facilitate swift positioning [24], [25], [26]. Simultaneously,
PCB defect detection algorithms based on deep learning are
poised to emerge as pivotal tools within the electronic man-
ufacturing industry, offering a broader scope of application
and developmental opportunities.

A standard PCB typically comprises several distinct layers:

1) Bottom copper layer: This foundational metal layer
provides ground connections and layouts for various circuit
components. It frequently includes a soldermask layer to
safeguard the circuit traces and a copper layer.

2) Top copper layer: This uppermost metal layer hosts the
primary circuit components, wires, and signal paths, often
including pads for connecting electronic elements.

3) Inner layers: Beyond the bottom and top copper layers,
a PCB may feature one or more inner layers composed of
glass fiber and copper foil, which facilitate signal or power
transmission.

4) Signal layers: These layers transmit signals between
electronic components, encompassing data, control signals,
and clock signals.

5) Power layers (power planes): These layers supply
power connections, including power and ground, typically
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FIGURE 1. Variety of PCB defect types: (a) Missing hole [8]; (b) Mouse bite [8]; (c) Open circuit [8]; (d) Short [8]; (e) Spur [8]; (f) Spurious copper [8].

distributing power and ground connections to ensure board
power stability.

6) Ground layer (ground planes): This dedicated layer
provides a stable ground connection to minimize signal inter-
ference and enhance circuit performance.

7) Pad layer: Positioned on top of the top and bottom
copper layers, the solder mask layer protects the circuit traces
and copper layer to prevent short circuits, typically featuring
pad openings to allow electronic component soldering.

8) Silkscreen layer: This layer commonly includes labels,
component pin markings, and additional component informa-
tion to aid assembly and maintenance personnel in correctly
identifying and handling electronic components.

These layers’ configurations can differ according to
PCB design requirements. As this review focuses on deep
learning-based PCB defect detection—predominantly based
on machine vision applications—defect detection usually
pertains to surface layers, including:

1) Top copper layer: Here, the deep learning model can
identify pad defects, such as false soldering, short circuits,
open circuits, offsets, and other issues.

2) Bottom copper layer: This layer also accommodates
the layout of pads and electronic components, with defect
detection similar to the top copper layer.

3) Pad layer: In this layer, the deep learning model can
detect defects within the pad opening area.

4) Silkscreen layer: This layer, containing information
about component markings and pin markings, allows deep
learning models to detect issues such as broken and shifted
lettering.

Moreover, some PCBs may incorporate specialized layers
like soldermasks, inner layers, etc., which could be used for
detecting specific defects.

This review delivers a methodical analysis and thorough
synthesis of the research literature concerning PCB defect
detection within the last decade. Its primary focus rests on
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methods and algorithms employing deep learning techniques
to enhance the efficacy of PCB defect detection. The efficacy
and impact of these algorithms in practical applications are
expounded in detail. Additionally, a thorough elucidation of
the fundamental principles underpinning deep learning and
a concise overview of the Transformer model is furnished to
ensure readers attain a comprehensive grasp of the founda-
tional aspects of the domain. Moreover, this paper introduces
widely employed datasets and evaluation metrics utilized for
PCB defect detection. Ultimately, drawing upon the extant
literature, prevailing algorithms are scrutinized and deliber-
ated upon, while potential developmental pathways within
this realm are postulated.

Il. FUNDAMENTALS OF DEEP LEARNING

A. BASIC KNOWLEDGE

Coined in 1986, the term deep learning (DL) initially found its
place within the realm of machine learning, later extending to
the domain of artificial neural networks in 2000. Deep neural
networks are structured with numerous hidden layers that pro-
gressively abstract data features [27], [28]. This architecture
empowers computers to autonomously acquire higher-level
abstract features, thus addressing a gamut of tasks such as
classification, regression, clustering, and generation [29],
[30]. In contrast to conventional machine learning methods,
deep learning dispenses with the necessity for pre-designed
manual features, automating the process of feature extraction
and learning through extensive data training. An inherent
advantage of deep learning lies in its efficiency in processing
voluminous datasets, culminating in remarkable outcomes
when presented with ample data. Nonetheless, challenges
persist, encompassing the requisition for substantial labeled
data, the expenditure of costly computational resources, and
the interpretability of models. Consequently, the training
process assumes paramount significance, especially in appli-
cations like PCB defect detection. This phase necessitates
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data preprocessing, the construction of a problem-relevant
network model, and the formulation of the corresponding
loss function. Lately, the strides achieved in the realm of
deep learning predominantly owe their origins to pioneer-
ing advancements in network models, loss functions, and
activation functions. As technology continues its relentless
evolution, deep learning is poised to embrace a wider scope
of developmental opportunities in the future, positioning
itself as an integral component of the artificial intelligence
landscape. Subsequently, attention will be directed towards
convolutional neural networks (CNNs) and the recently
surpassing Transformer architecture. These network struc-
tures have demonstrated remarkable accomplishments across
varied domains, thereby unveiling novel avenues for the pro-
liferation of deep learning applications.

B. CONVOLUTIONAL NEURAL NETWORK

CNN [31] is a distinct neural network architecture that finds
extensive application in processing various forms of data,
including images, speech, and natural language. Key con-
stituents within CNN encompass the convolutional layer,
pooling layer, and fully connected layer. Skillful integration
of these layers enables the processing of data and extraction
of features. CNNs have found widespread application within
the realm of computer vision (CV), undertaking diverse
tasks like image classification, target detection, semantic seg-
mentation, image caricature, style migration, and generative
adversarial networks (GANs) [32]. These applications have
yielded outstanding outcomes. Simultaneously, the network
architecture of CNN has undergone continual refinement
and optimization, leading to the emergence of several exem-
plary structures, including AlexNet, VGG, GoogLeNet, and
ResNet, among others. These established networks exhibit
commendable performance across diverse CV tasks, serv-
ing as pivotal benchmarks in both research and application
domains.

In 1994, Lecun et al. introduced LeNet, one of the pio-
neering CNNs for handwriting font recognition. This seminal
work played a pivotal role in shaping the subsequent evolu-
tion of CNNs. Krizhevsky introduced AlexNet in 2012 [33].
Building upon the foundations laid by LeNet, AlexNet effec-
tively adopted the Rectified Linear Unit (ReLU) [34] as the
activation function for CNN. This choice proves superior to
Sigmoid [35] for networks with increased depth, addressing
challenges like the vanishing gradient problem. Concurrently,
CUDA (Compute Unified Device Architecture) technology
facilitated the acceleration of deep convolutional network
training, leveraging the robust parallel computing prowess
of GPUs (Graphic Processing Units) to manage extensive
operations during training. The remarkable achievement of
winning the 2012 ImageNet competition attests to the effi-
cacy of this approach, particularly notable for conventional
machine learning classification algorithms. The success of
AlexNet stands as empirical evidence showcasing the supe-
rior performance of CNNs in addressing large-scale image
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classification challenges. In 2014, Simonyan et al. [36]
introduced VGG, a novel network architecture. In contrast
to AlexNet, VGG boasts a deeper network structure and
employs diminutive convolutional kernels to curtail param-
eter counts. This prowess was affirmed by its attainment
of second place in the 2014 ILSVRC competition. Simi-
larly, in that year, Szegedy introduced a novel deep learning
architecture named GoogLeNet [37]. While prior networks
predominantly pursued increased depth for enhanced training
outcomes, this approach presented challenges like overfit-
ting, gradient vanishing, and gradient explosion. GoogLeNet
introduced the inception module, which not only optimizes
computational resource utilization but also enhances feature
extraction within the confines of the same computation load,
thereby amplifying its effectiveness. However, as the num-
ber of network layers increases, the model becomes more
challenging to train and is susceptible to issues like gradient
vanishing. In 2015, He et al. introduced residual networks
(ResNet) [38], accompanied by the design of a residual mod-
ule tailored to mitigate the gradient vanishing issue arising
from heightened network depth in deep neural networks. This
architectural enhancement facilitates the training of deeper
networks with greater ease. In 2016, Cai et al. [39] initially
proposed a CNN leveraging cascade learning, which yielded
superior detection results. This further underscores the sig-
nificant potential of CNNs in PCB defect detection.

