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ABSTRACT With the development of information and communication technology, industrial control
systems (ICSs) that operate in closed environments are now operating in smart environments, and external
threats are increasing. To predict failure and respond to threats, anomaly detection and fault detection using
artificial intelligence (AI) are being introduced, but the issue of the reliability of AI prediction is emerging.
For anomaly detection, the operator must check thousands of sensors. In addition, practical operational
constraints exist because AI predictions are not always accurate. This study proposes shapelet-based anomaly
detection and automatic fault sensor description technology to overcome these limitations. Through intuitive
abnormality detection and interpretation based on these representative patterns, when an abnormal situation
occurs, operators can immediately intuitively determine which sensor causes the problem and how much
the sensor differs from the pattern. This was verified with the HIL-based Augmented ICS Security Dataset
(HAI) and Secure Water Treatment (SWaT) dataset, which is widely used in the ICS field. In the case of the
HAI Dataset, 95.12% of the failed sensors were analyzed by extracting and inspecting only 4% of the total
sensors. In the case of the SWaT Dataset, only 7% of the sensors were extracted and inspected, confirming
that 84% of the failed sensors could be analyzed.We expect that intuitive explanations and anomaly detection
will enable more effective technological operations in industrial environments.

INDEX TERMS Anomaly detection, efficient explanations, effective operation, fault sensor, shapelet.

I. INTRODUCTION
Industrial control systems (ICSs) monitor and control work
processes, such as important national infrastructure facil-
ities, and industrial processes, such as gas, power, water
and sewage, transportation, nuclear power, and manufactur-
ing. Initially, the ICS was an isolated system implemented
using an operating system in the form of proprietary control
protocols, with little resemblance to traditional information
technology (IT) systems. They also used protocols developed
by system manufacturers with availability as the top priority.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehrdad Saif .

Because the programmable logic controller (PLC), the main
element of the control system, is not connected to the net-
work, there are almost no other threats besides those caused
by physical sabotage or natural disasters. Therefore, when
designing a system operating in a closed network, ICS manu-
facturers can operate the systemwithout considering security.
However, owing to the recent development of information
and communication technology, industries that operated in a
closed environment in the past are now operating in a smart
environment. In a closed environment, there are almost no
external threats. However, by introducing a smart environ-
ment for supervisory control and data acquisition (SCADA),
ICSs, and operational technology (OT) such as factories and
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power plants, cyberattacks targeting industrial facilities and
infrastructure that operate in such environments regularly
occur [1], [2]. Systematic security technology is required
to respond to and prevent such threats [3]. These security
technologies have been studied for intrusion detection and
failure prediction using artificial intelligence (AI) in various
environments [4], [5], [6], [7], [8]. However, there are few
studies on the fault analysis of predictions based on time
series flow and the prediction of AImodels, and the reliability
is insufficient. Also, when an anomaly is detected, there is a
problem in that all features must be analyzed to check it.

To solve this problem, this study extracts representative
data patterns using shapelets and proposes an abnormal
inquiry and incorrect data analysis method based on the
representative patterns. This approach detects anomalies and
supports decision-making so that field experts can make
quick judgments and responses by providing evidence of the
faults that have caused the abnormalities.

Contributions. This study makes the following
contributions:

• We propose a method for improving the interpretation
of shapelet-based detection and its interpretation in security
applications. The framework consists of two main goals.
Abnormal detection and interpretation from the point of view,
abnormal detection and interpretation of features that cause
abnormalities.

• Abnormal detection based on shapelets provides abnor-
mal detection from a specific point of view and a detailed
feature that exceeds the threshold. Based on shapelets,
interpreters provide a powerful interpretation of human
understanding of abnormal detection results.

• We provided abnormal detection and interpretation in
two aspects to identify targets that required a quick response
and inspection. It can be used to start a quick response by
identifying the point in time and providing a detailed interpre-
tation of the inspection target that causes the attack to identify
the targets that need to be inspected.

• It also provides the actual value shown from an abnormal
point of view, the actual value that appears at any normal point
in time, and the representative pattern values. This allowed us
to compare the data flow in terms of the data flow in the usual
feature.

Section II introduces related work on anomaly detec-
tion, interpretation, and evaluation. Section III presents the
proposed model that uses a shapelet. Section IV describes
the results of the experiments using the proposed model
and introduces operational examples in real environments.
Section V discusses areas of improvement in the research
conducted in this study. Section VI introduces the research
results shown in this paper and their contributions.

II. RELATED WORK
Anomaly detection has been widely used in various fields [9],
[10]. Anomaly detection identifies outliers that do not follow
a normal pattern in large datasets. This section introduces
several research cases for detecting anomalies in a time series,

studies on how to improve the performance of these anomaly
detections, how to interpret the detected anomalies, and how
to evaluate the results of the interpretation.

Among the various methods introduced in this section,
shapelets are used in this study. The reason for using shapelets
is to detect anomalies in time-series data. In addition, it was
determined to be advantageous for intuitive interpretation and
quantification using the distance mechanism. Therefore, this
study aims to enable experts to quickly recognize problems
through intuitive visualization and quantification and respond
to causes with little effort.

A. STUDY ON ANOMALY DETECTION IN VARIOUS
ENVIRONMENTS
1) ANOMALY DETECTION IN ENVIRONMENTS UTILIZING
MULTIPLE SENSORS
Owing to recent technological developments, environments
utilizing multiple sensors are increasing. Therefore, anomaly
detection using multiple sensors is necessary. Canizo et
al. proposed a deep learning-based approach for super-
vised multi-time series anomaly detection that combines a
Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN) in different ways [11]. Unlike other
approaches, this approach uses independent CNNs to perform
anomaly detection in multisensor systems. They experi-
mented with a real industrial scenario, in which anomalies
were effectively detected on a service elevator based on
multiple sensor data. The features from each sensor data are
extracted completely independently using a multi-head CNN.
Accordingly, heterogeneous data could be processed.

