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ABSTRACT Surgical robots have been used for many years in the field of medical sciences and engineering.
With sophisticated technology governing the world in recent years, surgical robots have benefited from the
addition of sensors, actuators, and intelligent control systems, allowing them to function at high precision
along with more efficiency. The focus of this study is to present a brief review of sensors and components
utilized in robotic surgery that have been studied in recent literature. In the present study, initially, a brief
history of robotic surgery is presented, followed by a review on sensors and components in robotic surgery
that can be informative for engineers or researchers while designing surgical robots for specific applications.
Consequently, highlights of recent trends in the technological advancements in surgical robots have been
presented. Further, the paper concludes with recent advances and new challenges in the development of
surgical robots.

INDEX TERMS Actuators, minimally invasive surgery, surgical robots, robotic assisted surgery, sensors
and components.

I. INTRODUCTION
Robotic surgery has emerged as one of the transformative tool
in the field of medical science and cutting-edge engineering
to serve for healthcare by offering unprecedented precision,
higher dexterity, and minimally invasive capabilities. This
review article is providing the comprehend review on sig-
nificance and pivotal role played by sensors and components
including mechanical sensors i.e. force/torque sensors, vision
based sensors, haptic feedback systems, robotic arms, etc.,
in the domain of robotic surgery as an application of bio-
medical engineering. The evolutionary implementation of
sensors and bio-medical components drive the functionality
and safety of robotic surgical systems very smoothly [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng H. Zhu .

Surgery is a field of medicine that treats patients by
making partial incisions or cuts on their bodies [2]. For
thousands of years, the most prevalent operation, known as
open surgery has been practicedworldwide. Themajor reason
for using open surgery is to remove undesired elements
of the body, such as tumors, or to treat diseases that
damage the body. However, there are certain drawbacks of
this procedure, including the risk of infection, significant
blood loss, a longer recovery period, and the likelihood of
traumatizing the patient. In order to address these limitations,
surgeons have developed minimally invasive surgery (MIS)
and laparoscopic techniques.

MIS involves executing procedures through small incisions
and using visual imaging to precisely detect damaged areas
or tumors. The primary goal is to give patients a safer
and more efficient surgical experience. Although MIS has
demonstrated advantages over open surgery, it has not
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completely eliminated the restrictions associated with it, such
as the danger of infection and blood loss. Surgeons have
developed techniques such as natural orifice transluminal
endoscopic surgery (NOTES) to solve these issues. However,
when dealing with complicated body components, the use of
NOTES may be limited.

In recent years, medical robots have brought about a
breakthrough in surgical practices. Following the pursuit
of more advanced surgical interventions, the concept of
robotic-assisted surgery emerged. The first surgical robot was
introduced in 1982 and received approval for use in 2000 [3].
However, traditional rigid robots have limitations in meeting
the requirements of highly precise surgical accuracy due to
their lack of flexibility stemming from their rigid structure.
This limitation is particularly evident when operating in
internal positions within the human body. Rigid robots fail
to match the flexibility of human organs and encounter
difficulties in accessing circuitous body parts. The emergence
of flexible robots offers a potential solution to this problem.
Flexible robots can be classified into two categories: finite-
degree-of-freedom robots with limited discrete joints and
infinite-degree-of-freedom robots, also known as continuum
robots (CRs), which exhibit elastic members rather than joint
links. CRs, initially proposed in the 1960s, have garnered
increasing attention due to their flexibility in movement
resulting from infinite degrees of freedom. Researchers have
proposed numerous bio-inspired ideas for CRs, and reviews
on the application of continuum robots in the medical field
have also surfaced. Advancements in robot technology have
since led to significant improvements in surgical applications.
These advancements have paved the way for refined and
precise procedures, revolutionizing the field of surgery [4].
Figure 1 shows the overview on significant milestones in the
history of surgery.

FIGURE 1. History of surgery (photos credit: commons.wikimedia.org).

The use of robotic surgery has the potential to improve sur-
gical precision and accessibility within the human body even
further. The purpose of this review is to highlight the pivotal
role of sensors and components utilized in the field of robotic

surgery by providing a glimpse on its wide applications,
emerging trends, and future prospects that help essentially for
healthcare professionals, bio-medical engineers, researchers
working in robotic surgery domain. The contribution of this
study is separated into four dimension.

