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ABSTRACT Developing aerial robots that can both safely navigate and execute assigned mission without
any human intervention – i.e., fully autonomous aerial mobility of passengers and goods – is the larger vision
that guides the research, design, and development efforts in the aerial autonomy space. However, it is highly
challenging to concurrently operationalize all types of aerial vehicles that are operating fully autonomously
sharing the airspace. Full autonomy of the aerial transportation sector includes several aspects, such as design
of the technology that powers the vehicles, operations of multi-agent fleets, and process of certification that
meets stringent safety requirements of aviation sector. Thereby, Autonomous Advanced Aerial Mobility
is still a vague term and its consequences for researchers and professionals are ambiguous. To address
this gap, we present a comprehensive perspective on the emerging field of autonomous advanced aerial
mobility, which involves the use of unmanned aerial vehicles (UAVs) and electric vertical takeoff and landing
(eVTOL) aircraft for various applications, such as urban air mobility, package delivery, and surveillance.
The article proposes a scalable and extensible autonomy framework consisting of four main blocks: sensing,
perception, planning, and controls. Furthermore, the article discusses the challenges and opportunities in
multi-agent fleet operations and management, as well as the testing, validation, and certification aspects
of autonomous aerial systems. Finally, the article explores the potential of monolithic models for aerial
autonomy and analyzes their advantages and limitations. The perspective aims to provide a holistic picture
of the autonomous advanced aerial mobility field and its future directions.

INDEX TERMS Autonomous systems, advanced air mobility, autonomous aerial systems, robotics,
unmanned aerial vehicles, urban air mobility, multi-agent fleet operations, certification in aviation.

I. INTRODUCTION
Today, we are witnessing a paradigm shift in the automotive
industry, with the entire century-old industry shifting toward
electrification and increasing levels of connectivity and
autonomy. The four main drivers of this disruption are: (A)
Electrification - need for sustainability and reduced carbon
footprint of transportation sector (B) Autonomy - need for
safety, affordability, scale (C) On-demand/personalization –
need for personalized, affordable, on-demand, fast transport
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for people & goods. (D) Connectivity – rise of 5G.1 This
revolution has affected several aspects, including the business
models of industry players, from century-old Original Equip-
mentManufacturers (OEMs) to insurance agencies, including
automotive material suppliers (e.g., batteries), tier I, II, III
suppliers, chipmakers, etc. to rethink their approach in the era
of electrification, connectivity, and AI. In the aerial domain,
the electrification revolution is just getting started [1] with a
handful of companies building eVTOLs2 [2]; and starting to

15G is a key infrastructural element enabling the Unmanned Aircraft
Systems (UAS) Traffic Management (UTM) segment.

2An eVTOL is an aircraft capable of taking off, hovering, and landing
vertically thanks to an electric propulsion system.
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build and deploy towards making air taxis a reality [3], among
other applications, to create new industry segments in the
form of Advanced Air Mobility (AAM), Urban Air Mobility
(UAM), package delivery, inspection, etc. In theUnited States
alone, the AAM market is estimated to reach US$115 billion
annually by 2035 [4].

A. BACKGROUND
A myriad of such applications within the aviation industry,
from small manned to unmanned aerial vehicles in both
military and civilian sectors [5], are advancing using both
automation and autonomy.3 These technologies hold the
promise of making aircraft easier to fly and improving safety
in the traditional aviation sector. On the other hand, their
promise to the new market segments is to relieve the tradi-
tional one-to-one piloting of aerial vehicles, the financial cost
of which is a prohibitive factor for scaling, in favor of the
potential of fleet-level management.

Additionally, with the introduction of the new aviation
segments such as UAM, AAM, etc. the fundamental nature
of aerial mobility in urban settings is poised to become
a more personalized experience for consumers – lead-
ing to high volume operations within shared airspace [6].
To accommodate high volume of mobility under UAM
segment, high density flight operations with geographi-
cally constrained and densely populated areas will need to
be conducted in the airspace that’s currently unavailable
to commercial jet aircraft systems. With such develop-
ments, autonomous operations become all the more sig-
nificant in realizing robust operational control over all
aspects of aerial mobility including route planning, fleet
management, spacing, battery-charging/energy-management
optimization, and more. Therefore, increased autonomy is
a fundamental facilitator for the viability and commer-
cial scale growth of the newer market segments including
UAM, delivery, and inspection applications. More specif-
ically, AI is a key enabler in several components spread
across all these segments with varying levels of autonomous
operations.