In summary, propelled by the swift advancement of
deep learning, CNNs have achieved significant milestones
within the realm of CV, fundamentally transforming image
recognition and classification endeavors. This review cen-
ters on the canonical architectures of CNNs, encompassing
LeNet, AlexNet, VGG, GoogLeNet, and ResNet. These
architectures have garnered significant academic attention
and concurrently exhibited exceptional prowess in industrial
and practical contexts. Through a comprehensive compar-
ison and analysis of these network architectures, a more
profound comprehension of the influence exerted by diverse
design strategies on CNN performance can be attained. This
understanding will be instrumental in guiding future research
endeavors within the CNN domain. Table 1 provides an over-
arching depiction of the strengths (including key attributes
and innovations) and limitations characterizing the aforemen-
tioned CNNS. This review aims to furnish readers with a lucid
comprehension of both the strengths and limitations of these
networks.

The CNNs discussed above have witnessed a progression
from modest layer counts to substantial depths, reaching
dozens or even hundreds of layers. Simultaneously, the
refinement of these networks has matured, evolving in
tandem with advancements in activation functions, the inte-
gration of maximum pooling layers, and other techniques.
Fig.2 (a) illustrates the schematic structure of the AlexNet
network. Notably, AlexNet rescales all input images to
dimensions of 32 x 32 before subjecting them to succes-
sive convolutional operations. Subsequently, the outcomes
undergo compression via a fully connected layer, yielding a
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TABLE 1. A comparative analysis of strength and boundedness among classical algorithms employed in CNNs.

Reference Model Strength Boundedness
Lecun, [31] LeNet An early instance of a CNN, setting the foundation for Due to its relatively shallow network structure and
(1994) the evolution of CNNs. simplistic convolutional layer design, LeNet might exhibit
suboptimal performance when confronted with intricate
images and demanding visual tasks.
Krizhevsky, AlexNet Employing ReLU as the activation function for CNNs Requires large computational and storage resources and is
[33](2012) and leveraging CUDA acceleration for training not only prone to overfitting when dealing with limited amounts of
enhances network performance but also introduces a data.
novel training approach.
Simonyan, VGG A straightforward and consistent network structure, The high number of parameters and the high computational
[36] (2014) improved feature representation capabilities, and resource requirements make it easy to suffer from
seamless transfer learning potential. overfitting problems.
Szegedy, [37] GoogleNet By incorporating the Inception module, GoogLeNet The challenges encompass network complexity,
(2014) adeptly captures information within images characterized  dependence on substantial training data volumes, and
by augmented depth and width. feature redundancy.
He, [38] ResNet This issue of gradient vanishing and explosion has been -
(2015) effectively addressed, enabling the training of

exceedingly deep network models.

1 x 10 vector that encodes character weights. In Fig.2 (b),
the extended AlexNet architecture is depicted. This itera-
tion involves deeper network structures and integrates the
Max Pooling technique, inspired by LeNet. Furthermore,
GPU acceleration is employed during training, culminating
in the model’s remarkable success in the ImageNet compe-
tition. Fig.2 (c) and 2(d) showcase the Inception module,
a hallmark of both VGG and GoogleNet, co-introduced
in a single year. VGG employs a block-oriented approach
to progressively extend the network, a straightforward yet
efficient strategy. In contrast, GoogleNet pursues network
depth expansion through width enhancement, introducing the
Inception module. Over time, this module has undergone iter-
ative enhancements, resulting in impressive accuracy gains.
Despite these advancements, the prevalent issue of excessive
network depth during that era, contributing to suboptimal
outcomes, remained unaddressed. In Fig.2 (e), the schematic
representation of the residual module, a significant innovation
by ResNet, is showcased. Within this module, the output
encapsulates not only the network’s result but also the sum
of the original input, fostering a residual architecture. This
structural paradigm recurs in subsequent network iterations,
ultimately establishing itself as a fundamental element in the
landscape of CNNS.

However, none of the aforementioned approaches consid-
ers the inherent human tendency to selectively concentrate
on specific information while disregarding other visible data
during the process of visual perception. The introduction of
the attention mechanism, in turn, presents a more effective
solution.

C. ATTENTION MECHANISM

The concept of the Attention Mechanism originated from
observations in human vision. In 2014, Mnih et al. [40] noted
that despite using multiple GPUs and priors to process image
data, CNNs still required extended training periods. This
concept was later merged with human observation images
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to implement the attention mechanism in image recogni-
tion, confirming its viability. This marked the inaugural
integration of the attention mechanism into deep learning.
Subsequently, this concept was extended to the domain of nat-
ural language processing (NLP) [41], [42]. In 2017, Google
Research [43] introduced the Transformer model, founded
on the concept of attention, which achieved remarkable
results and disrupted the NLP field. Similarly, the realm of
CV witnessed the emergence of numerous novel attention
models. Hu et al. [44] introduced the SENet (Squeeze-and-
Excitation Network), integrating attention mechanisms into
feature channels. SENet autonomously learns the signifi-
cance of various channels, using this acquired information to
amplify valuable features and attenuate less relevant ones for
the current task. SE attention mechanism module as shown
in figure Fig.3 (a). Nonetheless, SENet overlooks the fea-
ture space aspect. Consequently, Woo et al. [45] introduced
the convolutional block attention module (CBAM), which
merges the attention mechanism in both feature channels and
feature space dimensions, enhancing network performance
without substantially increasing the parameter count. This
module’s schematic depiction can be found in Fig.3 (b).
However, the prior attention mechanisms exhibited increased
complexity, leading to heightened model intricacy. Therefore,
Wang et al. [46] introduced efficient channel attention for
deep convolutional neural networks (ECA-Net), character-
ized by a reduced parameter count and evident performance
improvements. The schematic diagram of the ECA module
is presented in Fig.3 (c). While earlier attention mechanisms
mainly addressed inter-channel information, disregarding
spatial location details or lacking long-range relationship
capabilities, Hou and colleagues [47] proposed coordi-
nate attention (CA). This method captures inter-channel
information and considers orientation-based positional infor-
mation, enhancing the model’s ability to accurately local-
ize and identify targets. Additionally, Coordinate Attention
boasts a lightweight and flexible nature, permitting seamless
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FIGURE 2. Diagrams illustrating the network structures of classical CNNs: (a) LeNet; (b) AlexNet; (c) VGG block; (d) GoogleNet

Inception module; (e) ResNet residual structure.

integration into networks while delivering substantial perfor-
mance enhancements. The CA attention module is displayed
in Fig.3 (d).

In PCB defect detection, the majority of areas are typ-
ically defect-free, with only a minor proportion exhibiting
defects. The attention mechanism, by directing more focus
toward these defect-laden areas, facilitates more efficient
defect detection. Consequently, incorporating an attention
mechanism into the PCB defect detection model proves
advantageous.

D. TRANSFORMER

The Transformer architecture, introduced by Google
Research [43], represents a significant breakthrough in
the realm of natural language processing [48]. Traditional
sequential models, including recurrent neural networks
(RNNs) and CNNss, often encounter issues such as gradient
vanishing and explosion when handling lengthy sequences.
In contrast, Transformer overcomes these challenges through
the incorporation of a self-attention mechanism, enhanc-
ing its capability to capture extensive dependencies within
sequences. Consequently, Transformer has emerged as the
fundamental architecture within the NLP domain, and its core
structure is depicted in Fig.4 (a).

As the Transformer gained prominence in the NLP field,
scholars increasingly extended its application to the CV
domain, exemplified by ViT (Vision Transformer) [49], [50].
Attention-based approach to complement CNN’s limitations
in ultra-long sequence modeling. This method transforms the
input image dimensions [H, W, F] into two dimensions To
Transformer’s spatial location information deficiency, Bello
extended the concept from [51] and bolstered Attention’s
prowess by incorporating relative position coding along the
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width and height dimensions. Subsequently, [52] advocated
for replacing the convolution module in ResNet entirely with
Attention-based relative position embedding to achieve a
fully Attention-powered image model. Fig.5 (b) illustrates
the local attention layer at k = 3. Progressing from CNN
to Transformer modules, Carion et al. [53] introduced the
End-to-End Object Detection with Transformers (DETR)
model, marking the inaugural replacement of CNN with
Transformer. DETR exhibited promising results in target
detection, segmentation, and classification, though it lagged
behind then-state-of-the-art CNN in certain aspects. DETR’s
model structure is outlined in Fig.5 (c). With the surge of
researchers investigating the Transformer’s role in CV tasks,
Transformer’s advancement in the CV domain has outpaced
CNN’s performance in large-scale models [50], [54], [55].