• In the first dimension, systematic bibliometric data
is analyzed using VOSviewer to select appropriate
keywords for enhancing the impact of articles on the
scientific community.

• In the second dimension, the history of surgery and
popular surgical robots has been reviewed to provide
information for engineers or researchers while designing
surgical robots for specific applications.

• In the third dimension, prominent components and sen-
sors have been analyzed with advantages and limitations
to make the selection easier for the designer.

• Finally, the manuscript delves into a comprehensive
analysis of the recent technological advancements,
potential challenges, and obstacles that arise in the
development of surgical robots in the healthcare sector.

This article presents the brief review on sensors and
components used in robotic surgery. The review is organized
as follows: Bibliometric analysis is presented in Section-II.
Section-III discusses the types of robotic assisted surgery
(RAS) systems. In Section-IV different components of RAS
are presented. Section-V discusses the sensors used in RAS.
SectionVI covers recent technological advancement in RAS.
The Issue associated with RAS is presented in Section-VII,
and some future research scope is highlighted in Section-VIII
and the overall review is concluded in Section-IX.

II. BIBLIOMETRIC ANALYSIS
A. VOSVIEWER ANALYSIS
Initially, 10,144 articles in CSV format were extracted
from the Scopus database using a single keyword (i.e.,
surgical robot andminimally invasive surgery). To acquire the
optimum results, the keywords are combined interchangeably
with minor modifications across several iterations of web
search. Extracted articles contain all of the bibliometric data,
which is then used as input for the VOSviewer analysis
[5]. This analysis counts the number of times keywords and
citation information appear in the selected articles. This data
provides an efficient method for determining the impact of
articles on the scientific community. The co-occurrence of the
keywords has also been visualized. Some parameters were
used for constructing the map, such as a threshold with a
minimum number of co-occurrences of the keywords of 10.
From a total of 12398 keywords, only 432 keywords meet
with selected threshold criteria. As a result, 5 clusters have
been drawn with the 29191 common links, and the total
strength is 89185, as shown in Figure 2.
The size of the node represents the co-occurrence of

terms (i.e., co-occurring keywords). The thickness of the
association indicates the frequency of keyword co-occurrence
(i.e., keywords that appear to occur and co-occur frequently).
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FIGURE 2. Keywords co-occurrence network visualization.

The connection describes the link between two items, while
the node represents the strength of the items.

This analysis discovered 432 keywords out of 12398 to
be significant. Furthermore, it is impossible to analyze all
432 keywords in a single study. As a result, some essential
keywords from these keywords have been chosen, such
as ‘‘robot-assisted’’ surgery, robotic surgical procedures,
surgical equipment, minimally invasive surgery, sensor,
haptic feedback, actuators, sensory feedback, etc.’’ Max-
imum keywords were chosen based on their prevalence
and connection strength in the literature. For example,
the co-occurrence linkages for ‘‘robot-assisted surgery’’
were 172 with a strength of 710. The current study
only focuses on the keywords with the highest keyword
density.

B. PUBLICATION ANALYSIS
The publication of articles from 1982 to September 2023 is
depicted in Figure 3 (bar graph) with reference to selected
keywords. Since 2015, the number of publications has
increased, and it can be seen that 80% of papers have been
published in the last 9 years. In this review, sensors and
components used in robotic assisted surgery is addressed. So,
the year-wise publication of articles based on sensors and
actuators is represented using the bar graph shown in Figure 4
and Figure 5, respectively. Similar trends have been observed
in this analysis also, i.e. 80% of paper has been published in

the last 9 years. Redundant articles with similar discussions
on sensors and actuators have been discarded in this review.

C. GEOGRAPHICAL ANALYSIS
The geographical graph depicts the importance of robotic
assisted surgery in many nations, including the United
States, China, Italy, the United Kingdom, Germany, Japan,
South Korea, France, Canada, the Netherlands, Spain, India,
Belgium, Australia, and Turkey, etc. (Figure 6). Based on the
findings, the United States has the greatest number of foreign
publications in this field.