B. RELEVANCE AND LITERATURE REVIEW
It is imperative that operations, at scale, in the shared
airspace– for old and new market segments alike – require
autonomy. Today, most of the autonomous system solutions
are based on AI (deep learning and deep reinforcement
learning to be specific). For the autonomous aerial mobility
domain, majority of the sub-tasks for enabling autonomous
operations (perception [7], scene-understanding [8], local-
ization [9], mapping [10], planning, and control [11]) can
be accomplished more effectively using AI-based methods
when compared to traditional computer vision, robotics, and
controls methods.

3The difference between autonomy and automation is discussed in
Section II-A.

FIGURE 1. Advanced autonomous aerial mobility – presented in a holistic
and interdisciplinary details in this perspective.

No doubt that software technologies (simulation, machine
learning, and other AI techniques) are going to play a pivotal
role in bringing the vision of autonomous aerial mobility
to fruition. In the most abstract form, the needed software
technologies and tools can be classified into three major
branches: i) Simulation; ii) Data; and iii) Autonomy. ‘Simu-
lation’ pertains to high-fidelity simulation for aerial vehicles
and environments where they may fly. ‘Data’ encompasses
synthetic data generation, processing, and curation capabili-
ties along with the ability to bring sensed/measured data from
the real world to simulation world (we term this ‘Dataverse’
in this article). ‘Autonomy’ refers to AI-enabled software
that supports a wide variety of applications in perception,
scene-understanding, planning, and eventually controls for
aerial vehicles. Suites of such software programs, operating
in tandem, are what’s needed to enable autonomous aerial
mobility applications at-scale ranging from UAM to various
other UAVs.

As can be seen from the intersectionality Venn diagram in
Fig 1, this problem is multidisciplinary in nature and requires
components from different disciplines to be put together to
build the technology which can safely enable autonomous
advanced aerial mobility. Moreover, these components must
be compatible with each other and in the end synergize with
each other to meet the stringent safety standards of aviation
field.

Additionally, developing and deploying autonomous AAM
systems poses significant technical and operational chal-
lenges, such as ensuring safety, robustness, scalability, and
efficiency in complex and dynamic environments. Despite
the recent advances in artificial intelligence (AI), robotics,
and simulation technologies, the literature on UAVs doesn’t
comprehensively present a holistic picture of how to design
autonomy blocks and technology stack for aerial mobility
that’s flexible and adaptable to different form-factor and
applications, with multi-fleet operations considerations, and
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furthermore, considering the certification aspects [12], [13],
[14], [15], [16], [17].

C. CONTRIBUTIONS OF THIS WORK
In this work, we address the above-mentioned gaps in the
literature. This is a Perspective article that presents a holistic
qualitative approach to Autonomous Advanced Aerial Mobil-
ity. More specifically, the contributions of this work are as
follows:

• We put-forth our perspective on how the autonomous
aerial mobility technologyfieldwill evolve and converge
into a modular framework that gives aerial robots the
ability to ‘see’, ‘understand’, ‘decide’, and ‘move’ using
artificial intelligence based algorithms and methods.

◦ To put our proposed perspective in a balanced light,
we also discuss the notion of ‘monolithic deep
learning for autonomous aerial vehicles’ – which
refer to the paradigm that one single end-to-end
model should be trained to execute all four major
tasks as opposed to the modular framework that we
propose in this perspective.

• We propose a scalable and extensible Autonomy Block
stack for Advanced Aerial Mobility with detailed expla-
nation of the functionalities and technical underpinnings
of various blocks.

• For each topic discussed in this perspective, we canvass
various key research works that have been published on
the sub-topics and sub-technologies that constituents the
proposed framework.

• We bring together multi-faceted aspects of Autonomous
Advanced Aerial Mobility field to present a holistic
picture of the field including:

◦ Role of simulation, synthetic data, and AI in
enabling autonomy

◦ Applications across domains, sectors, and scenarios
◦ Multi-agent fleet operations and progress made by

agencies such as Federal Aviation Administration
(FAA) and EASA on orchestrating the operations
of large-scale deployments of UAV fleets.

◦ Testing, validation, and certification of these new
AI-based technology from regulatory bodies.

It is important to note that this work is not a survey of
the research works that have been published in the UAV
field. Instead, this article presents a technical ‘‘perspective’’
on how the autonomous advanced aerial mobility field will
evolve keeping autonomy technology and AI at center. Var-
ious sub-fields under this umbrella topic are explored in
this work for bolstering the presented perspective with con-
ceptual underpinnings of the interrelated topics. Moreover,
monolithic approach is also discussed as a contrasting school-
of-thought to put forth our modular framework in a balanced
light.