In PCB defect detection, defects are often minuscule,
rendering traditional methods ineffective for their identifica-
tion. Recently, the Transformer model, with its heightened
sensitivity to small targets and complex defects in diverse
environments, has been more suitable for PCB defect detec-
tion. Thus, employing the Transformer model for PCB defect
detection could potentially enhance performance.

E. SUMMARY

This section delves into the fundamental concepts of deep
learning, encompassing CNNs, attention mechanisms, and
the transformer model. CNNS, originating in the last century,
only truly began to thrive a little over a decade ago with
the surge in computational power and accessibility to ample
labeled data. This led to ground-breaking results in numer-
ous domains and they have now become integral to PCB
defect detection and machine vision. The attention mecha-
nism, a versatile module, can be efficiently utilized in both
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CNNs and transformers. Its role is to facilitate the model in
prioritizing important features while disregarding irrelevant
background information, thereby enhancing the detection of
PCB defects. The transformer model is a deep learning con-
struct built upon the self-attention mechanism. Despite its
late introduction, the transformer model has witnessed rapid
growth due to the extensive research conducted by a myriad
of scholars. It has found widespread application in numerous
tasks within NLP and CV, delivering outstanding results. The
potential for further development of the transformer model is
undeniable.

ill. PCB DEFECT DETECTION METHOD BASED ON DEEP
LEARNING

In the domain of PCB defect detection, detection algo-
rithms are categorized into two primary groups: two-stage
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algorithms and single-stage algorithms [57], [58]. Apart from
the aforementioned CNN-based methods, a category of PCB
defect detection algorithms based on Transformers has also
emerged. Notable two-stage algorithms encompass Region
CNN (R-CNN) [59], Fast Region CNN (Fast R-CNN) [60],
Faster Region CNN (Faster R-CNN) [61], and Mask Region
CNN (Mask R-CNN) [62], among others. These methods
partition PCB defect detection into two phases: firstly, region
proposal (RP), which involves generating pre-selected boxes
potentially containing the objects to be detected; subse-
quently, sample classification is conducted using CNNs.
The R-CNN algorithm starts by generating a sequence of
candidate regions (Region Proposals) within the input image.
It then performs CNN feature extraction on these regions and
forwards the extracted features to classifiers and bounding
box regressors for target detection. While possessing high

139023



IEEE Access

X. Chen et al.: Comprehensive Review of Deep Learning-Based PCB Defect Detection

Attention maps Weight average of values

Input

Output

softmax

,,,,,,,,,,

I I H

output

values

Standard convolution

backbone

set of image features

|
|
|
|
|
|
|
|
|
|
|
! transformer
|
|
|
|
|
|
|
|
|
|
|

|

|

I

\ H

| |

transformer ! i !
encoder | decoder n
| X

| 1T 171

l NN LI

| Il

| !

| 11

FIGURE 5. Transformer models in CV: (a) Schematic of the proposed attention-augmented convolutional architecture; (b) Substitution of attention
for convolution in ResNet with kernel size k=3; (c) Pioneering alternative to CNN for the DETR model.

accuracy, its speed is impeded by the need for separate CNN
feature extraction for each candidate region. The algorithm’s
structure is depicted in Fig. 6 (a). Faster R-CNN, an upgraded
version of R-CNN, introduces the region proposal network
(RPN), a learnable network designed for rapid candidate
region generation. Faster R-CNN seamlessly integrates the
RPN with subsequent classifiers and bounding box regres-
sors, resulting in an end-to-end target detection network. This
integration enables candidate region generation and feature
extraction within the same network, significantly enhancing
detection speed. The configuration of Faster R-CNN is shown
in Fig.6 (b).

The other category encompasses single-stage algorithms,
prominently represented by single shot multiBox detector
(SSD) [63] and You Only Look Once (YOLO) [64], [65],
[66], [67], [68], [69]. These methods redefine PCB defect
detection as a regression problem. The YOLO algorithm
introduces a distinctive perspective, treating target detection
as a regression challenge. It accomplishes this by partition-
ing the input image into a grid and concurrently predicting
class and bounding box attributes for multiple targets within
each grid cell. YOLO achieves target detection through
single-shot forward propagation, rendering it exceptionally
rapid. However, its performance in detecting small targets
might be comparatively less effective. The structure of YOLO
is depicted in Fig. 6 (c). The SSD algorithm also falls
under the single-stage target detection approach. Similar
to YOLO, it simultaneously forecasts target categories and
bounding boxes on feature maps at varying scales, adapting
to diverse target scales via multiple anchor frames of differing

139024

dimensions. This design enables SSD to excel in detecting
small and multi-scale targets. Its structure is illustrated in
Fig. 6 (d). In comparison to YOLO, SSD exhibits slightly
slower performance, although it may offer heightened accu-
racy in specific contexts.

Comparing the two-stage and single-stage algorithms,
the two-stage algorithm has higher accuracy but is time-
consuming and not suitable for real-time detection tasks.
Whereas, the single-stage algorithm is faster but relatively
less accurate. Transformer-based PCB target detection algo-
rithms have also emerged, and unlike traditional CNNs, these
methods are based on Transformer and show excellent detec-
tion accuracy, but the detection speed is slower, the training
requires higher computational resources, and it requires a
large amount of data support [70].

A. BASED ONE-STAGE ALGORITHM

Addressing the issues of poor stability and low accuracy
in PCB defect detection models, Xin et al. [71] introduced
an enhanced YOLOv4 model. This approach incorporates a
mosaic data augmentation strategy during input processing
and replaces the leaky rectified linear unit (Leaky-ReLU)
activation function in the network backbone with the Mish
activation function [72]. Additionally, the detection images
are automatically segmented based on the average size of
labeled boxes, thereby increasing the likelihood of includ-
ing the target in the anchor frame. Similarly, to address the
challenges of detecting small defects against complex back-
grounds in PCBs, Zhang et al. [73] introduced a lightweight
single-stage defect detection network. This network leverages
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FIGURE 6. Traditional target detection algorithms: (a) Flowchart of R-CNN; (b) Fundamental structure of faster R-CNN; (c) Core process of the YOLO

algorithm; (d) Network architecture schematic of the SSD algorithm.

the dual attention mechanism and a path-aggregation fea-
ture pyramid network (PAFPN) to enhance the detection of
small defects. MobileNetV2, a lightweight backbone neural
network, replaces ResNet101, considerably reducing model
parameters. A dual attention mechanism is integrated to
ensure effective feature extraction. The feature extraction
capability is further enhanced by substituting PAFPN [74]
for feature pyramid network (FPN) [75] in the neck. This
improved model reduces inference time, and parameter count,
and enhances detection accuracy. Jiang et al. [76] pro-
posed enhancements to the SSD network model, introducing
coordinated attention in the shallow network to better han-
dle positional information, particularly for smaller targets.
Liet al. [77] created a dataset for PCB assembly scene object
detection, addressing anchor frame size-related detection
issues. They performed a detailed analysis of effective recep-
tive fields (ERF) [78] across the output layers, defining ERF
ranges and introducing ERF-based anchor frame assignment
rules to address anchor frame size challenges. Furthermore,
they designed an improved atrous spatial pyramid pooling
(ASPP) [79], [80], incorporated a channel attention module,
and added contextual information to address challenges posed
by small and hard-to-detect defects.

Due to the limited number of labeled PCB defect sam-
ples, the training process is influenced by unlabeled samples.
To address this, Wan et al. [81] introduced a defect detec-
tion method with a data-expanding strategy (DE-SSD) and
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evaluated its performance on YOLOvVS5 using both labeled
and unlabeled samples. This approach reduces the reliance
on labeled samples, as it utilizes both labeled and unlabeled
data. Moreover, a data-expanding strategy is proposed to
mitigate the impact of unlabeled samples. This enhancement
is particularly evident with small data volumes; however, the
effectiveness diminishes as data volume increases. In another
study, Wu et al. [82] presented GSC YOLOVS, a deep learn-
ing detection approach that integrates a lightweight network
with a dual-attention mechanism. This modified algorithm
employs lightweight Ghost Conv and Ghost Bottleneck struc-
tures to significantly reduce the model’s parameter count and
floating-point operations. Furthermore, SE and CBAM mod-
ules are incorporated into the network, resulting in enhanced
accuracy and improved detection speed. Addressing con-
cerns related to detection efficiency, memory consumption,
and sensitivity to small defects, Xuan et al [83] adopted
a novel cross stage partial network darknet (CSPDarkNet)
as the YOLOX backbone network. This revised backbone
comprises multiple inverted residual blocks and incorpo-
rates coordinated attention into the network architecture,
significantly improving the model’s capacity to detect small
PCB defects. Notably, this modified model is lighter and
more suitable for deployment on embedded systems. Zhao,
Y. et al. [84] extended YOLOVS by integrating adaptively
spatial feature fusion (ASFF) [85] for feature fusion. This
integration enables the adaptive fusion of varying levels
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of feature information across different spaces. Additionally,
they introduced the global attention mechanism (GAM) [86]
to enhance the model’s information extraction capabilities.