D. MOST CONTRIBUTED JOURNALS
For this analysis, journal information are taken from the
Scopus database with the one keyword (i.e., surgical robot
and minimally invasive surgery). Some periodicals are
specifically related to robotic surgery. Surgical Endoscopy
was the most relevant journal, followed by the Journal of
Robotic Surgery. This comprehensive approach to publishing
has contributed to their strong track record in sophisticated
robotic surgery technologies, sensors, components, and actu-
ators in the revived domain. Figure 7 depicts the contribution
of the top ten journals.

III. ROBOTIC ASSISTED SURGERY
Robotic surgery was introduced in the year 1982 by a group
of mechanical, mechatronics, and biomedical engineers in the
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FIGURE 3. Published articles year wise.

FIGURE 4. Sensor based published articles year wise.

FIGURE 5. Actuator based published articles year wise.

United States. The initial robots, Arthrobot and Unimation
Puma 200, played significant roles in manipulating patient’s
limbs and assisting in neurological procedures, respectively.

Robotic-assisted surgery refers to a surgical approach that
leverages the assistance of robots. The primary objective
behind introducing robots in surgery was to overcome the
limitations associated with traditional approaches, such as
open surgery and minimally invasive surgery, by aiding
surgeons in navigating the complexities of the human body.

Robotic surgery involves making a small incision through
which a robotic arm, equipped with visual 3D imaging and
surgical tools is inserted. The surgeon operates the robotic
arm using a console that telemanipulates its movements,
enabling precise and controlled procedures. By merging
visual feedback and advanced control systems, robotic
surgery enhances the surgeon’s capabilities and facilitates
intricate surgical tasks.

Despite early successes, the approval for robotic surgery
faced challenges in many countries due to concerns about
robot safety and uncertainties. However, the introduction
of the Da Vinci robot in 2000 revolutionized the field and
became a resounding success, ultimately becoming the most
commonly used surgical robot worldwide. The use of the
Da Vinci robot marked a turning point, renewing interest
in robotic surgery and inspiring the development of various
other robotic surgical systems.

Numerous robotic surgical systems have been developed,
with extensive clinical trials conducted across different
countries. As the world enters the robotic era. Future studies
will play a crucial role in evaluating the strengths and
weaknesses of each robotic surgical system, thereby shaping
the future of this rapidly evolving field [6].

Robotic surgery may be automatic or autonomous systems.
Autonomic systems exhibit predictable behaviors based on
established theories, either deterministic or probabilistic.
Variations in behavior are typically minor adaptations

VOLUME 11, 2023 140725



S. Dinesh et al.: Review on Sensors and Components Used in Robotic Surgery

FIGURE 6. Geographical representation of literature for Top-20 regions.

FIGURE 7. Top 10 Journals contribution.

of controller parameters to external conditions. However,
if variations become too significant, automatic systems may

fail to adapt. In contrast, autonomous systems possess the
capability to make substantial adaptations to changes in
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external conditions through task planning. This planning
function requires a broader domain knowledge and the
utilization of cognitive tools, such as ontologies or logical
rules, which are not inherent to automatic systems [7].

The primary-secondary surgical robot offers six degrees-
of-freedom (DOF) of motion. The robot comprises a
four-DOF arm located outside the abdominal cavity and a
two-DOF wrist joint at the tip. This configuration enables
the forceps tip to approach the target within the abdomen
from any position and posture. Surgeons operate the remote
secondary arms, connected via the wrist joint, using the
primary console. The intuitive operation of the robot stems
from the secondary arms reproducing the 6-DOF handmotion
of the surgeon at the console. Furthermore, robotic systems
facilitate neurosurgery through network connectivity and
enable microsurgery by adjusting the motion scale between
the primary and the secondary [8].

The increasing utilization of surgical robots has led
to shorter operation times, reduced infection risks, and
faster recovery rates. Robotic surgery has not only ben-
efited patients but has also positively impacted surgeons.
By employing robotic assistance, surgeons can enhance their
physical and mental skills while performing procedures,
enabling them to operate on complex parts of the human body
more effectively [9].

There are various surgical robots that were being used
in the world, but over the course of time, these surgical
robots have been upgraded and these upgraded robots are now
being used currently. The types of surgical robot system are
depicted in Figure 8 and discussed below.