D. ARTICLE ORGANIZATION
Section I introduces the background, motivation, and contri-
butions of this work on autonomous aerial mobility. Section II

contextualizes the fundamentals of autonomy, automation,
and AI for aerial vehicles and compares them with ground
vehicles. Section III discusses the roles of simulation and
synthetic data in advancing autonomous systems and presents
the Aerial DataVerse toolchain. Section IV proposes the
Autonomy Blocks framework for advanced aerial mobility
and explains its components and functionalities. Section V
surveys various applications of autonomous aerial mobility
across domains, sectors, and scenarios. Section VI introduces
multi-agent fleet operations and management and reviews the
current progress and challenges in UTM. Section VII focuses
on benchmarking and validation aspects of AI models for
autonomy blocks and discusses the safety and certification
issues. Section VIII explores the potential of foundationmod-
els for aerial autonomy and analyzes their advantages and
limitations. Section IX concludes the article and provides the
outlook on the Autonomous Aerial Mobility field.

II. CONTEXTUALIZATION OF FUNDAMENTALS
A. AUTOMATION VS AUTONOMY
The rapidly advancing aviation industry is proposing and
developing intelligent systems and solutions for different
phases of flights, different types of vehicles, various operating
envelops, and different sizes of sub-systems within the vehi-
cles. Consequently, the terms automation and autonomy are
sometimes used interchangeably. Though somewhat related,
these two terms signify two very different notions of human-
intervention-independent task-execution by machines. The
key differentiation between the two needs to be established
before we go on to describe the proposed Autonomy Blocks
framework for aerial mobility.

To date, there are no standard definitions differentiat-
ing automation and autonomy. However, the industry is
converging to the following – Automation is a process per-
formed without human assistance which typically runs within
a well-defined set of parameters. Automated systems (or
sub-systems) are very restricted in what tasks they can per-
form, are designated to accomplish a specific set of largely
deterministic steps to achieve a limited set of pre-defined
outcomes [18]. On the other hand, autonomy implies sat-
isfactory performance under significant uncertainties in the
environment and the ability to compensate for system failures
(i.e., built-in software redundancies) without external inter-
vention. Autonomous systems learn and adapt to dynamic
environments.

An example of automation in the aviation domain is autopi-
lot technology. These systems are programmatically designed
to keep the aerial vehicle (most often commercial jets) level
and headed in the right direction; however, departure from the
usual operational envelop or circumstances requires a human
pilot to take over and human supervision is needed all the
while. On the other hand, a fully autonomous aerial vehicle
(e.g., delivery drone) operates without human assistance in
a dynamically changing environment. In this scenario, the
starting point and the end point are fixed, the route has
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FIGURE 2. Four major building blocks of autonomous systems.

been pre-planned, but the on-board vehicle intelligence needs
to dynamically respond to wind-gusts forcing it to deviate
from its pre-planned waypoints, and also determine the right
landing spot by finding an obstacle-free zone on the drive-
way of the delivery location. In this case, the autonomously
operating vehicle is making its own judgements and acting
under uncertainty. To summarize, autonomous systems are
akin to a living/constantly evolving (artificial) intelligence
that can progressively take over the complete higher-level
task (e.g. flying an eVTOL) by continuously learning from
its environment. Automation, on the other hand, can only
perform preprogrammed tasks that are repetitive in nature
with little to no understanding of the changing environment
around it.

Another way to understand autonomous systems is - a
constantly evolving and dynamic process that is capable
of perceiving the on-going changes in the real-world and
responding appropriately in order to meet the objective of the
process (in our case – navigating an aerial vehicle safely to
its destination to complete the mission). There are four major
components of this process – 1) Sense; 2) Perceive; 3) Plan (or
decide); 4) Actuate. This view of autonomous system, with its
components, is depicted in Fig 2. Advanced Aerial Mobility,
as an autonomous system, is discussed in detail in Section IV.

1) RULE-BASED VS LEARNING-BASED APPROACH
Autonomous systems have learning-based methods at their
core. Artificial neural networks (ANN) are universal function
approximators; that is, it is possible to represent complex
nonlinear behavior in a high-dimensional space using ANNs.
A deep neural network is an ANNwith multiple hidden layers
and nodes cascaded between input and output layers. Deep
neural networks are sophisticated neural networks that have
been successfully applied to analyze data in many disciplines
in the past several years such as computer vision, image
recognition, automatic speech recognition, bioinformatics,
finance, and natural language processing [19]. In general,
traditional machine learning algorithms such as decision
trees, Naïve Bayes classifiers, K Nearest Neighbors etc. are
particularly task specific. However, deep learning networks
are capable of learning intricate structures in large datasets,
allowing them to generalize better to address all the scenarios
– however non-linearly related – that are included in the train-
ing dataset. Additionally, deep learning algorithms typically

do not require the type of extensive feature engineering that
is required of other traditional machine learning methods.4

Another class of learning-based approaches that have the
potential to enable full autonomy is Deep Reinforcement
Learning (DRL). DRL is a branch of machine learning that
combines deep neural networks with reinforcement learning,
a technique that learns from trial and error by interacting with
an environment. DRL agents can learn complex and opti-
mal policies for sequential decision-making problems, such
as controlling an aerial vehicle, without requiring explicit
supervision or prior knowledge. DRL has been successfully
applied to various domains, such as robotics, games, and
self-driving cars [20], [21], [22].