Zheng and colleagues [87] introduced an enhanced fully
CNN by integrating successive convolutional modules into
the MobileNetV2 architecture. This augmentation, along-
side an improved skip connection, contributes to heightened
detection speed and accuracy in contrast to VGG-16 and
ResNet-50 models. Lim and colleagues [88] developed a
novel multi-scale feature pyramid network using YOLOVS,
addressing the detection of minuscule PCB defects by lever-
aging contextual insights. The network also incorporates
the CIoU loss function to precisely determine the spa-
tial parameters, effectively capturing the exact positions of
these imperfections. Yu and co-authors [89] introduced a
lightweight, efficient network tailored for detecting minute
PCB defects. Within the backbone network, they intro-
duced diagonal feature pyramid (DFP), a mechanism for
low-cost fusion of expansive feature maps, enhancing the
detection of these subtle flaws. Additionally, they devised a
multi-scale necking network to accommodate various scales
of defects. Moreover, they introduced an adaptive localization
loss function, enhancing the model’s ability to discern these
small-scale imperfections.

In summary, the aforementioned research has made signifi-
cant advancements in the field of PCB defect detection using
one-stage algorithms. These advancements encompass vari-
ous novel approaches, including attention mechanisms, data
enhancement techniques, and innovative backbone networks.
These methods have found widespread application in PCB
defect detection from images, yielding impressive outcomes
across multiple dimensions such as enhanced accuracy and
detection speed. A comparative analysis of these one-stage
algorithms with specific alternative methods, along with their
benefits and limitations, is presented in Table 2. It is crucial
to acknowledge, however, that the one-stage algorithms are
not exempt from limitations. These limitations encompass the
potential for diminished performance when confronted with
intricate and varied defective scenarios, the high reliance on
limited sample data, and the imperative for further enhance-
ments in coping with diverse dimensions, angles, and lighting
conditions. Fig. 7 presents the results of PCB defect detection
using four different algorithms.

B. BASED TWO-STAGE ALGORITHM

While the single-stage algorithm offers faster performance,
the two-stage algorithm notably outperforms it in terms of
detection accuracy. To achieve PCB defect detection via
machine vision, Li et al. [90] introduced a faster-RCNN
algorithm founded on VGG16. This algorithm incorporates
data expansion and RGB data enhancement. Addressing the
challenge of detecting tiny defects, which are inherently
challenging to generate and detect in real-world scenarios,
Ding et al. [8] introduced tiny defect detection network
(TDD-net). This network employs a K-means algorithm
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FIGURE 7. Results of PCB defect detection using four different
algorithms: (a) (b) Printed circuit boards defect detection method based
on improved fully convolutional networks [87]; (c) (d) Printed circuit
board quality detection method integrating lightweight network and dual
attention mechanism [82].

to design appropriate anchor frames, enhances inter-feature
map relationships, and utilizes online hard example mining
(OHEM) [91] to refine region of interest (ROI) prediction.
Addressing the limitations of template-dependent and com-
putationally demanding traditional defect detection methods,
Hu et al. [92] introduced an algorithm founded on Faster
RCNN and Feature Pyramid FPN (Feature Pyramid Net-
work). This algorithm initially employs ResNet50 with
feature pyramids as its backbone network and subsequently
integrates generative adversarial region proposal networks
(GARPN) [93] to enhance anchor frame prediction accu-
racy. In the same year, Li et al. [94] introduced a feature
pyramid-based network. They incorporated an SE module
into ResNet-101 to enhance network expressive power, intro-
duced a top-down structure to elevate overall feature levels,
and employed ROI Align in lieu of ROI Pooling to mitigate
the impact of dislocations on small object defect detection.
In summary, when considering studies based on two-
stage algorithms, it’s evident that there are fewer scholarly
works compared to those focused on one-stage algorithms.
However, there’s no doubt that two-stage-based algorithms
offer significant advantages in terms of detection accuracy.
Table 3 provides a comparison of two-stage-based algo-
rithms, detailing the specific methods employed, along with
their respective advantages and limitations. Recently, one-
stage algorithms have flourished to meet real-time detection
speed requirements. However, the difference in detection
accuracy, compared to two-stage algorithms, is not signif-
icant. As a result, there are relatively fewer researchers
focusing on this field. Nonetheless, utilizing two-stage
algorithms remains a valuable choice for specific tasks
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TABLE 2. A comparison of strength and boundedness in one-stage CNN algorithms.

Reference Method Strength Boundedness
Xin, [71] Enhancing data through Preprocessing the input image and Mosaic data augmentation was employed, extending the
(2021) mosaic techniques and analyzing it to Improve training results training duration.
Leaky-ReLU
Zhang, [73]  Dual attention mechanism  The network is lightweight, enhancing Longer inference time compared to certain models.
(2021) and PAFPN small defect detection, minimizing
inference time, and reducing parameter
count.
Jiang, [76] CA and SE Networks exhibit enhanced accuracy in The dataset is relatively small, comprising only five classes of
(2022) predicting small targets. PCB defect images, with a limited quantity.
Li, J. [77] Optimise anchor box size,  Effectively addresses anchor box size Without comparing it to other detection networks, such as
(2022) ERF, and ASPP and enhances detection of small and Faster R-CNN or SSD, on the same dataset, it is challenging to
hard-to-detect defects. assess the relative performance advantage of the model.
Wan, [81] Semi-supervised learning ~ Accuracy improvement is more obvious  Accuracy improvement isn't evident with larger data sets,
(2022) and data augmentation when the amount of data is small demanding prolonged training.
Wu, [82] Lightweight Network Efficiently reduces model parameters There is a lack of exposition regarding the design and training
(2022) with Dual Attention and flops. procedures of the two attention mechanisms. Further
Mechanism investigation is needed to elucidate how these attention
mechanisms collaborate and their impact on enhancing
accuracy.
Xuan, [83] CSPDarkNet and CA Enhances the network's small PCB The data set's imbalance in small defect samples may result in
(2022) defect detection capability, while also the model's inferior detection performance for small defects
offering a lightweight model for compared to moderate ones.
embedded system deployment.
Zhao, [84] ASFF and GAM Enhanced feature extraction for models Extended inference times and augmented model parameter
(2022) count.
Zheng, [87]  MobileNetV2 full CNN Offers advantages in detection speed The paper lacks analysis regarding the adjustment of various
(2022) and accuracy. hyperparameters and network structures.
Lim, [88] Multi-scale feature Enhanced detection of small or evolving  limited recognition of defect types.
(2023) pyramid network and PCB defects in real-time.
CloU loss
Yu, [89] DFP, Multi-scale neck Enhancing the network's small defect -
(2023) networks, and adaptive detection capability.

localization loss function

TABLE 3. A comparison of strength and boundedness in two-stage CNN algorithms.

Reference Model Strength Boundedness
Li, [90] VGGI16, faster-RCNN, data Enhanced accuracy. Reduced Speed and Limited Elevation.
(2018) expansion, and RGB data

enhancement.

Ding, [8] TDD-net, K-means, and OHEM Enhanced small defect -
(2019) detection capability.
Hu, [92] Faster-RCNN, FPN and GARPN  Improved precision in The real-time performance needs improvement.
(2020) anchor frame prediction.
Li, [94] FPN, SE and ROI align Enhanced expressive power The computational workload is substantial, and the inference time
(2020) and improved network may not meet the real-time online inspection requirements of the

detection.

PCB manufacturing process.

TABLE 4. A comparison of strength and boundedness in transformer algorithms.