A. DA VINCI SURGICAL ROBOTS
The Da Vinci surgical system (Figure 9(a)) is a robotic
surgery technology developed by Intuitive Surgical.
It received Food Drugs administration (FDA) approval in the
year 2000 and has since revolutionized surgical procedures.
The system consists of a surgeon’s console, a patient-
side cart, and a vision system. By using this technology,
surgeons can perform minimally invasive surgeries with
enhanced precision and control [10]. The benefits of the Da
Vinci Surgical System include reduced post-operative pain,
shorter hospital stays, and faster recovery times for patients.
Surgeons also experience improved precision, enhanced
dexterity, and reduced fatigue. The robots have expanded
the range of surgical interventions and are used worldwide
[11], [12].

B. FLEX ROBOTIC SYSTEM
Medrobotics Corporation developed a flexible surgical robot
(Figure 9(b)) designed for cardio and transoral surgeries.
This robot has an improved 3D visualization, flexibility,
and precise access to anatomical locations. It aims to
perform surgeries without leaving visible scars and effec-
tively identifies the challenges associated with rigid robots
[20]. The main purpose of the flex robotic system is to

FIGURE 8. Types of surgical robot systems.

locate and remove tumors, a task that can be challenging
when done manually. The robot’s enhanced flexibility,
superior 3D imaging, and maneuverability enable surgeons
to navigate intricate pathways and perform minimally
invasive procedures. The Medrobotics surgical robot has the
potential to significantly enhance surgical outcomes and can
improve patient experiences in cardio and transoral surgeries
[13], [21].

C. DLR MICROSURGE
The German Aerospace Centre’s (DLR) surgical robot
(Figure 9(c)) is a tele-manipulation-based device designed
for minimally invasive procedures. It is made up of three
robotic arms, each of which has seven degrees of freedom.
One arm is equipped with 3D vision system, while the other
two arms contain surgical equipment [22]. The technology
has contact-free interfaces that allow surgeons to operate
the robot arms via a console. It also offers excellent haptic
feedback for instrument manipulation [14], [23].

D. MAZOR X SURGICAL
Medtronic’s surgical robot (Figure 9(d)) is designed to aid
surgeons during spinal surgeries by using a 3D simulation of
the patient’s spine to identify and change the surgical plan.
The technology has an automatic robotic arm and left and
right handed control. Its goal is to improve surgical precision
and to aid the surgeon during the surgery [15], [24].

E. MAKO SMART ROBOTICS
The Mako surgical robot (Figure 9(e)) developed by Mako
Surgical Corp® is based on the Robotics Arm Interactive
Orthopaedic (RIO) technology. It is specifically designed
to aid in partial and total knee replacement procedures.
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FIGURE 9. Surgical robots. (a) Da Vinchi® surgical system (photo credit: commons.wikimedia.org) [12]. (b) Medrobotics Flex system (photo credit:
businesswire.com) [13]. (c) DLR microsurge robotic system [14]. (d) MazorTM X surgical [15]. (e) Mako surgical robot [16]. (f) Yomi surgical robot (photo
credit: neocis.com) [17]. (g) Cyber Knife surgical robot (photo credit: commons.wikimedia.org) [18]. (h) Think surgical robot [19].

A computed tomography (CT) scan is used to build a 3D
visual model of the patient’s knee. The robotic arm then
accurately removes the diseased bone and cartilage and
replaces it with the knee model. The Mako surgical robot
allows healthcare professionals to perform knee replacement
surgery with more precision and accuracy [16], [25].

F. YOMI SURGICAL ROBOTS
The dental surgical robot (Figure 9(f)) is largely utilized
in dentistry-related surgeries, assisting surgeons in implant
planning and placement. The robot includes sensors that
offer feedback on the position and angle of the implant,
allowing surgeons to do the procedure with more safety
and precision. This method improves implant placement
precision, resulting in better outcomes for patients having
dental implant procedures [26].

G. CYBER KNIFE SYSTEM
Radiosurgery surgical robots (Figure 9(g)) are used to treat
tumors and other critical medical diseases in the human
body. These robots use a 6-axis robotic arm that can move

and bend around the patient, allowing precise radiation
beams to be delivered to the damaged area from unusual
angles. This technology enables very accurate and targeted
radiation treatment, increasing the efficacy and precision of
radiosurgery procedures [25].