Rule-based approaches, on the other hand, do not have any
generalization capabilities. Furthermore, closed form analyt-
ical equations based models do not account for the changes
in the environment and rigidly follow the constructs with
which they are written by humans. There is no ‘‘continuous’’
improvement process that allows rule-based approaches to
evolve to cater to higher and higher machine intelligence
needs. For applications where the number of scenarios and
variations are vast – it is extremely challenging, inefficient,
and practically close to impossible to create intelligent sys-
tems using rule-based programs that can sense, perceive,
understand, and act in real-time for dynamically changing
environments.

B. AUTONOMY FOR 2D vs 3D TRANSPORTATION
Given the advances that have been made in the driverless
ground transportation industry, the comparison of the tech-
nological parallels between the two mediums of mobility is
often drawn.We summarize the main differences between the
two (2D and 3D transportation) below:

• The degrees of freedom in case of aerial transportation
(x, y, z axes and roll, pitch, yaw) is twice as many
as ground transportation (x,y axes, and orientation) –
so for fully autonomous navigation, this is a relatively
harder problem to solve when 6 variables are to be deter-
mined by the algorithms that are solving multi-objective
optimization problem, with even more stringent safety
criterion, where the objectives and constraints include:

◦ minimize fuel/battery consumption to maximize
flight-time/distance covered,

◦ minimize distance by picking shortest possible tra-
jectory (including minimizing altitude changes),

◦ detect and navigate around the obstacles that could
show up from various directions such as top, bot-
tom, forward, side-ways (i.e. it has more collision-
potential),

4As the autonomous driving industry is striving to get to Level III automa-
tion certified for deployment, there are concerns in the AI-community about
Deep Learning’s ability to deliver Level V (fully autonomous) vehicles.
It is asserted that deep learning can only interpolate. Deep neural networks
extract patterns from data, but they don’t develop causal models of their
environment. This requires the training dataset to cover all ‘‘edge-cases’’ or
different nuances of the problem that the deep learningmodel will encounters
upon deployment.
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◦ keep the vehicle stabilized in the air while navigat-
ing around dynamic obstacles, wind gusts, etc.

◦ maximize safety (i.e. avoid operational failure at all
costs)

• Autonomous aerial vehicle operation is essentially a
complex controls problem where the onboard intelli-
gence must sense, perceive, process, and give control
commands to the rotors all the while maintaining the
base level stability of vehicle in the air to counter
the thrust, drag, list, and weight forces (form-factors
with hovering capabilities have slightly different sets of
constraints to operate than the form-factors without hov-
ering functionality). The control commands to the rotors
need to be managed within a matter of milliseconds
to secondswhile counteracting these forces, localizing,
mapping, path-planned, detecting and avoiding obsta-
cles, etc. Ground transportation, on the other hand, has
a smaller number of sheer physical forces to counter as
they are stuck to the ground throughout the process. This
makes 3D mobility a harder problem to tackle.

• The onboard sensing and compute hardware of aerial
vehicles is tightly intertwined with the size, weight,
and power (SWaP) constraints of the aerial vehicle. The
type of sensors (also referred to as optical payload)
and the size of compute that can be installed for an
application-specific UAV is dependent on various fac-
tors such as SWaP limitations, development and unit
cost reduction targets (together termed as SWaP-c con-
straints). Therefore, bringing higher and higher levels
of intelligence in the aerial autonomy domain —- when
compared to the driverless ground vehicles domain —-
is a harder problem to solve.

• Safety considerations: the aviation sector is known for
its one of the most rigorous safety standards across dif-
ferent industries, which again makes it a more involved
problem to solve compared to the ground transportation
sector.

• The UAM segment has vehicles with different form
factors (from small inspection drones to air-taxi carrying
passengers) that vary in their operating speed ranges
and maneuvering capabilities. When these vehicles
share the same airspace, creating autonomous naviga-
tion capabilities with fast detect-and-avoid capabilities
is a necessity. To this end, the research and regulatory
communities are actively working on designing airspace
for dense UAM future [23]. In the case of driverless
ground vehicles, the navigation route infrastructure and
driving rules are pre-established and by design less
prone to collisions than vast airspace for 3D transporta-
tion where lanes/speed-operating-zones/ are not [yet]
established.5

5NASA’s ongoing effort in ATM: What is the Air Traffic Management
eXploration? | NASA

• The aerial domain has more environmental disturbance,
more pronounced in the case of smaller form factor
vehicles. For example, hail or a gust of air easily gets the
drone destabilized or forcefully stray it from the planned
trajectory.