2) ANOMALY DETECTION IN MEDICAL ENVIRONMENTS
The need for anomaly detection is also increasing in envi-
ronments that require the identification of unusual points,
such as the medical or security industries. Liu et al. proposed
the arrhythmia classification of an Long Short-TermMemory
(LSTM) autoencoder based on time-series anomaly detection
[12]. This study highlights the need for anomaly detection in
this environment. They used five different types of ECG data
from the MIT-BIH arrhythmia and MIT-BIH supraventricu-
lar arrhythmia databases: atrial premature beats (APB), left
bundle branch block (LBBB), normal heartbeat (NSR), right
bundle branch block (RBBB) and ventricular premature beats
(PVC).

A model based on the LSTM autoencoder was created
for each dataset, and comprehensive classification was per-
formed for the input data. In this way, there is also a way to
create multiple models for each important piece of data and
perform comprehensive anomaly detection.

B. STUDY ON PERFORMANCE IMPROVEMENT OF TIME
SERIES MODELS
1) FULLY CONVOLUTIONAL NETWORKS (FCNS)
An FCN is a variant of existing CNN-based models (such
as Visual Geometry Group 16) for semantic segmentation
models.

138034 VOLUME 11, 2023



S. Lim et al.: Shapelet-Based Sensor Fault Detection and Human-Centered Explanations

FIGURE 1. Example of the FCN & FCN+FCN model architecture [14].

FIGURE 2. LIME example for cause judged by the model as a result of the
input value of patient [18].

FIGURE 3. SHAP example of feature contribution in classifier model [21].

The fully connected layer (FCL) architecture has three
limitations: there are points where the number of parameters
is too large, the location information of the image feature
disappears, or the size of the input image is fixed. The FCN
model replaces all the FCLs with convolutional layers to
compensate for these problems. Karim et al. proposed a novel
LSTM + FCN model that combines an FCN with an existing
long short-term memory (LSTM) model. Through the FCN
process, the convolutional layer and global pooling, LSTM
dropout, concatenation, and SoftMax classification are per-
formed to create a model. Fig. 1 shows the structures of the
FCN and LSTM+FCN models [13], [14].

2) ATTENTION+LSTM MODEL
Hao et al. proposed a new model in which CA-SFCN,
compared to GA (Global Attention)-SFCN, RA (Recurrent
Attention)-SFCN, and SFCN, achieved high performance in
classification using mostly time series data in 14 datasets.
This model uses the CA-SFCN (cross-caution) for multi-
variate time-series classification. We reuse the output of the
last convolutional layer of the FCN to measure the attention
scores for the entire time series (past–present) and then pro-
ceed with matrix addition between the extracted score values.
In other words, the goal was to improve the model’s perfor-
mance by measuring attention multiple times at a full-time
point. On average, using attention yields a higher perfor-
mance [15], [16], [17].

C. STUDY ON EXPLAINABLE ARTIFICIAL INTELLIGENCE
(XAI)
1) LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATION (LIME)
LIME was proposed by Marco Tulio Ribeiro in 2016 to
address two confidence problems: trusting a prediction of
individual values, and trusting a model. The description of
the individual predictions identifies which model presents the
results and which input influences them.

When themodel for predicting influenza concludes that the
patient (input value) has the flu (result value), LIME weighs
the input value and informs the conclusion that the patient
has the flu [18]. Fig. 2 shows an explanation of the individual
predictions. The operating principle of LIME is to generates
random data around the input data by partially modifying the
value of the input data and then using it to train the surrogate
model. Equation (1) yields the following formula:

explanation (x) = argming∈GL (f , g, πx) + � (g) (1)

In the formula, f is the black box model to be explained,
and the explanation of the input value x selects the model
g whose function L has the minimum value from among
the set of explanatory models. G is the complexity of
Model g.

2) SHAPLEY ADDITIVE EXPLANATIONS (SHAP)
The SHAP was first proposed by Shapley in 1953 [19]. It is
a solution game theory that computes a model’s contribution
to the subset prediction of all data features using m features
[20]. SHAP creates a dataset that adds and removes features,
is composed of a linear model, and measures how much
the prediction changes when a specific variable is removed
by analyzing the weights of the linear model constructed in
this manner. Fig. 3 shows an example of SHAP for a model
classifying obesity and normal weight.

The classifier classified in this manner has a posi-
tive(negative) shapley value if it contributes to determining
each feature as abnormal(normal) [21]. The Z ′

i value in
Equation (2) indicates whether the i-th feature occurs,
whereas 8i is the contribution value of the i-th feature.

g
(
z′
)

= 80 +

∑M

i=1
8iz′i (2)

In Equation (3), F is the number of input features. The
difference between the model output value f () in all possible
cases when attribute i is included in input data x and all
possible cases when i is not is calculated and used as the
contribution 8i of the i -th feature.

φi =

∑
S⊆F{i}

|S|! (|F | − |S| − 1)!
|F |!

[fS∪{i}
(
xS∪{i}

)
− fS (xS)]

(3)

3) SHAPELETS
Ye and Keogh first proposed shapelets in 2009. A shapelet
explores all subsequences (partial time series) present in
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FIGURE 4. Example of applying Euclidean distance-based algorithm to
shapelet and dataset [22].

FIGURE 5. CLE: Feature importance plot [25].

the dataset. It extracts a partial time series as a rep-
resentative pattern in which the dataset and distance
belonging to each class significantly improve the model
performance [22].

Several methods have been proposed to calculate the dis-
tance between extracted representative patterns and datasets.
Euclidian distance–based similarity measurements explore
the section where the extracted representative patterns and
datasets aremapped 1:1 in amanner that maps sequenceswith
the most similar values [23], [24]. Fig. 4 presents an example
of applying Euclidean distance calculation to a shapelet.

4) CUSTOM LOCAL EXPLAINER (CLE)
The approach is to perturb the data points of the transformed
anomalous window for several iterations and check the new
perturbed or permuted time-series window against the orig-
inal anomaly detection model for the prediction outcome
[25]. This approach detects the normal points in the case
of a maximum prediction drop from an anomalous window
and observes and analyzes the features contributing to such a
change. The feature importance chart in Fig. 5 was prepared
to identify the feature that contributed themost to normalizing
the anomalous window.