H. THINK SURGICAL ROBOTICS
Think Solution’s surgical robot is an image-based robot
milling system (Figure 9(h)) meant to aid in procedures such
as complete knee replacement. By offering 3D visualization
and analysis of the surgical outcome, it enables the surgeon
to accomplish consistent and correct implantation. The
robot prepares the bone for implantation using precise
3D modeling, increasing the procedure’s precision. This
technology assists surgeons in obtaining greater precision and
better surgical outcomes during complete knee replacement
procedures [19].

IV. COMPONENTS IN RAS
To ensure a successful robotic surgical procedure, several
crucial systems and components are required to meet specific
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FIGURE 10. Surgical robot with eye tracking system.

conditions, including advanced visual imaging capabilities,
precise haptic feedback mechanisms, and the utilization of
various sensors. Failure to implement these techniques can
hinder the effectiveness and performance of the surgical robot
during the operation.

A. EYE TRACKING SYSTEMS IN RAS
Eye tracking systems, including 3D image videos, are
being added into robotic surgery to enhance visual imaging.
Initially, 2D visuals were used in procedures like laparoscopy
and NOTES but had certain limitations [27]. Upgraded
visuals allow surgeons to accurately visualize and locate
surgical targets with camera movements controlled by the
eye tracking system. Companies are actively advancing these
systems to improve the surgeon’s view and control during
robotic-assisted surgeries such as Da Vinci and flex robots
[28]. Cybernetic surgery had a good advantage for good
image-guided visuals, enabling surgeons to enhance accuracy
and safety during procedures [29]. Figure 10 demonstrates the
eye tracking system enabled surgical robot.

B. HAPTIC FEEDBACK IN RAS
Haptic Feedback is defined as the real or the simulated touch
interactions of a robot and human with a sense of touch. The
purpose of haptic feedback is to make the surgeon feel that
they are not operating but to make the robot to automatically
operate on the patient [30]. Haptic feedback in robotic
surgery aims to provide a sense of touch for the surgeon,
but distinguishing touch sensations poses a challenge as it
cannot distinguish the sense of touch except in the cases
of prosthetics like artificial hands or legs, can be adapted
touch feedback.While haptic feedback has been successful in
virtual reality games and certain prosthetics, robotic surgery
primarily utilizes force feedback and kinaesthetic techniques
[31]. Haptic feedbacks have a greater precision. Surgeons
estimate the force applied through specialized grippers and
force sensors, but these methods have limitations in fidelity
and usability. Tactile feedback, which involves detecting
tissue properties, requires complex sensors and displays,

FIGURE 11. Haptic feedback in robotic assisted surgery.

making it a challenging approach in robotic surgery [32].
Figure 11 demonstrate the use of haptic feedback in RAS.

C. ACTUATORS USED IN RAS
Actuators are a part of device which achieves physical
movements in a mechanical part in the robots. These are
used as a joint of a robot arm to rotate or the grippers to
hold and open. Actuators an integral component of robotic
devices, plays a crucial role in enabling physical movements
within mechanical parts, such as rotating joints in robot arms
or grippers for holding and manipulating objects [3], [4].
In the context of surgical tools, actuators are strategically
positioned remotely from the end effector and surgical sites,
providing a safe and straightforward solution for lightweight
instruments to operate within the confines of the human
body. To meet the clinical requirements of smaller size
and enhanced flexibility for surgical tools, various advanced
actuation methods have been developed, including cable-
driven mechanisms, flexible fluid actuators, smart material
actuators, and magnetic actuators, all designed to effectively
transmit force and motion from the actuator site to the end-
effectors [33]. Despite the utilization of surgical robotics
for several decades, certain intrinsic challenges still limit
their applicability in specific surgical procedures that demand
miniature size and high applied force for the surgical tools.
This section aims to provide an overview of the actuation
methods used in existing surgical robotic systems. There are
five types of actuators that are being implemented is shown
in Figure 12, and described in Table 1. Also, advantages
and disadvantages of sensors used in RAS is summarized
in Table 2.