• Driving only happens on roads and every inch of the road
network has been high-definition (HD) mapped [24].
HD mapping every inch of the volumetric air space is an
extremely challenging (i.e. compute intensive) problem.
Due to the lack of HD-mapped space, more sophisticated
methods and/or combination of algorithms are needed to
solve localization, mapping, and path planning problems
in the aerial domain.

There is one aspect however, that makes ground transporta-
tion’s autonomous operations more challenging than aerial
transportation is – Pedestrians. Pedestrians are not on the
way for the majority of aerial vehicles (exception - delivery
drones that get closer to the ground during a drop-off in
front of public buildings/houses). Autonomous ground vehi-
cles operating in urban environments must predict pedestrian
behavior which is highly stochastic in nature. This increases
the complexity of decision-making for autonomous ground
transportation.

C. LEVELS OF AUTONOMY
Advancements in the aviation industry – both the vehi-
cle types/designs and the aviation ecosystem in which they
operate – are shaped and guided by complex trades among
multi-disciplinary technological innovations in engineer-
ing domains, economics, baseline technical requirements,
and sustainability concerns, all built on a foundation of
safety. The level of autonomy, therefore, is determined
by a complex set of factors such as - how much is the
human pilot (remote or on-board) involved? How much
is controlled by AI-based intelligence? How much con-
trol does the traditional/rude-based automation retain? How
complex is the environment? How can inter-agent inter-
actions be modeled? At what level of trust? What’s the
level of redundancy needed before machine intelligence can
take over a significant portion of decision-making? For
the ground transportation sector, the Society of Automo-
tive Engineers (SAE) has classified autonomous driving into
six levels in the standard published in 2014 SAE J3016
[25]. Comprehensive and widely/universally accepted aerial
autonomy standards are in making but it is highly likely
that the progression of the autonomy level in the future
aviation specific standards will be similar to autonomous
driving.

Towards the second half of autonomy levels on the
spectrum, human pilot’s ability to override the system
decision-making and action-sequence is a key transition
phase. European Union Aviation Safety Agency (EASA)’s
concept paper [26] highlights three distinctive phases of
machine intelligence design where overriding capabilities of
the human pilot are progressively phased out: i) Overseen
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and overridable6; ii) Overridable7; iii) Non-overridable.8 The
paper also classifies the five levels of autonomy as: i) Human
Augmentation; ii) Human assistance; iii) Human-AI collab-
oration (overseen and overridable); iv) More autonomous AI
(overridable); v) Fully Autonomous AI (non-overridable).

Human Machine Interaction (HMI) is the study of how
humans and machines interact in complex systems, such as
aviation. HMI involves the design, evaluation and imple-
mentation of interfaces that facilitate the communication,
coordination and control between humans and machines.
HMI is especially important in aviation, where pilots, air
traffic controllers, maintenance crews and other stakeholders
rely on various technologies to ensure safe and efficient flight
operations. HMI in aviation aims to optimize the perfor-
mance, workload, situation awareness and error management
of human operators, while also enhancing the reliability,
usability and adaptability of machines. HMI takes on added
importance in the Autonomous Operations realm as the over-
all field evolves to integrate higher levels of autonomy in
the aerial vehicles. Balancing the roles and responsibilities of
humans and machines; ensuring the compatibility and inter-
operability of different systems; and addressing the ethical,
legal and social implications of HMI are the challenges that
need to be addressed as the technical advancements unfold on
autonomy front.

D. KEY DIFFERENCES BETWEEN AAM AND TRADITIONAL
AVIATION
Advanced Aerial Mobility (AAM) is a term that describes a
new era of air transportation that uses highly automated and
electric aircraft, such as air taxis or eVTOL aircraft. AAM
aims to provide safe, accessible, affordable and sustainable
air travel for passengers and cargo in urban and rural set-
tings. AAM aircraft can perform various missions, such as
package delivery, emergency response, aerial observation and
personal transportation. Advanced Air Mobility AAM differs
from traditional aviation in several keyways:

• Mission Distances: AAM typically involves shorter mis-
sion distances compared to traditional aviation, which
usually involves flights of greater distances.

• Aircraft Technology: AAM involves the use of new
airborne technologies such as electric and hybrid aircraft
for urban, suburban, and rural operations. Traditional
aviation primarily uses fuel-powered aircraft.