5) SIMILARITYEXPLAINER (SIMEX)
SimEx aims to compare the anomalous window with all
normal training windows and find the most similar match
[25]. After matching similar data, a comparison with the
feature level was performed to determine the difference from
the similar data. The least similar features were identified as
probable faults that caused the anomaly. The plot in Fig. 6
is a line chart that compares the features of the abnormal
window (in red) and similar-looking example window
(in blue).

FIGURE 6. SimEx: Signal comparison plot [25].

D. STUDY ON EVALUATION OF XAI
1) ACCURACY-BASED XAI EVALUATION
Descriptive accuracy (DA) reflects the accuracy of the rel-
evant features of the prediction. Because it is difficult to
evaluate the relationship between features and predictions
directly, we measure how different the predictions of neural
networks will be if highly relevant features are removed
through indirectly less accurate figures. Removing related
features from sample data results in less information for neu-
ral networks to make accurate predictions, and consequently,
faster accuracy drops. Therefore, an explanation method with
a sharp decline in technical accuracy provides a better expla-
nation than a progressively decreasing method [26]. Equation
(4) provides the DA calculation formula:

DAk (x, fN ) = fN (x|x1 = 0, . . . , xk = 0)c (4)

2) SPARSITY-BASED XAI EVALUATION
Descriptive sparsity is evaluated as a prerequisite for a case
in which a good explanation assigns high relevance to a
feature that influences the prediction. It was calculated using
the importance value determined by XAI and scaled to the
same size for comparison. Subsequently, a mass around zero
(MAZ) was calculated by dividing the importance value sum
by the importance value of each feature. The value is then
displayed by accumulating from the first importance value.
A sparse interpretation has a sharp rise close to zero, a reason-
able interpretation is flat and close to one, and various other
interpretations show a smaller slope and a more extensive
set of features relative to zero. Therefore, a method in which
the MAZ distribution peaks at 0 is better [27]. Equation (5)
provides the MAZ calculation formula:

MAZ (r) =

∫ r

−r
h (x) dx for r ∈ [0, 1] (5)

3) CUMULATIVE DISTRIBUTION FUNCTION (CDF) BASED XAI
EVALUATION
To evaluate the reliability of the judgment of the AI model,
authentication based on the CDF was performed. Let the
samples of the model inference property values α ∈ [0, ∞)
come from the distribution PA. The CDF was defined for the
probability measure PA using Equation (6) [28].

CDF(α) =

∫ α

0
dPA (6)
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FIGURE 7. Proposed model architecture (shapelet-based anomaly detection/fault data analysis).

FIGURE 8. Data pre-processing according to set sequence.

III. PROPOSED MODEL
The model for anomaly detection and data analysis proposed
in this study is shown in Fig. 7. The main steps of the
proposed model are anomaly detection and cause analysis.
To detect anomalies, normal representative patterns for each
sensor were calculated and similarity was measured. Subse-
quently, an arbitrary thresholdwas set to detect the anomalies.
To interpret the cause, numerical values and visualizations
are made through information on the representative pattern,
abnormal time point, and normal time point of the cause
sensor. These data allow experts to respond immediately and
make appropriate decisions.

A. DATA PRE-PROCESSING
To convert multi-dimensional time-series data to 1-
dimensional time series data, separate data by each attribute.
Data preprocessing was performed according to the sequence
size set to extract the representative pattern for each separated
feature. If is set to 20 sequences, the data are cut at intervals of
20 s, and shapelets are extracted. Fig. 8 shows an example of
data preprocessing according to the set sequence. This sample
was pre-processed using a sequence of 20. The extracted
representative patterns differed depending on the size of the

Algorithm 1 GENDIS(T, y, pop_size, max_gen, patience,
pmutation, pcrossover, max_len) [29]
Population = initialize_population(T, pop_size, max_len)
current_gen, best_gen, best_fitness = 0, 0, 0

1. while current_gen < max_gen and current_gen – best_gen < patience:
2. for(child1, child2) in zip(population[::2], population[1::2]):
3. if random() Pcrossover:
4. population.append(crossover(child1, child2))
5. if random() Pmutation:
6. population.append(mutate(child1, child2))

7. fittest = select_fitteset(population)
8. population = tournament_selection(population, pop_size)
9. population.append(fittest)
10. if fitness(T, y, fittest) > best_fitness:
11. best_fitness = fitness(T, y, fittest)
12. best_gen = current_gen

13. currnet_gen +=1

set sequence. If the sequence size is too small compared with
the attack duration, detecting anomalies with a representative
pattern is difficult.

B. SHAPELET EXTRACTION
The GENDIS algorithm is used to extract the shapelet
Algorithm 1 and presents the GENDIS algorithm, which uses
a random extraction method [29]. A representative pattern
similar to the original pattern was extracted for each feature
by repeating a random value in length within the set sequence.
The number, length, and value of the shapelets extracted for
each feature are different.

C. CONVERTING DATA
The similarity between the extracted shapelet for each fea-
ture and the original feature data was measured using an
improved Euclidean distance-based algorithm. The improved
Euclidean formula for calculating the similarity d between
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FIGURE 9. Example of anomaly detection/attack range search algorithm application.

the original data and shapelet is shown in Equation (7).

D =

√∑n

i=1
(ai − bi)2 ÷ len(s) (7)

a is the original data value, b is the shapelet value, and len(s) is
the shapelet length. A smaller calculated value is more similar
to the shapelet, whereas a larger value is less similar. A value
close to the normal representative pattern can be considered
normal at a specific time point. By contrast, a value close to
an abnormal pattern can be determined as abnormal.

The CDF was applied to each data value to detect anoma-
lies. It also performs point-in-time integration analysis on
distance data (similarity data converted per feature) with CDF
applied. The original and test data were applied using the
average value and standard deviation of the original distance
data converted from the original data value. An integrated
analysis can be performed because the minimum value of the
applied data is fixed at 0 and the maximum value at 1. Most
converted CDF values are distributed around 0.5 when nor-
mal; those closer to 1 are farther away from the normal value.
The original distance data, the value to which CDF is applied
to the original data, are sorted in descending order, and the
top 1% is set to the 10% value as a threshold. An image can
be judged as abnormal if it exceeds the corresponding value.