FIGURE 12. Actuators used in RAS.
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TABLE 1. Actuators used in RAS.

V. SENSORS IN RAS
Sensors are main components in surgical robotics as they
are important in detecting tissue interaction and providing
essential force sensing information to surgeons. Various sens-
ing techniques including strain gauges, capacitive sensors,
piezoelectric sensors, and optical sensors, are extensively
used in surgical robots to facilitate accurate haptic feedback
and enhance the overall surgical experience [3]. Each sensor
has certain advantages: strain gauges are highly effective
in sensing strain and deformation in materials, capacitive
sensors excel in providing force information by detecting
changes in capacitance, piezoelectric sensors are renowned
for their precise force detection capabilities, and optical
sensors enable force measurement in multiple degrees of
freedom [7]. In addition to force sensing, position sensing
feedback also holds great significance in surgical robotics,
allowing for precise tracking and control of the robot’s
position and orientation during surgical procedures. However,
real-time feedback remains a challenge in achieving optimal
performance and responsiveness. To estimate positions,
orientations, and interaction forces accurately, it becomes
important to add sensors within the body of the robot,
enabling seamless and efficient communication between the
robot and the surgical environment. This integration task
poses challenges due to the diverse range of actuation types
and size constraints inherent in surgical robotics, and the
integration of new sensors into existing robotic systems can
be a complex and costly process, often requiring meticulous
redesign and adaptation of the overall system architecture
and technology [101]. The use of sensors and actuators
within the user interface holds immense potential to not only
restore haptic sensation but also enhance the robot’s ability to
interpret and respond to the surgeon’s intentions, leading to

improved surgical outcomes and patient care. To increase the
sensor accuracy, a combination of preoperative models and
intra-operative tracking data is needed. Table 3 summarized
the sensors used in RAS. In addition, advantages and
disadvantages of sensors used in RAS is summarized in
Table 4.

VI. TECHNOLOGICAL ADVANCEMENT IN RAS
With the rapid progress of modern science and futuristic
advancements, there is a vast realm of possibilities in
surgical and medical applications, including the integration
of artificial intelligence into surgical science and the intro-
duction of soft robotics in robot-assisted spinal surgery.
These innovations clearly illustrate the profound impact
that technology can have, defying previously held beliefs
about what was once considered unachievable in the field of
medicine.

A. ROBOTIC ASSISTED SPINAL SURGERY
Robotic surgery has proven to be versatile, capable of
performing operations on various parts of the human
body, including spinal surgery. Computer-assisted navigation
(CAN) is a surgical technique employed in robotic spinal
surgeries, with applications such as tumor identification and
spinal procedures [169]. Brainlab’s CT-based CAN platform,
approved in the US in the year 2013, offers mobility and
is utilized after the patient is anesthetized and positioned
on the operating table for a CT scan [170]. The safety
precautions are well noted to have a successful operation
and they are well studied with over 20 clinical trials
using various manufacturer platforms. Safety precautions
have been extensively studied through numerous clinical
trials with different manufacturer platforms, demonstrating
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TABLE 2. Advantages and disadvantages of actuators used in RAS.

good accuracy, precision, and minimal complications [171].
Ongoing research aims to improve upon the existing CAN
concept, with the Mazor X surgical robot being a notable
advancement in this field [172].

B. ARTIFICIAL INTELLIGENCE IN RAS
Despite the slower acceptance of advanced technologies,
the combination of artificial intelligence (AI) and robots
holds the potential to revolutionize society in the coming
years [173]. Engineers are actively working on integrating
AI, big data, and machine learning to create intelligent
robots capable of autonomously performing surgical tasks,
improving efficiency, safety, and decision-making [174].
Machine learning algorithms are being applied in surgical

robotics, including speech recognition, to enhance patient
care [175]. However, ensuring safety is crucial, with a focus
on safety-critical systems and cybersecurity measures to
prevent data hacking and protect patient lives [176]. AI and
machine learning offer the potential to overcome haptic
feedback challenges, reducing suture breakage and knot
slippage reported in manual human-assisted robotic surgery.
These breakthroughs in surgical technology hold significant
promise for both patients and surgeons [177].