• Operational Environment: AAM aims to transport peo-
ple and goods to locations not traditionally served by

6 [26] - ‘‘capability for the human to closely monitor the functions
allocated to the AI-based system (every decision-making and action imple-
mentation), with the ability to intervene in every decision-making and/or
action implementation of the AI-based system.’’

7 [26] - ‘‘capability for the human to supervise the operations of the
AI-based system (some decision-making and some action implementation),
with the ability to override the authority of the AI-based system (some
decision-making and some action implementation) when it is necessary to
ensure safety and security of the operations (e.g., upon alerting).’’

8 [26] - ‘‘human has no capability to override the AI-based system’s
operations’’

current modes of air transportation, including both rural
and more challenging and complex urban environments.
Traditional aviation mainly operates between estab-
lished airports.

• Navigation and Timing: AAM missions would likely
rely on precise navigation and timing through
three-dimensional corridors of uncontrolled airspace.
Traditional aviation operates in controlled airspace with
established air traffic control procedures.

• Aircraft Types: AAM includes small drones, electric air-
craft, and automated air trafficmanagement among other
technologies. Traditional aviation primarily involves
manned aircraft.

• Safety, Sustainability, Affordability, Accessibility:
These are highlighted as key features of AAMmissions.

In essence, AAM represents a transformative approach to
air travel that leverages new technologies and operational
concepts to expand the reach and efficiency of aviation.

E. KEY TERMINOLOGIES IN AAM SYSTEM
In this section we discuss a few key terminologies in the avi-
ation and AAM ecosystem that are relevant to the presented
work on Autonomous Aerial Mobility.

1) ConOps
In aviation, Concept of Operations (ConOps) is a document
that describes a proposed system concept and how that con-
cept would be operated in an intended environment. The user
community develops ConOps to communicate the vision for
the operational system to the acquisition and developer com-
munity. It is designed to give an overall picture of an operation
and facilitate a common understanding of a future system
to help develop operational and system-level requirements.
One of the widely utilized examples of ConOps in aviation
include NASA’s Concept of Operations Annotated Outline
[27]. ConOps for Unmanned Aircraft Systems (UAS) are in
active development. Section VI-A discusses this in detail.

2) VISUAL FLIGHT RULES (VFR) AND INSTRUMENT FLIGHT
RULES (IFR)
Visual Flight Rules (VFR) and Instrument Flight Rules (IFR)
are two different sets of rules that apply when flying an
aircraft. VFR refers to the rules and regulations of operating
an aircraft in weather conditions that are good enough for
the pilots to see the horizon and where the aircraft is going1.
Pilots cannot fly using VFR if they are flying through clouds
or within the defined clearances of them as they need to
be able to see other aircraft2. The weather must be better
than the VFR weather minima. Air Traffic Control (ATC) is
not necessarily responsible for keeping planes that are flying
VFR separated, though services such as flight following are
available depending on the region.

On the other hand, IFR refers to the rules and regulations
established by the FAA to govern flights under conditions
in which flight, by outside visual reference, is not safe.
This means that IFR only refers to flight done using aircraft
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instruments instead of depending solely on the visual of the
pilot outside the aircraft. Instruments are used in low visibility
scenarios such as bad weather or nighttime. IFR gives an
aircraft the authority to operate under Instrument Meteoro-
logical Conditions (IMC) which means that an aircraft will be
allowed to fly in any weather conditions less than the VMC
(visual) but is still borderline safe.

Whether pilots fly VFR or IFR will depend partially on the
weather conditions, the route of the flight, and other variables.
All pilots flying in Class A airspace must have IFR and the
pilots must be flying under IFR, regardless of the current
weather conditions in the airspace.

3) FLIGHT ENVELOP AND OPERATING ENVELOP
The flight envelope, also known as a performance envelope,
refers to the design capabilities of an aircraft. It is typically
expressed in terms of airspeed and load factor. The purpose
of a flight envelope is to define the operational limits for
an aerial platform with respect to maximum speed and load
factor given a particular atmospheric density. It is determined
during the design phase, where engineers calculate limits for
maximum speed, altitude, load factor, and maneuverability.

In terms of safety, the flight envelope is crucial because
it ensures that the aircraft operates within its designed struc-
tural capabilities. This minimizes the risk of over-controlling,
losing control, overstressing, or damaging the aircraft. If an
aircraft operates outside its flight envelope, it may suffer
damage. From a certification perspective, airworthiness cer-
tification verifies that a specific air vehicle can be safely
maintained and operated within its described flight envelope.
It shows that the air vehicle can safely attain, sustain, and
terminate a flight in accordance with approved usage limits
(range, speed, weight, altitude, safety).