D. SHAPELET-BASED ANOMALY DETECTION AND
ANOMALY RANGE SETTING
For the test data to which CDF is applied, a value greater than
the threshold set for each feature is judged to be abnormal.

If the time points determined to be abnormal were con-
tinuous, they were set as abnormal periods. It is set as an
abnormal section to analyze the fault data for a section that
is determined to be abnormal. Because 20 sequences are
converted into one unit for the original data, if the index that
appears as an anomaly is multiplied by 20, it is also known
that the original time is abnormal. Algorithm 2 proposes a
method to set the attack range for the detected anomalies.
Fig. 9 shows an example of the application of this algorithm.
If the result calculated using Algorithm 2 appears at con-

secutive points in time, as in the example in Fig. 9, it is
regarded as the same attack. In addition, the table on the

right of the figure provides information on the features that
contribute to the anomaly by index. The red and blue values
represent the CDF and threshold values of the feature, respec-
tively. The difference between the two values is expressed as
the distance; the larger the distance value, the higher the value
contributing to the anomaly.

Algorithm 2 Anomaly Detection/Attack Range Search
SET Anomaly_score: Input Test Data Anomaly score
SET Threshold: Input Train Data Anomaly score ∗ ratio
SET Attack_list: Save Attack Lists
SET start, end: Attack Start Point, Attack End Point
SET Continue: Continuous Index setting

1.Attack_list = []
2. for k in range(len(Anomaly_score)):
3. if Anomlay_score[k] > Threshold:
4. Attack_list.append(k) # Attack List append
5. start, end = []
6. count, round = 0
7. for k in range(len(Attack_list)):
8. if count == round:
9. if count == 0: # Set First Attack
10. start.insert(count, Attack_list[k])
11. end.append(Attack_list[k])
12. round + = 1
13. else: # Set attack after the First Attack
14. start.insert(count, Attack_list[k-1])
15. end.insert(count, Attack_list[k])
16. if abs(start[count] – Attack_list[k]) > Continue:
17. end[k] = Attack_list[k-1]
18. count + = 1
19. round = count

20. Return start, end

E. SHAPELET-BASED ANOMALY/FAULT SENSOR
IDENTIFICATION AND INDIVIDUAL INTERPRETATION (XAI)
The abnormal time points calculated in this section were
visualized for an integrated analysis. Algorithm 3 proposes
a method for visualizing all features for an integrated anal-
ysis. Fig. 10 shows an example of the application of the
algorithm. The X-axis represents the set time index, while
the y-axis represents individual features. The red data that
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Algorithm 3 XAI All Features
SET Feature_List: Input Features List
SET Feature_Threshold: Individual Thresholds for Input Features
SET Time_Threshold: Time Index Threshold
SET start, end: Attack Start Point, Attack End Point

1. anomlay_time_index = []
2. score_li = []
3. Time_score_li = []
4. score_df = pd.DataFrame()
5. for index in range(start[k], 1, end[k]):
6. for k in range(len(Feature_List)):
7. score = anomaly_score[Feature_List[index]].loc[index].min()
8. score_li.append(score)
9. if score > Feature_Threshold[Feature_List[index]]:
10. acc_score + = score
11. temp_df = pd.DataFrame(score_li)
12. score_df = pd.concat(score_df, temp_df, axis=1)
13. if acc_score > Time_Threshold:
14. anomaly_time_index.append(index)
15. Time_score_li.append(acc_score)

16. plt.subplots(figsize=(100,50)
17. ax = sns.heatmap(score_df.T, cmap=‘coolwarm’, vmin=0, vmax=
Feature_Threshold.max())

18. Return Time_score_li, anomaly_time_index, score_df

appear when there is a significant difference from the normal
representative pattern appear continuously in the indicated
red box. If the similarity value for a feature is close to normal,
it appears in blue; if it is far from normal, it appears in red.

For an integrated analysis, the value that minimizes the
distance between the feature value and shapelet at the corre-
sponding point in time for each feature is calculated. Suppose
that the calculated minimum value is greater than the thresh-
old value of the corresponding feature. In this case, it is
selected as an abnormal feature and the excess value is added
to the cumulative abnormal value.

If the attack section is visualized with a heatmap for each
calculated minimum value, it can be observed that the attack
section shows a larger value than the normal section.

The degree of the anomaly was checked at the time point
by visualizing the outlier values accumulated and summed
from the individual outliers. The abnormal features calcu-
lated through this process are visualized as targets to support
decision making. Algorithm 4 proposes a method to visualize
the previously computed features to yield specific features
that contribute to the anomaly. Fig. 11 shows an example
of calculating individual heatmaps for specific features con-
tributing to the anomaly by applying Algorithm 4. These
detailed visualizations allowed us to judge the anomaly con-
tributions of specific features. In the case of the normal state
on the left, the actual data value (blue) appears to be similar
to the representative pattern (other colors). In the case of
an abnormal state on the right, the actual data value (red)
shows a large difference from the representative pattern (other
colors). Fig. 12 shows an example of calculating individual
for specific features contributing to the anomaly by applying

Algorithm 4 XAI Specific Features
SET Anomaly_score: Input Test Data Anomaly score
SET start, end: Attack Start Point, Attack End Point
SET Anomaly_Feature: Extracted Anomaly Feature List
SET individual_score: The distance score of each Feature from each

shapelet

1. fig, ax = plt.subplots(figsize=(15,10))
2. for k in range(len(Anomaly_Feature)): # Anomaly Feature Flow
3. ax.plot(anomaly_score[Anomaly_Feature[k]],
label=’Anomaly_Feature[k]’)
4. plt.show()
5. for k in range(len(Anomaly_Feature)):
# Individual score heatmap by Feature
6. ax = sns.heatmap(individual_score[Anomaly_Feature[k],
cmap=‘coolwarm’, vmin=0, vmax= Feature_Threshold.max())
7. for k in range(len(Anomaly_Feature)):
# Distance from Shapelets by Feature
8. ax.plot(anomaly_score[Anomaly_Feature[k]],
label=’Anomaly_Feature[k]’)
9. shapelet_df = pd.read_csv(‘shapelet_df_’+str(Anomaly_Feature[k]))
10. for i in range(len(shapelet_df)):

11. ax.plot(shapelet_df[i], label=’Anomaly_Feature[k]’)

FIGURE 10. Example of XAI all-features algorithm application. This is an
all-feature visualization for the period, including attack #7 in the HAI
dataset.