Reference Model Strength Boundedness
An, [95] LPVIiT with the incorporation of a label ~ Enhanced accuracy. Enhanced accuracy with reduced
(2022) smoothing strategy. processing time.
Chen, [96] Enhanced clustering algorithm utilizing  Efficiently establishes correlation among image Prolonged inference time.
(2022) Swin-Transformer. features with state-of-the-art accuracy.
Yang, [97] SwinV2 TDD, MFSA and SA Elevated accuracy and generalization capability. Limited detection capability for
(2023) minor defects.

demanding high detection accuracy and tailored datasets,
without necessitating rapid detection speed. Fig. 8 presents
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the results of PCB defect detection using four different
algorithms.
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FIGURE 8. Results of PCB defect detection using four different
algorithms: (a) (b) Detection of PCB surface defects with improved
faster-RCNN and feature pyramid network [92].

C. BASED TRANSFORMER ALGORITHM

While Transformer has demonstrated proficiency in CV and
NLP, it does exhibit limitations when employed in visual
inspection tasks, notably involving time constraints and
demanding equipment prerequisites. These limitations have
resulted in a scarcity of literature concerning the implemen-
tation of Transformer for PCB defect detection. Nevertheless,
notwithstanding these limitations, several studies have com-
menced efforts to address these challenges, aiming to unlock
the full potential of Transformer in the realm of PCB defect
detection. By surmounting the limitations of the transformer
and effectively employing it in PCB defect inspection tasks,
it is anticipated to offer a more efficient and accurate solution
for industrial production.

An et al. [95] introduced label robust and patch corre-
lation enhanced ViT (LPViT). In their work, a novel ViT
model is presented, which is founded upon the principles of
LPViT. This model prioritizes robustness while fully lever-
aging distinct regions of the PCB image across relationships.
Additionally, certain blocks are randomly masked or sub-
stituted to enhance mutual understanding between different
image regions. Ultimately, the model undergoes training via
a label smoothing strategy, elevating its robustness. Chen [96]
employs an enhanced clustering algorithm to generate appro-
priate anchor frames tailored to the PCB defective dataset
in this study. Next, CNN was abandoned in favor of shifted
window transformer (Swin-Transformer) for network feature
extraction. Subsequently, the channel order in the feature map
was adjusted to enable the network to efficiently prioritize
more valuable information. Additionally, both convolutional
and attentional mechanisms were integrated to enhance the
network’s feature extraction capacity. Yang et al. [97] intro-
duced an enhanced YOLOv7 model. They achieved this
enhancement by formulating the SwinV2_TDD module,
which facilitates the extraction of local PCB informa-
tion through the incorporation of an added convolutional
layer. Next, the study introduces the MFSA mechanism,
which augments each shuffle attention (SA) branch with a
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FIGURE 9. Results of PCB defect detection using four different
algorithms: (a) (b) LPViT [95]; (c) (d) Transformer-YOLO [96].

convolutional layer. This addition serves to amplify the depth
of SA and bolster the flexibility of the attention mechanism.
Fig. 9 presents the results of PCB defect detection using four
different algorithms.

Despite transformers being infrequently used in PCB
defect detection, the evolution of computer vision and compu-
tational capabilities has catalyzed the proposal of numerous
transformer models. In 2021, Liu et al [55] trained a swin
transformer v2 model, enriched with three billion parameters,
and introduced a post-normalization technique and scaled
cosine attention method. This approach achieved state-of-the-
art (SOTA) results across multiple visual tasks. As of 2023,
the swin transformer v2 backbone network continues to be a
subject of extensive research, demonstrating exceptional.

Performance and further stimulating the evolution of large
visual models. Today’s ViTs have not explicitly leveraged
features at different scales, which are notably crucial for
visual inputs. To address this, Wang et al [98] proposed the
crossformer in 2021, introducing a cross-scale embedding
layer (CEL) and a long-short distance attention (LSDA).
In 2023, they [99] further enhanced the crossformer by
proposing the progressive group size (PGS) and amplitude
cooling layer (ACL) to mitigate challenges associated with
enlarging self-attention maps and amplitude explosion. Given
the lack of a priori image information, ViT underperforms
in dense prediction tasks. To remedy this, Chen et al [100]
proposed the ViT-adapter in 2022, an ancillary network not
requiring pre-training, enabling the basic ViT model to adapt
to downstream dense prediction tasks without any archi-
tectural modifications. This significantly improved model
performance for dense prediction tasks.

These novel transformer models, designed for visual
macro-models, harness features at different scales and excel
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in dense prediction tasks. These tasks are also inherent in
transformer-based PCB defect detection. We posit that these
innovative transformer models and their methodologies can
be applied to PCB defect detection tasks, enhancing the per-
formance of existing models.

D. SUMMARY

In this section, we elucidate the one-stage, two-stage, and
transformer-based algorithms. One-stage algorithms, char-
acterized by high detection accuracy and speed, cater to
enterprise needs for real-time PCB defect detection. How-
ever, their efficiency may diminish in more challenging defect
scenarios. In contrast, the two-stage algorithm, despite being
slower, excels in detecting intricate defects due to its superior
accuracy, leading to its widespread adoption in factories for
PCB defect detection. The transformer-based algorithm, dis-
tinct in structure from its counterparts, has also demonstrated
commendable results in PCB defect detection and various
industrial tasks. Despite its large parameter count, it effec-
tively fulfills factory requirements for PCB defect detection.
Concurrently, the transformer model exhibits impressive per-
formance in other domains, indicating substantial potential
for further development.

IV. ASSESSMENT METRICS, PCB DEFECT DATASETS, AND
COMPARATIVE RESULTS

A. ASSESSMENT METRICS

PCB defect detection tasks often require assessing algorith-
mic localization accuracy, which measures the discrepancy
between the target bounding box identified by the algorithm
and the actual target bounding box [101]. For assessing algo-
rithmic positional accuracy, a widely adopted metric is the
intersection over union (IoU) [102], [103], defined as the
ratio of the intersection area between the target frame and
the actual frame to the union area. Specifically, in the context
of the detection outcomes and real annotations depicted in
Fig. 10 below, the intersection encompasses the overlapping
portion of the two frames, while the union encompasses
the combined area of both frames. The extent of overlap
between detection outcomes and actual labeling is computed
through intersection and union ratios, facilitating algorithmic
positional accuracy evaluation as presented in formula (1).
In practical detection scenarios, the intersection ratio thresh-
old is commonly set to 0.5. If the intersection ratio between
the targeted detection frame and the actual labeled frame
exceeds 0.5, the algorithm is deemed to have successfully
anticipated the target’s location [104]. Modifying the inter-
section ratio threshold enables adjustments to the algorithm’s
positional accuracy and miss rate. Notably, distinct thresholds
may necessitate establishment for varying tasks.

IoU = —— ey

Equation (1) reveals that a greater IoU signifies the prox-
imity of the estimated object region to the actual region,
thus leading to higher accuracy in the detection results.
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FIGURE 10. loU schematic diagram: (a) Red represents the intersection
region [8]; (b) Yellow represents union region [8].

FIGURE 11. loU limitations (while the loU values are equal for the three
images, it's noticeable that image (a) [8] and image (b) [8] exhibit lower
accuracy. Image(c) demonstrates superior accuracy [8].)

Specifically, IoU’s highest value, 1, signifies complete over-
lap between the actual object area and the inferred area,
whereas its lowest value, O, indicates no overlapping seg-
ment between the actual object area and the inferred area.
However, there are instances where IoU may not precisely
capture positional accuracy. For instance, in the three images
shown in Fig.11, although the calculated IoUs for these
images (Fig.11 (c)) are equal, it’s evident that the third
image is superior. Consequently, several enhanced iterations
of IoU have emerged, including GIoU [102], DIoU [105],
CloU [105], EIoU [106], aIoU [107], and SIoU [108]. GIoU
resolves the issue of the unavailability of gradient back-
propagation for IoU’s two frames without their intersection.
Meanwhile, DIoU considers the prediction frame and real
frame, building on the GloU distance involving the centroid
and the distance between the minimum enclosing frames.
It also accounts for aspect ratio relationships based on DIoU.
However, it does not address the gap in actual distance.
Consequently, EIoU replaces DIoU’s aspect ratio with the
actual difference between width and height, along with their
respective confidence levels. In 2021, a¢loU was introduced,
which involves only a single parameter « in comparison to
other IoUs, yet it yields superior outcomes. The presence
of multiple angles at equidistant points impacts the actual
loss. Therefore, in 2022, SIoU was introduced to address the
influence of angles. However, at present, a modified version
of IoU is solely employed in the loss function, whereas IoU
remains the standard for evaluation metrics.