The operating envelope (also known as the operational
flight envelope), on the other hand, refers to the area inside
the boundaries that limit the normal flight operations of an
aircraft. It is important to recognize the fundamental dif-
ference between the manufacturer’s certified limits (flight
envelope) and the airline’s operating limits (operating enve-
lope). The certified envelope provided in the aircraft flight
manual (AFM) represents the approved safe limits for the
airplane. However, it is not intended for use in actual load
planning. While the flight envelope describes the maximum
capabilities of an aircraft as determined by its design, the
operating envelope describes the practical operational limits
under which an aircraft is typically flown.

In the context of AAM, the flight envelope and the operat-
ing envelope take on added significance. AAM involves the
use of new vehicle technologies that redefine the scale and
types of operations possible in airspace systems. To facili-
tate the safe large-scale deployment and acceptance of these
new technologies, public and private institutions must work
together to understand and define the flight envelopes and
operating envelopes for these vehicles, especially when they
are equipped with autonomous navigation capabilities.

III. ROLES OF SIMULATION AND SYNTHETIC DATA IN
ADVANCING AUTONOMOUS SYSTEMS
Developing and testing autonomous systems in the real world
can be challenging, time-consuming, and expensive. Simu-
lation and synthetic data have emerged as essential tools in
bringing autonomous systems to life by enabling efficient
development, testing, and validation.

A. SIMULATION
Simulation is a powerful tool for developing autonomous
systems like unmanned vehicles. It allows researchers and
engineers to test and evaluate different scenarios, algorithms,
and designs virtually without risking the safety of the sys-
tem or the environment in the real world. Simulation can
also reduce the cost and time of development by enabling
faster iterations and feedback loops. Furthermore, it also
helps in validating the performance and robustness of the
system under various conditions and uncertainties. By using
simulation, autonomous systems can be improved, optimized,
and safety-tested before deployment in the real world.

The proposed Autonomy Blocks framework leverages the
AirSim simulator [28] to collect annotated training data on
a large scale, encompassing millions of data points across
a variety of environmental conditions and autonomy scenar-
ios. The process of collecting the desired annotated training
dataset is often sequential and follows the given steps:

• Digital 3D assets: Acquire or create them. In case
of aerial vehicle simulation, this includes simulating
physics, vehicle dynamics, controllers, and batteries.

• Scene Generation: Generate desired scene with 3D asset
placement. Prerequisite here is access to or creation of
base environments. For example, indoor – warehouse,
outdoors – airports /fields.

• Procedural Scenario Generation: Design and implement
various scenarios that simulate different real-world sit-
uations for training purposes. This includes inducing
faults, adverse conditions, terrain, corner scenarios, and
perturbations. Additionally, simulate weather conditions
across flight envelope to account for environmental
factors.

• Batch Generation of Annotated Synthetic data: By
instantiating one or multiple simulation instances, gen-
erate and annotate large batches of synthetic data by
incorporating the 3D assets and procedural scenarios,
ensuring a diverse, pragmatic, and comprehensive train-
ing dataset.

B. AERIAL DATAVERSE: MULTI-MODAL, QUERYABLE
SYNTHETIC TRAINING DATA
In this section we trace fuel that powers the proposed Auton-
omy Blocks framework. The saying goes – ‘‘data is the new
oil’’, authors’ amendment to this proverb– ‘‘raw oil can’t
be pumped into engine, it needs economical extraction and
effective recovery to become useful’’. Simulation or digital
twin of the airspace, given its current state of develop-
ment, captures a subset of the complexity of the real world.
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Moreover, a lot of manual engineering effort is required
to create each new dataset, as described in the previous
subsection. More importantly perhaps, it is for the systems
designers/architect to carefully engineer the virtual/training
scenarios that also encompass the edge-cases that keep the
advanced autonomous solutions from getting certified on
safety grounds. The sheer data-engineering resources needed
to create such close-to-real-life-edge-cases scenario is often
a prohibiting factor from a Machine Learning Operations
(MLOps) point of view. Therefore, to facilitate the training
of various AI models that form the backbone of autonomy
blocks with proper datasets, a bridge is needed between the
simulation and autonomy worlds.