Algorithm 4. In the example, blue flow indicates normal
data and red indicates abnormal data. The remaining colors
represent the normal representative patterns. The x-axis of
the visualization is the set sequence size and the y-axis repre-
sents the actual data value. Therefore, if the value difference
from the normal representative pattern is large, it can be
judged that the feature is abnormal.

Moreover, it is possible to check the flow through which
an abnormality occurs. In the case of normality, it can be
confirmed that the data are similar to a normal representative
pattern. However, in the case of an abnormality, it can be
confirmed that it is not similar to the normal representative
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FIGURE 11. Examples of individual heatmaps for a specific feature This is
an example of individual visualization for the feature ‘‘P1_LCV01Z’’
calculated as an anomaly at the time of attack#7 in the HAI dataset.

FIGURE 12. Examples of individual flows for the specific feature.

TABLE 1. HAI 2.0 dataset features by process.

pattern. Visualizations such as those shown in Figs. 11 and
12 can provide a detailed analysis and reliability of individual
features.

IV. EXPERIMENT
Training and testing were performed on an Intel Xeon Gold
6226 2.7G server (128 GB of RAM) using an NVIDIA 16 GB
Tesla T4 GPU. The development environment used the
Python 3 programming language in the Anaconda 3 Jupyter
Notebook.

A. DATASET
The experiment was conducted using two datasets. We used
HAI 2.0 and SWaT.

The HAI dataset was collected from a realistic ICS
testbed augmented with a Hardware-In-the-Loop (HIL) sim-
ulator that emulates steam-turbine power generation and
pumped-storage hydropower generation [30], [31].
HAI 21.03 satisfies time continuity and contains

84 columns. The first column represents the observed time,
and the next 79 columns provide the recorded SCADA data
points. The last four columns provided data labels for the
occurrence of an attack. Table 1 lists the numbers of features
and attacks for each process. It consisted of four processes
and 79 recorded SCADA data points. The structures of the

TABLE 2. HAI 2.0 dataset composition.

TABLE 3. SWaT dataset features by process.

TABLE 4. SWaT dataset composition.

training data and test data are shown in Table 2. The training
data consisted of three files, and the test data consisted of five
files. The training data consisted of all normal data, and the
test data contained 50 attacks, as listed in Table 1.

Secure Water Treatment (SWaT) is a water treatment
testbed for research cyber security. This dataset targets the
protection of Cyber-Physical Systems (CPS) such as those
for water treatment, power generation and distribution, and
oil and natural gas refinement [33].

SWaT satisfies time continuity and contains 53 columns.
The first column represents the observed time, and the
next 51 columns provide the recorded SCADA data points.
The last columns provide data labels for whether an attack
occurred. Table 3 lists the numbers of features and attacks for
each process. It consisted of six processes and 51 recorded
SCADA data points. The structures of the training data and
test data are shown in Table 4. The training data consisted of
two files, and the test data consisted of a total of one file. The
training data consisted of all normal data, and the test data
contained 36 attacks, as listed in Table 3.

B. DATA PRE-PROCESSING
In the case of a short attack time in the pre-processing data
stage, detection was impossible when the sequence length
was increased. The sequence used in this experiment was
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FIGURE 13. Specific feature ‘‘P1_PCV02Z’’ shapelets plot in the HAI dataset.

FIGURE 14. Specific feature ‘‘LIT301’’ shapelets plot in the SWaT dataset.

tested by setting it to 20, considering the attack time of
data. In the HAI, each feature’s data were pre-processed with
20 sequences and composed of 46,079 indexes. In SWaT,
each feature’s data were pre-processed with 20 sequences and
composed of 49,590 indexes.

C. SHAPELET EXTRACTION
Shapelets were extracted for 20 sequences from 46,079 and
49,590 indexes for each feature data item. For each feature,
the number of extracted shapelets, the length of the shapelet,
and the shapelet value were extracted differently. Because
the original data were all normal, the extracted representative
pattern was a shapelet in the normal state. Fig. 13 and 14 show
an example of a specific feature. Fig. 13 is the ‘‘P1_PCV02Z’’
feature in the HAI dataset, and Fig. 14 is the ‘‘LIT301’’
feature in the SWaT dataset.

In the case of ‘‘P1_PCV02Z’’, a total of seven shapelets
were extracted, and the value in the normal range was

calculated to be about 11.8 to 12.2. In the case of ‘‘LIT301’’,
four shapelets were extracted, and the value in the normal
rangewas calculated to be about 910 to 1,010. If the similarity
between the corresponding normal representative pattern and
the test data was measured to be different from the normal
pattern, it could be judged as abnormal.

D. CONVERTING DATA
Distances were measured using the improved Euclidean
algorithm to measure the similarity between the extracted
shapelets, training data, and test data. Because all the training
data were normal, almost all the data appeared close to at least
one shapelet. In other words, data far from all shapelets can
be considered abnormal.

The mean and standard deviation of the data of each train-
ing distance feature were extracted. The CDF was applied to
the training distance feature data and the test distance using
the extracted mean and standard deviation. The train distance
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FIGURE 15. Anomaly score plot including attacks #1 to #10 in the HAI dataset. After arranging the calculated train data anomaly scores in descending
order, the ‘‘Threshold’’ indicated by the blue line was set to the top 5%. Of the ten attacks, eight attacks indicated by red boxes were detected.