Categorizing detection results in target detection tasks
involves four distinct groups [109]: predicted values aligned
with positive examples are labeled as P (Positive), those
aligned with negative examples are labeled as N (Negative),
values aligning with true values are T (True), and values
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FIGURE 12. Schematic diagram of the recognition result.

opposing true values are F (False). Upon classification, the
data can be organized into a confusion matrix to yield four
distinct combination types.

Notably, As shown in Fig.12, TP represents the count of
correctly detected targets, encompassing instances where the
predicted positive sample aligns with the true positive sample;
TN signifies the count of accurately identified background
instances, where the predicted negative sample aligns with the
true negative sample; FP designates the count of erroneously
detected targets, represented by instances where the predicted
positive sample mismatches the true negative sample; and FN
accounts for the count of improperly missed targets, signify-
ing cases where the predicted negative sample mismatches
the true positive sample.

Evaluating algorithm performance becomes more precise
through a comprehensive tally and comparison of pre-
dictions based on distinct types. Examples of assessment
metrics include Accuracy (Acc), Precision [110], Recall
[111], F1 Score [26], Average Precision [112], mAP [104],
mAPSmall g Apmedium ') Aplarge [113] and FPS (Frames Per
Second) [67].

1) ACCURACY
The accuracy rate represents the proportion of correctly clas-
sified samples among the total samples, thus indicating the
model’s precision in classifying input data. The formula is
depicted in Equation (2).

TP + TN

Acc = ()
TP + FN + FP+ FN
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2) PRECISION
Precision refers to the ratio of correctly predicted positive
samples to the total predicted positive samples by the model.
The formula is depicted in Equation (3).

TP

Precision = —— 3)
TP + FP

3) RECALL

Recall, also known as the true positive rate, represents the

ratio of correctly predicted positive samples to the actual total

positive samples. The formula is illustrated in Equation (4).
TP

Recall = ——— 4
TP + FN

4) F1 SCORE

The F1 score provides a balanced mean between precision
and recall, effectively harmonizing the model’s accuracy and
recall. The formula is depicted in Equation (5).

2TP

Fl=——""
2TP + FP + FN

&)
5) AVERAGE PRECISION

Among the frequently employed evaluation metrics, Preci-
sion and Recall stand as crucial indicators for gauging model
performance. However, a notable observation arises from the
equation above. Precision and Recall exhibit a contradictory
relationship: an increase in Precision often corresponds to a
decrease in Recall, and vice versa. To address this challenge,
the Average Precision (AP) metric is introduced to compre-
hensively evaluate the model’s performance.

The term ‘“‘average precision” specifically denotes the
mean value resulting from the integration of accuracy rates
across distinct thresholds, spanning a recall range from O to 1.
For each category, a check-accuracy-recall curve is plot-
ted, enabling the calculation of the area beneath this curve,
referred to as the AP value. Consequently, a model’s aver-
age precision corresponds to the mean AP values across all
categories, constituting the mean average precision (mAP).
Notably, the mAP metric stands as one of the most extensively
employed performance measures in target detection, quanti-
fying a model’s proficiency in identifying multiple categories
of targets.

The computation methods for mAP metrics vary. Specif-
ically, APO.5 represents the average accuracy when the
intersection-over-union (IoU) threshold exceeds 50%, and
AP0.5:0.95 corresponds to the average accuracy when the
IoU threshold ranges from 50% to 95% in 5% increments.
In real-world target detection tasks, models often need to
detect targets from multiple categories, necessitating the cal-
culation of AP values for each category and subsequent
averaging to derive the mAP metric.

In conclusion, the mean average precision (mAP) stands
as a crucial metric in assessing target detection model perfor-
mance. By amalgamating model accuracy and recall, mAP
offers insight into a model’s ability to detect a multitude of
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diverse target categories. Consequently, this review employs
mAPO0.5:0.95 and mAP@0.5 (AP0.5) as the primary evalua-
tion criterion. The formula is depicted in Equation (6).

1 1 N
AP = /0 P(R)dr, mAP = — (iZl:)AP,- (6)

6) mAPSmaIII mAPmedium, AND mAPIarge

These three metrics correspond to average accuracies for
objects of different sizes. Specifically, mAPS™! pertains to
objects with an area less than 32 x 32 pixels, mAP™edium
corresponds to objects with an area more than 32 x 32 pixels
and less than 96 x 96 pixels, and mAPR€ relates to objects
with an area greater than 96 x 96 pixels. These metrics
provide a more detailed insight into the algorithm’s detection
accuracy across small, medium, and large targets.

7) FPS

FPS serves as a metric for assessing inference speed, rep-
resenting the quantity of images that can be processed per
second on specific hardware. FPS holds significance as a
key metric for gauging model performance and its appli-
cability in real-time scenarios. Through computation of the
model’s processing capacity for images in a single second,
the model’s real-time performance can be assessed. Elevated
FPS values signify the model’s capacity for swifter image
processing, thereby enhancing real-time inference efficiency.
This attribute is crucial for numerous applications demand-
ing rapid response times, including real-time video analysis
[64], autonomous driving systems [114], and real-time object
recognition [64]. Consequently, researchers and developers
strive to enhance a model’s FPS value.

B. PCB DEFECT DATASETS

In the literature related to PCB defect detection mentioned
earlier, many studies utilize proprietary datasets. There-
fore, this subsection focuses on introducing several publicly
available datasets, which possess certain evident advan-
tages compared to proprietary datasets. Public datasets not
only offer greater persuasiveness but also provide more
accurate baselines. Additionally, they facilitate experiment
reproducibility among other researchers. These publicly
available datasets offer researchers more reliable standards
and benchmarks, fostering performance comparison and
method enhancement. Simultaneously, they provide a broader
platform for progress and collaboration within the research
community. Currently available datasets include PCB Defect,
PCB Defect-Augmented [8], DEEP PCB [115], HRIPCB
[116], and Micro-PCB, among others. These datasets exhibit
varying characteristics such as different defect types, image
quantities, and environmental factors. Models trained on
different datasets yield varying accuracies and are suited for
different scenarios. Detailed information regarding currently
available publicly accessible PCB defect detection datasets is
presented in Table 5.
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C. RESULT COMPARING

This subsection will primarily focus on an in-depth analysis
and meticulous comparison of the previously cited litera-
ture. By systematically summarizing and comprehensively
evaluating the research outcomes from these references,
we can attain a more comprehensive understanding of the
latest advancements in the relevant field and unveil both
commonalities and disparities therein. The results compar-
ison encompasses various metrics, including mean average
precision (mAP), frames per second (FPS), parameter quan-
tity, and recall rate. These metrics collectively provide a
comprehensive assessment of the performance of different
algorithms or models in experimental settings. Furthermore,
within the comparative experiments, detailed specifics of the
utilized datasets will also be elaborated upon.

Various performance metrics from the aforementioned
literature are presented in Fig.13. Fig.13 (a) illustrates a com-
parison of FPS across different algorithms, indicating that
many of these algorithms are primarily single-stage models,
achieving real-time detection goals, with some even reaching
up to 90 FPS. Achieving a balance between inference speed
and required accuracy is crucial in practical development
to meet industrial demands. In Fig. 13 (b), a comparison
of mAP reveals significant disparities, possibly arising from
dataset diversity and difficulty levels. Nevertheless, all these
algorithms yield commendable results. Fig. 13 (c) displays
a comparison of parameters, where lower values generally
correspond to reduced device demands and shorter inference
times. Models with fewer parameters are suitable for deploy-
ment on mobile devices to fulfill specific requirements. The
two studies with the lowest parameters often accomplished
this through network optimization and pruning, effectively
reducing parameters without notable accuracy compromise.
Fig. 13 (d) presents mAP@0.5 comparisons, with the major-
ity of algorithms achieving around 90% accuracy, meeting
industrial practicality. In Fig. 13 (e), recall rates across dif-
ferent algorithms are shown, with Transformer-based models
exhibiting higher recall rates, underscoring the significant
developmental potential of Transformers in the future.