C. SOFT ROBOTICS FOR RAS
Although robotic surgery has demonstrated effectiveness
under human supervision, rigidity remains a significant
drawback. Soft robotics, inspired by animals like snakes
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TABLE 3. Sensors used in RAS.

and octopuses, offer a potential solution by employing
compliant materials and pneumatic networks for operation
[178]. Soft robots are cost-effective, readily available, easy
to handle, and notably safer than traditional approaches.
Their ability to deform and regain shape makes them suitable
for complex areas of the human body [179]. The initial
soft robotics model, OctArm, drew inspiration from the
muscular hydrostats of octopus arms and tentacles. Engineers
have addressed the stiffness challenge by encasing granular
material within an elastic membrane, allowing for a transition
from soft to stiff through the application of vacuum [180].
Various techniques and models, such as inflatable robots
and octopus-inspired designs, are being implemented to
upgrade soft robotics stiffness and intelligence for medical
applications. By introducing inflatable robots, the octopus
inspired robot for actuation, sensing modelling and control
and by upgrading, they can be used to make an intelligent
soft robot in medical science [98].

VII. PROBLEMS FACED IN RAS
Despite the significant success and positive feedback sur-
rounding surgical robots, there are several challenges that

still need to be addressed. These include high equipment
costs, limited lifespan requiring upgrades, the equipment
cost of surgical robots is considerably high and that may
have a limited lifespan i.e., they need to be upgraded. Since
robotic surgery operation is donemanually, extensive training
is required as the surgeon needs to control it via console,
so that they can handle that surgical robot. Improper training
would lead to failure in procedure [181]. Accuracy, visual
clarity, haptic feedback, and procedure time are additional
concerns. Device failure and hygiene issues can occur if
the robot is not properly maintained [182]. These factors
prevent surgical robots from performing autonomous tasks,
and some surgeons still prefer traditional approaches due to
these challenges [183].

VIII. FUTURE RESEARCH SCOPE IN RAS
Despite the existing drawbacks in surgical robots, continuous
efforts are being made through studies, demonstrations, and
inventions to enhance their performance. Medical robots,
including Da Vinci, Mazor X, verb surgical, and Henson
medicals, are undergoing upgrades for improved usability
and have received FDA approval [184]. Additionally, robots
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TABLE 4. Advantages and disadvantages of sensors used in RAS.
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are being utilized in various applications such as bone
reduction fracture surgery, featuring different structures for
intra-operative positioning, adaptability, minimal invasion,
and simplified manipulation [185].

In the context of the COVID-19 pandemic, companies and
engineers are exploring artificial intelligence and machine
learning to enable autonomous robotic performance, mini-
mizing the risk of infection for patients and doctors [186].
In hospitals and similar circumstances, such as quarantine,
the main uses of these robots are to minimize human-to-
human interaction and to provide cleaning, sterilization, and
assistance. This will reduce the risk to medical personnel’s
lives, and physicians will be able to actively participate in the
COVID-19 pandemic management process [187]. Through
these advancements, the goal is to reduce errors, achieve
easier handling, and enhance efficiency in surgical robots,
ultimately envisioning a future where robots can perform
surgeries independently under the supervision of medical
professionals, potentially saving lives [188].

IX. CONCLUSION
Robotic surgery remains a vast concept that requires in-depth
research to fully comprehend its potential. Clinical studies
have shown its superiority over traditional approaches,
but there is a need to delve deeper into aspects such as
rigidity, haptic feedback, visualization, and other features to
enhance its efficiency further. As new technologies continue
to advance, there is a possibility that surgical robots will
eventually gain the capability to autonomously perform any
surgical procedure under the supervision of surgeons. While
the cost of these upgrades may be high, patient safety remains
the utmost priority for surgeons. In inclusion, this review
also highlights the pivotal role of sensors and components
utilized in the field of robotic surgery by providing glimpse on
its wide applications, emerging trends, and future prospects
that help essentially for healthcare professionals, bio-medical
engineers, researchers working in robotic surgery domain,
etc., since this study ultimately lead to more precise,
and accessible healthcare solutions. In conclusion, robotic
surgery stands as a remarkable gift to mankind, combining
the realms of medical science and technology.
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