FIGURE 16. Anomaly score plot including attacks #1 to #10 in the SWaT dataset. After arranging the calculated train data anomaly scores in descending
order, the ‘‘Threshold’’ indicated by the blue line was set to the top 10%. Of the ten attacks, red boxes indicated detected eight attacks, and blue boxes
indicated two false alarms.

FIGURE 17. Visualization of all features for attack sections #1 to #3 in the HAI dataset. The section marked with red boxes are Attack 1, Attack 2, and
Attack 3, respectively. Displaying all 79 features makes it difficult to determine whether or not there is an anomaly intuitively.

features CDF values were sorted in descending order, and
because they were all normal data, the top 1–10% value can
be set as the threshold value.

With the detailed percentage setting, the threshold can be
set according to the distribution of data that is different from
the normal in the training data. In the HAI dataset, 5%was set
as the threshold because the distribution of data different from
the normal was small, and in the case of the SWaT dataset,
10% was set as the threshold because the distribution of data
different from the normal was greater than that in the HAI
dataset. If the test distance feature value was greater than the
threshold value, it was considered to be abnormal.

E. ANOMALY/FAULT DETECTION
This section discusses the identification of the abnormal time
point, setting of the abnormal section, and identification of
the sensor to be analyzed for XAI.

1) SETTING OF TIME INDEX THRESHOLD
The time index threshold was set similar to the individual
feature threshold settings. For the training distance data to
which CDF was applied, the time index summed the mini-
mum distance between 79 features and shapelets in the HAI
dataset and the minimum distances between 51 features and
shapelets in the SWaT dataset. The summed values were
sorted in descending order, and the top 5% values were set
as the threshold for the HAI dataset and the top 10% values
for the SWaT dataset were set as the threshold.

2) ANOMALY DETECTION
For each point in the test data to which the CDF was applied,
the HAI dataset cumulatively summed 79 individual fea-
ture values and the values with the smallest distance from
the feature shapelet for values exceeding the threshold of
each feature. Similarly, the SWaT dataset was cumulatively
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FIGURE 18. Heatmap visualization of all features in the HAI dataset. (a) Heatmap visualization for all features for an arbitrary
normal-state section. (b) Heatmap visualization for all features targeting the section containing attack 1. The X-axis is the time
index, and the Y-axis is 79 features. As in section III, E) Fig. 10, the anomaly is displayed in red.

FIGURE 19. Heatmap visualization of all features in the SWaT dataset. (a) Heatmap visualization for all features for an arbitrary
normal-state section. (b) Heatmap visualization for all features targeting the section containing attack #8. The X-axis is the time index,
and the Y-axis is 51 features. As in section III, E) Fig. 10, the anomaly is displayed in red.

summed up for 51 features. A value higher than the set
time index threshold was considered an abnormal time point.
Fig. 15 and 16 show examples of calculating the anomaly
score for the test data, including attack sections #1 to #10 of
the HAI and SWaT datasets.

3) SETTING OF ATTACK SECTION
If abnormal points were consecutive, they were judged as one
attack section and set as the attack section to be interpreted.

The features to be analyzed individually in the set attack
section were calculated. The features contributing to the
attack were calculated using an anomaly value exceeding the
threshold value of each feature.

F. SHAPELET-BASED ANOMALY FAULT SENSOR:
IDENTIFICATION AND INDIVIDUAL INTERPRETATION (XAI)
This section discusses the abnormal time point XAI, abnor-
mal section XAI, and abnormal sensor XAI.
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FIGURE 20. Specific anomaly features: flow plot. Visualization of specific anomaly features for attack sections #1 to #3 in the HAI dataset. The sections
marked with red boxes are Attack 1, Attack 2, and Attack 3, respectively. Contrary to Fig. 17, which visualizes all features, it is possible to determine
whether there is an abnormality intuitively.

FIGURE 21. Specific anomaly features: ‘P1_PCV02Z’, ‘P1_LCV01Z’,
‘P1_LCV01D’, and ‘P1_LIT01’ features heatmap.

FIGURE 22. Specific anomaly features: ‘AIT402’, ‘FIT401’, ‘UV401’, and
‘FIT502’ features heatmap.

1) VISUALIZATION OF ALL FEATURES FOR A SPECIFIC
ATTACK SECTION
Fig. 17 presents a visualization of all the features in the flow
form for attack sections #1 to #3 in the HAI dataset. In a real-
time operational environment, these can be expressed in flow
form, as shown in Fig. 17.

However, the threshold value for each feature is different,
and specific features have high values; therefore, it is better to
mark only the features that are judged to be anomalies rather
than all features.

Fig. 18 shows a heatmap visualization example for the
normal section and an example of attack section #1 in the
HAI dataset. Fig. 19 shows an example of heatmap visual-
ization example for the normal section and an example for
attack section #8 in the SWaT dataset. Fig. 18 (a) and 19 (a)
show that some features have high values and appear as red
anomalies, but the time point does not exceed the threshold
and is in a normal state. Fig. 18 (b) and 19 (b) show many
features as anomalies in red in the red box, and the time point
also exceeds the threshold.

2) VISUALIZATION OF ANOMALY FEATURES FOR SPECIFIC
ATTACK SECTION
Fig. 20 presents a flow plot of the features judged to be abnor-
mal for the section, including attack sections #1 to #3 in the
HAI dataset. By visualizing the specific features that affect
an attack, one can immediately respond to abnormalities in a
real-time operating environment.

Fig. 21 shows an example of heatmap visualization for
some anomaly sensors for attack section I, which is visualized
in red in Fig. 18 (b). As in Section III, E) in Fig. 11, the x-axis
is the time index for the section including attack 1, and the
Y-axis is the representative pattern of each feature.

The area where the color of the heatmap is red represents
an attack. Fig. 22 shows an example of heatmap visualiza-
tion for some anomaly sensors for attack section 8, which
is visualized in red in Fig. 19 (b). The X-axis is the time
index for the section including Attack 8, and the y-axis is
the representative pattern of each feature. The area where the
color of the heatmap is red represents an attack. According
to the heatmap, it can be seen that the values of the features
appear in red for the section judged to be an attack.