D. SUMMARY

This section articulates evaluation metrics pertinent to PCB
defect detection, explores publicly accessible datasets, and
compares these metrics to the algorithms discussed in
section II. Evaluation metrics afford an assessment of a
model’s strengths and weaknesses, with a higher FPS imply-
ing a more rapid model inference, a greater mAP and
mAP@0.5 signifying superior accuracy, and a lower parame-
ters value reflecting a reduced model parameter count. Within
the realm of PCB defect detection datasets, we concentrate
on several public collections that range in size from over a
thousand to more than 10,000 images. These public datasets
facilitate the establishment of a baseline, simplify perfor-
mance comparison across models, and simultaneously, the
higher quality datasets foster advancements in PCB defect
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TABLE 5. Overview of PCB datasets.

Dataset

Information

PCB Defect

PCB Defect-
Augmented
(8]

DEEP PCB
[115]
HRIPCB
[116]

Micro-PCB

The dataset, released by the Human-Computer Interaction Open Lab at Peking University, is a synthesized PCB dataset comprising a
total of 1,386 images. It encompasses six distinct defect categories: missing holes, mouse bites, open circuits, short circuits,
protrusions, and irregular copper patterns. This dataset is applicable for tasks related to detection, classification, and registration. The
dataset can be accessed for download at the following address: http://robotics.pkusz.edu.cn/resources/dataset/.

The dataset represents an enhanced version of the PCB Defect dataset, encompassing a total of 10,668 images along with
corresponding annotation files. The original high-resolution images in the dataset were cropped into 600600 sub-images and divided
into a training set (9,920 images) and a test set (2,508 images). The dataset can be accessed and downloaded from the following link:
https://www.dropbox.com/s/h0f39nyotddibsb/VOC_PCB.zip?dI=0.

The DEEP PCB dataset comprises 1,500 pairs of images, with each pair consisting of an intact template image and an aligned test
image. The annotations for the test images encompass six prevalent PCB defect types: open circuit, short circuit, mouse bite,
protrusion, pinhole, and spurious copper. The dataset can be accessed and downloaded from the following link:
https://github.com/tangsanli5201/DeepPCB.

HRIPCB: This dataset constitutes a synthesized collection of 1,386 PCB images, encompassing six distinct defect categories. The
primary utilization of this dataset revolves around tasks related to PCB defect detection, classification, and registration. Within this
dataset, a reference-based approach is employed for defect detection, coupled with an end-to-end CNN for defect classification,
commonly referred to as the RBCNN method. The provision of this dataset furnishes researchers with an extensive resource to
facilitate their exploration of pertinent research avenues. The dataset can be accessed and downloaded through the following link:
http://robotics.pkusz.edu.cn/resources/dataset/.

The dataset comprises a collection of 8,125 high-resolution images representing 13 micro-PCBs. These images have an average
dimension of 1949x2126 pixels (widthxheight). Captured under optimal lighting conditions, the micro-PCBs were photographed from
25 distinct camera angles. At each angle, they were captured in 5 different rotations, yielding 125 unique orientations per micro-PCB.
Each of these orientations was photographed four times for training purposes. Additionally, a single micro-PCB of the same make and
model was photographed once and used for testing. This ensures that no micro-PCB used for training is repeated in testing. While the
micro-PCBs used for training closely resemble those used for testing, minute distinctions can be observed in certain cases. Overall, the
dataset encompasses 500 training images and 125 testing images for each micro-PCB, resulting in a train/test split ratio of 6,500/1,625.
The dataset can be accessed and downloaded from the following link: https://www.kaggle.com/datasets/frettapper/micropcb-images.
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FIGURE 13. Comparison of performance indicators in various references: (a) FPS, (b) mAP, (c) Parameters, (d) mAP@0.5, (d) Recall.

detection. In the comparison of results, we enumerate the
backbone, FPS, mAP, mAP@0.5, parameters, recall, and
the dataset used in each paper for every model. Utilizing
this data, we produce a suite of statistical charts, providing
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a clear visualization of each model’s strengths and weak-
nesses. However, due to the use of varying datasets, these
comparative results do not directly adjudicate the models’
performance.
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TABLE 6. Multiple result comparison of the above reference algorithm used in PCB defect detection.

Reference BACKBONE FPS mAP@O.5 mAP Par(aMmBe;ers Recall Dataset

é‘gz' 1[)71] CSPDarknet53 - 96.88% - - - PCB Defect

Zhang, The unpublished dataset consists of 1,455 training images

[73] MobileNet-V2 252 44.3% 4.42 - and 624 test images, encompassing six distinct defect

(2021) types.

Jiang, [76] The undisclosed dataset comprises 2,010 annotated

(2022) VGG-16 50 96.46% - 92.65 85.59% instances across five distinct defect categories, with each
category containing 402 annotations.

Li, [77] The undisclosed dataset comprises 9,636 images, all sized

(2022) CSPDarknet-53 - 89.86% - 61.73 - uniformly at 4092x3000 pixels, encompassing a diverse
range of 21 categories.

332558” CSPDarknet-53 - 98.7% - - - DEEPPCB [116]

Wu, [82] The undisclosed dataset comprises 520 training images,

(2022) CSPDarknet-53 - 96.5% 50.7% 47.4 - 150 validation images, and 23 test images, encompassing
six distinct defect types.

Xuan, MC ( The undisclosed dataset comprises 2,654 original images,

83 - encompassing seven distinct defect types.

Dopyy  CSPDadknetS3 6 g0z - 379 - passinig sev P

residual block)

Zhao, [84] Provided by the Intelligent Robotics Open Laboratory at

(2022) CSPDarknet-53 - 89.5% - 13.8 83.4% Peking University, the dataset comprises 693 images,
spanning six distinct defect types.

Zheng, The dataset is openly accessible and encompasses 700

[87] . o o images with a resolution of 2300x2300, categorized into

(2022) MobileNet-V2 B 99.60% B B 9932%  four distinct types. It can be accessed at:
https://robotics.pkusz.edu.cn/resources/dataset/.

1“21(‘)“2’3[)88] CSPDarknet-53 90 99.17%  812% - - PCB Defect-Augmented [8]

élé,z[;)‘)] DFP-Net 61 98.9% ) 693 } PCB Defect-Augmented [8]

Li, [90] o The dataset, which remains confidential, comprises a total

(2018) VGG-16 . . 60.63% - . of 22,765 images.

Ding, [8] Provided by the Intelligent Robotics Open Laboratory at

(2019) ResNet-101 - 98.90% - - - Peking University, the dataset comprises 693 images,
spanning six distinct defect types.

Hu, [92] Provided by the Intelligent Robotics Open Laboratory at

(2020) ResNet-50 - 94.2% - - - Peking University, the dataset comprises 693 images,
spanning six distinct defect types.

Li, [94] ) ) o ) ) ) The undisclosed dataset comprises 1,540 images with a

(2020) ResNet-101 96.3% resolution of 985x825 pixels.

218’2[29)5] ViT - 988% 95.5% - - Micro-PCB

(CZ}E;:ZI;)[%] ixrsfomer a1 97.04 ) 93.95 } PCB Defect-Augmented [8]

Yang, . : PCB Defect-Augmented [8]

[97] S‘g“ngTDD 98.74 53.52% - 99.49%

(2023) YOLOV7

V. DISCUSSION

In delving into the domain of PCB defect detection, ample
room for development in this field becomes evident. Despite
the existence of numerous exceptional algorithms, PCB
images exhibit distinct dissimilarities compared to natural
images, presenting unique challenges in defect detection.
Moreover, PCB defects display prominent characteristics.
Firstly, PCB images possess intricate structures and intricate
details, stemming from the complex nature of circuit boards.
These images contain a multitude of elements such as lines,
solder points, and components, with intricate interconnec-
tions, demanding algorithms capable of comprehending and
analyzing complex structures. Secondly, PCB defects fre-
quently exhibit diversity and variations, with different defect
types and locations manifesting distinctive features and forms
in PCB images [117]. For instance, solder point defects can
encompass scenarios like open soldering, short circuits, and
displacement, while line defects may involve issues such as
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circuit breaks and wire corrosion. Furthermore, PCB images
often suffer from noise and other interference factors due
to the complexity of production environments and potential
random factors during image acquisition. These interferences
include noise, shadows, and variations in lighting conditions.
Lastly, efficient and rapid PCB defect detection is impera-
tive. In practical production settings, the urgency to fulfill
production line requirements mandates the timely completion
of PCB defect detection [89].

In the face of these challenges, we acknowledge that
traditional methods have gradually demonstrated limited
capabilities in addressing these issues. The steps are different
between traditional machine vision methods and deep learn-
ing based methods. Conventional machine vision methods
necessitate an initial pre-processing of the image to enhance
its quality. Subsequently, the PCB board is isolated via image
segmentation, followed by the extraction of features, such as
shape, texture, color, and others, indicative of PCB defects
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within the image. The location of the defect in the PCB image
is then identified and classified using machine learning algo-
rithms, and the detection results undergo post-processing.
In contrast, PCB defect detection grounded in deep learning
can learn from substantial or even massive volumes of data.
This method automatically discerns various levels of image
features through CNNss or transformers, eliminating the need
for manual image feature design and extraction. Deep learn-
ing employs an end-to-end training approach, treating feature
extraction and classification or regression as an integrated
process. This eliminates the requirement for a complex
machine vision processing workflow. However, it is precisely
behind these challenges that deep learning-based approaches
begin to manifest remarkable superior performance. Relative
to traditional methods, deep learning methods exhibit multi-
ple advantages stemming from their exceptional capabilities
in image processing and pattern recognition. Firstly, deep
learning methods possess the capability of automated fea-
ture extraction, eliminating the cumbersome manual feature
engineering process. In contrast, traditional methods often
require significant time and effort to design manual feature
extractors to capture key information in images. Secondly,
deep learning methods demonstrate enhanced adaptability
[4]. Given the diversity in PCB defect types and shapes, tra-
ditional methods struggle to encompass all defect variations.
Furthermore, deep learning methods exhibit higher accuracy.
Through training on extensive datasets, deep learning models
learn from numerous samples, thereby enhancing detection
accuracy. Conversely, traditional methods may be constrained
by specific rules and limitations, preventing them from reach-
ing the accuracy levels of deep learning models [77]. Lastly,
deep learning methods can handle complex relationships.
In PCB images, multiple defects may coexist with intricate
interdependencies and interactions. Deep learning models
adeptly capture these intricate relationships, resulting in more
accurate detection of multiple defects.

However, despite the significant achievements of deep
learning in PCB defect detection, certain methods still exhibit
more remarkable potential for future development. Firstly,
methods based on CNNs offer substantial advantages in
detection speed and accuracy. Employing CNN for feature
extraction and classification of PCB images facilitates the
effective detection of common defect types.

Furthermore, by enhancing network structures and aug-
menting sample data, continuous improvements in detec-
tion accuracy can be achieved [92]. Secondly, transfer
learning methods can leverage pre-trained models like
ImageNet for fine-tuning, and adapting to the unique
features of PCB images. This approach reduces the
demand for training samples, enhancing both training
speed and detection effectiveness. Additionally, harness-
ing data augmentation through GANs can provide diverse
PCB defect images for deep learning algorithms, thus bol-
stering model robustness. Lastly, PCB defect detection
algorithms based on Transformers show promise. Although
Transformer-based models exhibit exceptional performance
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in the field of CV, they are accompanied by considerable
computational demands and sample requirements, limiting
real-time detection advantages. With the continuous evolu-
tion of Transformer technology, models with comparable
speed and accuracy to CNN have emerged. Given that
Transformer-based models do not require non-maximum sup-
pression (NMS) during inference, we hold confidence in their
substantial potential for development.

Through an in-depth exploration of the PCB defect detec-
tion domain, we have not only recognized its vast potential for
development but also gained a profound appreciation for the
remarkable performance of deep learning methods within it.
Among various approaches, CNNs, transfer learning, GANS,
and Transformers exhibit substantial prospects. Particularly
in the realm of PCB defect detection, deep learning methods
stand out with their exceptional performance, addressing the
limitations of traditional methods and demonstrating note-
worthy advantages in automated feature extraction, adapt-
ability, accuracy, and complex relationship handling. Despite
these significant advancements, the field of PCB defect detec-
tion still confronts a spectrum of difficulties and challenges.
As we look towards future development, it is evident that a
mixture of challenges and opportunities lies ahead.

In addition to visible light detection, infrared imaging
detection is also widely used in industry. Understanding
the heat transfer mechanism is crucial for infrared detec-
tion. By deeply understanding the heat transfer model, the
advantages and disadvantages of infrared imaging in various
defect detection and classification applications can be ana-
lyzed more thoroughly [118]. At the same time, revealing
the heat transfer mechanism helps to further improve the
accuracy and applicability of infrared imaging. For example,
the study of various heat transfer models, including electrical
discharge machining (EDM) heat transfer [119], [120], laser
heat transfer [121], [122], and wire-EDM heat transfer [123],
[124], helps to have a more comprehensive understanding of
the mechanism of infrared imaging. Furthermore, consider-
ing the differences in thermal gradients may be helpful for
detecting defects in infrared imaging.

VI. OUTLOOK

In recent years, technologies based on deep learning
have demonstrated remarkable capabilities across various
domains, particularly in the realm of image processing. This
comprehensive review aims to investigate and analyze the
application of deep learning techniques to the detection of
defects in PCBs, exploring their potential, methodologies,
challenges, and future directions.

(1) Enormous Potential of Deep Learning in PCB Defect
Detection: Deep learning models, such as CNNs and
Transformer models, have made significant strides in PCB
defect detection owing to their robust feature learning and
representation capabilities. CNNs employ stacked convolu-
tion and pooling operations to learn local and global features
from raw images, progressively abstracting and compre-
hending image content. While Transformer models have
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achieved success in natural language processing, they have
also demonstrated applicability in image processing tasks.
These models leverage self-attention mechanisms to capture
global information while retaining sensitivity to local details,
providing substantial support for PCB defect detection.

(2) Diverse Detection Approaches: Deep learning-based
PCB defect detection methods are categorized into one-stage
and two-stage algorithms. One-stage algorithms directly pre-
dict defect locations and categories in raw images, offering
real-time advantages. Two-stage algorithms first extract can-
didate regions from images and then classify these regions,
achieving more precise defect localization. Additionally,
Transformer-based methods have shown promising results
in PCB defect detection by transforming image data into
sequential data for processing, capturing features at different
scales and levels.

(3) Significance of Evaluation: In PCB defect detection
tasks, the choice of appropriate evaluation metrics is crucial
for assessing model accuracy and stability. Common eval-
uation metrics include precision, recall, accuracy, and F1
score. Moreover, selecting suitable PCB defect datasets for
training and testing is vital to ensuring model generaliza-
tion. Thoughtful dataset selection better reflects real-world
application scenarios and more accurately evaluates model
performance.

(4) Overcoming Challenges and Issues: Despite the notable
progress of deep learning in PCB defect detection, challenges
persist. Firstly, PCB defects exhibit diverse complexity, pos-
ing challenges for designing robust deep learning models to
detect various defects. Different defect types may possess
distinct features and morphologies, making enhancing gen-
eralization a formidable task. Secondly, data imbalance and
scarcity of defect samples impact model training and gen-
eralization, necessitating effective strategies for mitigation.
Lastly, enhancing model interpretability and explainability is
a pressing research direction in PCB defect detection, partic-
ularly for applications demanding rigorous model decisions.

(5) Future Development Prospects: Deep learning-based
methods retain advantages over traditional methods. Deep
learning models autonomously learn features from data,
reducing the reliance on manual feature engineering. With
hardware advancements and the accumulation of large-scale
data, the potential of deep learning models becomes more
pronounced. Hence, future research can focus on improv-
ing the robustness and generalization capabilities of deep
learning models, exploring more effective data augmen-
tation and defect sample generation methods to address
challenges related to diversity and data scarcity. Meanwhile,
employing crack analysis in tandem with deep learning
is crucial for detecting PCB defects. Specifically, the uti-
lization of neural networks in model training accurately
identifies minuscule cracks, often imperceptible to the human
eye, on PCB surfaces. This application is invaluable for
early detection of potential issues, contributing significantly
to ensuring product quality during production. Integration
of deep learning with crack analysis enhances detection
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precision and streamlines quality control procedures. Addi-
tionally, increasing model interpretability and explainability,
enhancing model decision transparency, and incorporating
techniques such as reinforcement learning, transfer learning,
and generative adversarial networks can further elevate the
performance of PCB defect detection.

In conclusion, deep learning-based PCB defect detection
holds vast developmental prospects and application potential
in the future. Technological advancements coupled with
in-depth research will drive improvements in quality control
and production efficiency within the PCB manufacturing
industry.
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