Fig. 23 presents an example of the visualization of the
‘‘P1_PCV02D’’ feature among the above features as a
shapelet, a normal value, and a value for attack section #1 in
the HAI dataset. Blue line, which is a normal value, clearly
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FIGURE 23. ‘‘P1_PCV02D’’ feature normal/abnormal/shapelet values plot in the HAI dataset.

FIGURE 24. ‘‘FIT401’’ feature normal/abnormal/shapelet values plot in the SWaT dataset.

FIGURE 25. Example of a real operating environment with the HAI dataset. It is constructed through visual and numerical data calculated in Section IV. a)
Anomaly detection example: anomaly score plot for attack 1 section (same as Fig. 15 method) b) Example of specific feature analysis: specific anomaly
feature flow plot for the same attack 1 section (same as Fig. 20 method) c) Detailed data analysis example: ‘‘P1_PCV02Z’’, ‘‘P1_PCV02D’’, and ‘‘P1_PIT01’’
feature that appeared as an anomaly in the same attack 1 section Representative pattern and actual value flow plot for each target feature (same as
Fig. 23 method).

forms a value in a category similar to that of the shapelet.
However, the red line, indicating an anomalous value, shows
a significant difference from the shapelet. Fig. 24 presents an
example of the visualization of the ‘‘FIT401’’ feature among
the above features as a shapelet, a normal value, and a value
for attack section #8 in the SWaT dataset. The blue line, which
is the normal value, clearly forms a value similar to that of
the shapelet. However, the red line, indicating an anomalous
value, shows a significant difference from the shapelet.

3) EXAMPLE OF APPLICATION IN A REAL OPERATING
ENVIRONMENT
Fig. 25 and 26 are examples of an application in a real
operating environment using the visual and numerical data
calculated in Section IV, the experiment section. Fig. 25 and

26 a) indicate the light blue outlier score that exceeds the
threshold indicated by the blue X-axis for the attack section.
Experts can a) Utilize ‘‘Anomaly Detection’’ to immedi-
ately control an anomaly for a point in time. Fig. 25 and
Fig. 26 b) indicate the CDF values for sensors that appear
abnormal in some areas in the attack 1 section. Experts can
also use Fig. 25 and 26 b) ‘‘Feature Analysis’’ and Fig. 25
and 26 c) ‘‘Data Analysis (Specific feature)’’ to determine
which sensor has a problem. Fig. 25 and 26 c) represent the
identified abnormal time point in red, the normal random
time point in blue, and the normal representative pattern of
the corresponding sensor in a different color. The normal
pattern shows values similar to the representative pattern,
but the identified abnormal points show a large difference,
allowing the identification of abnormalities. Furthermore,
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FIGURE 26. Example of a real operating environment with the SWaT dataset. It is constructed through visual and numerical data calculated in Section IV.
a) Anomaly detection example: anomaly score plot for attack 8 section (same as Fig. 16 method) b) Example of specific feature analysis: specific anomaly
feature flow plot for the same attack 8 section c) Detailed data analysis example: ‘‘FIT401’’, ‘‘FIT502’’, and ‘‘UV401’’ feature that appeared as an anomaly
in the same attack 8 section Representative pattern and actual value flow plot for each target feature (same as Fig. 24 method).

the progress of an attack can be analyzed in detail. In the
example shown in Fig. 25, in the HAI dataset, the sequence of
abnormal values for sensor ‘‘P1_PCV02Z’’ begins first. As a
result, the ‘‘P1_PCV02D’’ and ‘‘P1_PIT01’’ sensors record
abnormal values, so ‘‘P1_PCV02Z’’ can be specified as the
attack launch point sensor. Similar to the example in Fig. 26
for the SWaT dataset, the sequence of abnormal values for
sensor ‘‘FIT401’’ starts first. As a result, the ‘‘FIT502’’ and
‘‘UV401’’ sensors record abnormal values, so ‘‘FIT401’’ can
be specified as the attack launch point sensor.

4) CONTROL SYSTEM STRUCTURE AND FEATURES THAT
CAN AFFECT ATTACKS
As a result of anomaly detection for the entire section, 41 of
50 attacks were detected in the HAI dataset. The structure of
each attack provided by theKoreaNational Security Research
Institute, which created and published the data, is shown in
Fig. 27 and 28. If an attack or malfunction occurs in a specific
sensor among the sensors that constitute the system, other
nearby sensors may be affected.

Fig. 27 a) ‘‘Pressure control of the boiler (P1-PC)’’ It
consists of sensors ‘‘PCV01,’’ ‘‘PCV02,’’ and ‘‘PIT01.’’

Fig. 27 b) ‘‘Level control of the boiler (P1-LC)’’ It con-
sists of sensors ‘‘FCV03,’’ ‘‘LCV01,’’ and ‘‘LIT01.’’. Also,
Fig. 27 c) Since ‘‘Flow rate control of boiler (P1-FC)’’ is also
connected, the ‘‘FIT03’’ sensor may also be affected.

Fig. 27 d) ‘‘Speed control of a turbine (P2-SC)’’ It consists
of sensors ‘‘SIT01’’ and ‘‘CO_rpm.’’

Fig. 28 a) ‘‘Turbine process control architecture (P2-
TC)’’ It consists of sensors ‘‘OnOff’’ and ‘‘HiLout.’’. Also,
Fig. 27 d) Since ‘‘Speed control of a turbine (P2-SC)’’ is
also connected, ‘‘SIT01’’ and ‘‘CO_rpm’’ sensors may also
be affected.

Fig. 28 b) ‘‘Water level control in the water treatment plant
(P3-LC)’’ It consists of sensors ‘‘LCV01,’’ ‘‘LCP01,’’ and
‘‘LT01.’’.

FIGURE 27. Detailed system structure and influencing features.

5) SHAPELET-BASED FEATURES CONTRIBUTING TO THE
ATTACK (XAI RESULTS)
The results of extracting all the features that contribute sig-
nificantly to the 41 detected attacks are shown in Appendix
Table 6.

Attack sections #1 to #25 are single attacks, whereas sec-
tions #26–#50 are compound attacks. The features marked
in red and blue indicate features that can be affected by the
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FIGURE 28. Water treatment, turbine process system structure, and
influencing features.

FIGURE 29. SWaT testbed processes overview [32].

TABLE 5. Performance composition.

structure of the control system. Nine undetected attacks had
an orange background, and when the fault sensor detected
only one attack during a complex attack, it was indicated by
a gray background.

As a result of anomaly detection for the entire section,
25 of 36 attacks were detected in the SWaT dataset. The
structure for each attack provided by iTrust, Center for
Research in Cyber Security, Singapore University of Tech-
nology and Design, which created and published the data,
is shown in Fig. 29 [32]. The process in Fig. 29 consists of
six sub-processes, as shown in Table 3, which consists of P1:
5 features, P2: 11 features, P3: 9 features, P4: 9 features, P5:
13 features, and P6: 4 features.

P1 is the physical stage of raw water supply and storage,
P2 is the chemical dosing stage, P3 is the filtering stage called
Ultrafiltration (UF), P4 is dechlorination using Ultraviolet
(UV) lamps, P5 is the feeding stage using a Reverse Osmosis
(RO) system, and P6 is a backwash step that cleans the
membranes using RO permeate.

In addition, descriptions of the attack time, attack sensor
point, and impact of each attack are presented in Appendix
Table 7.
The results of extracting all the features that contribute

significantly to the 25 detected attacks are shown inAppendix
Table 8.
The features marked in red indicate those that can be

affected by the structure of the control system. Eleven unde-
tected attacks had orange backgrounds.

V. DISCUSSION
Compared to the paper ‘‘E-SFD: Explainable Sensor Fault
Detection in the ICS Anomaly Detection System’’ by Hwang
and Lee. Hwang and Lee used the same HAI dataset using
the Bi-LSTM model to achieve 98% accuracy and heatmap
analysis through SHAP and Feature Importance [31].

Compared to the paper ‘‘Anomaly detection for a water
treatment system based on one-class Neural network’’ [34],
who used the same SWaT dataset, compared the performance
using various models, and claimed a method through the NN-
one class. Using this method, an 87% f1-score was achieved.
However, the cause of the detected attack was not analyzed.

Compared with this study, the performance is lower than
that of the deep learning model in terms of accuracy in
detecting anomalies. However, deep learning methods cannot
determine the exact cause in the form of a black box. Even
if an anomaly is detected in terms of actual use, if it is
impossible to find and analyze the exact cause, the operator
must review all the sensors. Therefore, the time required
to take action and the workload of the operator inevitably
increases.

Boateng et al., using the SWaT dataset, did not analyze the
cause of the detected attack.

Hwang and Lee analyzed the cause using the HAI dataset
through a Heatmap and Feature Importance using SHAP.
However, these methods cannot be interpreted. In this study,
because the patterns of real data and actual feature values are
visualized and used for comparison with real-time data and
analysis of causes, the possibility of interpretation is higher
than that of analysis using SHAP.
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TABLE 6. Detected attacks and features contributing to attacks in the HAI dataset.

As the above comparison is in contrast to existing XAI
methodologies, this study improved interpretability by show-
ing an example of a steady state through real data. In addition,
analysis information on individual fault sensors contributing

to an abnormal state that could not be calculated in the
existing black-box model was provided based on actual data.
Based on this, the analysis provides the necessary information
for operator decision making. It supports an environment in
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TABLE 7. Attack descriptions: attack time, attack sensor point, and impact of each attack.

which a response action can be quickly taken by calculating
the priority when a fault sensor occurs.

However, further improvements in detection rates are
needed. Detecting anomalies based on current Euclidean
distance. For a more advanced detection, it is necessary to
establish a mathematical algorithm, and future research is
planned. The results of the performance comparison are listed
in Table 5. The compared methodologies either did not con-
duct analyses or, even if they did, did not verify the accuracy
of the interpretation. However, the method proposed in this
paper ultimately achieved a performance of over 95% for the
HAI dataset and over 85% for the SWaT dataset.

VI. CONCLUSION
With the development of information and communication
technology, research on AI and the introduction of smart
environments is being conducted to respond to various

attacks. However, as AI performance improves, internal inter-
pretability becomes more complex and must rely only on
AI prediction, which cannot be interpreted. As a result, the
reliability issues are emerging, and operators need to check
all possible sensor faults.

This study enhances credibility by providing information
about detection results and detecting fault sensors to operators
who monitor, analyze, and act on ICSs operating in a time
series environment.

In a real operating environment, a large amount of data
is provided in real time, but the number of experts who
can analyze or act on it is limited. Moreover, if the detailed
internal structure is unknown, appropriate actions cannot be
performed. The method proposed in this study solves these
problems by providing information about the detected fault
sensor, information on the corresponding sensor in normal
times, and representative patterns.
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TABLE 8. Detected attacks and features contributing to attacks in the SWaT dataset.

The information calculated using the methodology con-
firmed the following results through reliable visual and
quantitative values for abnormal signs.

In the HAI dataset, operators could respond to 39 of the
41 detected attacks by checking only the top three sen-
sors (approximately 4%). We were able to respond to all
attacks detected through the proposed methodology when
we checked the top five sensors (approximately 6%). In the
SWaT dataset, operators responded to 22 of the 25 detected
attacks by checking only the top four sensors (approxi-
mately 7%).

In conclusion, if the operator confirms the key informa-
tion (approximately 4% to 7%) of the attack, as shown in
Appendix Tables 6 and 7 of the verification results for the
two datasets, the operator can detect and interpret more than
85% to 95% of the attacks. Therefore, experts who previ-
ously had to work on many sensors could respond quickly
to threats by only working on a few sensors. This is expected
to improve efficiency and availability because experts who
need to respond can take immediate action.

APPENDIX
See Tables 6, 7, and 8.
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