To solve this extraction and recovery problem in the con-
text of aerial mobility, we propose Aerial DataVerse – the
fundamental building block of the presented overall auton-
omy framework. It is comprised of a toolchain for query-able
data generation, curation, and data augmentation using gen-
erative models and AI technologies (NeRF [29], GANs [30],
etc.). The aerial DataVerse is designed to collect billions
of eventful samples to create high-entropy surprise datasets
and simulation environments using AI actors. In the case of
aviation domain, the cost of collecting eventful (entropy-rich)
data in the real-world is exorbitant. In the aerial simula-
tion platform, collecting high-entropy eventful samples is
challenging too. Defining or scripting rare-events, unusual
trajectories, and atypical human-machine collaboration expe-
riences is (yet) not feasible without considerable amount of
manual engineering effort using existing simulation tools and
platforms. The proposed aerial DataVerse can help enable
the following functionalities for creating datasets that closely
emulate real-world conditions and do not need repetitive
effort-intensive manual simulation engineering:

1) QUERY-ABLE DATA GENERATION
With the goal of creating datasets that can capture edge-cases
that are anticipated by human intelligence before the
autonomous system is put into production, query-able data
generation capability is added to the proposedDataVerse. The
module is designed to hot infer curated datasets based on
the query entered (behind the scenes the module takes care
of making necessary changes in all the config files for the
simulation platform and data-collection pipeline as well as
activating the AI actors).

Sample query: ‘‘Multiple-operator aerial traffic scenarios
during thunderstorms’’

• Multiple operator: More than one UAM operators
involved ➜ Multiple aircraft models and types involved.
Single-passenger to multi-passenger aircraft with differ-
ent airframes (VTOLs/multicopters/planes). AI actors in
this DataVerse to fly the different air taxis with different
policies to simulate realistic conflicting traffic.

• Aerial traffic scenarios during thunderstorms: Con-
flicting trajectories due to re-routes based on the
inclement weather (thunderstorm) advisory. Domain

randomizations to account for and replicate thunder-
storm scenarios, wind dynamics, sensor aberrations etc.

2) DOMAIN RANDOMIZATION
The ‘‘domain’’ here pertains collectively to the {environment,
scenario, sensor parameters} and ‘‘randomizing’’ it would
yield a system capable of generating datasets that are rich
in domain knowledge spanning the spectrum of possible
domains including the real (physical) domain.

3) DATA AUGMENTATION
Data augmentation includes post-processing of datasets to
add variations and diversity to increase the information con-
tent in the datasets and sim sets thereby increasing the
resiliency and robustness of the system utilizing the data. The
applicable augmentations include crops, perspective trans-
forms (tilt, skew, warp left/right/forward/backward), size,
rotation, shears, random masks/erasures etc.

In addition to simulation generated data augmentation, the
real-world data gathered by the sensing infrastructure on the
deployed drone fleet will bring enormous value for contin-
ually improving the information entropy in the datasets and
sim sets. As the adoption of UAVs grows, with (Azure-IoT
powered) runtime, refinement telemetry, a set of ‘‘feedback
signals’’ from the (real-world) deployments could be lever-
aged to help refine, improve, and finer-tune the pre-trained
models embedded in the proposed Autonomy Blocks frame-
work.

IV. AUTONOMY BLOCKS – THE TECHNOLOGY THAT
INFUSES ON-BOARD INTELLIGENCE
Developing aerial robots that can both safely navigate and
execute assigned mission (task) without any human interven-
tion – i.e., fully autonomous aerial mobility – is the larger
vision that guides the research, design, and development
efforts in the aerial autonomy space.

For some applications specific scenarios such as inspec-
tion and 3D-mapping of physical assets, autonomously
navigating small scale UAVs have been tested, certified,
and rolled out as commercial products in recent years,
Skydio [31] being one of the prime examples. As the
technology matures further, developing autonomy in all
shapes, sizes, form-factors, and types of UAVs in a holis-
tic way such that it supports their intertwined operations
in shared airspace is a significant challenge that indus-
try, researchers, regulatory bodies, and governments are
grappling with.

A broad definition of Autonomous Systems with its four
main building functional blocks was laid out in Section II-A.
In this section, we present a detailed architecture of Auton-
omy Blocks designed for AAM applications. Additionally,
we map various autonomy blocks with various phases of
flight to further contextualize the modular design of the pro-
posed autonomy blocks framework.
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A. AUTONOMOUS OPERATIONS – A CONGLOMERATION
OF ROBOTICS PROBLEMS
Autonomous Operations in Advanced Aerial Mobility
represents a multifaceted challenge that encompasses a con-
glomeration of robotics problems. To enable unmanned aerial
vehicles (UAVs) or urban air mobility (UAM) systems to nav-
igate and operate autonomously in complex environments,
a comprehensive solution is required. This includes address-
ing issues related to sensing, such as developing robust
and high-precision perception systems to detect and under-
stand the surrounding environment. Additionally, conducting
Localization becomes crucial for accurate positioning, often
requiring advanced techniques like simultaneous localization
and mapping (SLAM) to create real-time maps. Moreover,
control algorithms must be finely tuned to ensure safe and
precise maneuvering of these aerial vehicles amidst dynamic
and unpredictable conditions. These elements, among others,
must seamlessly integrate to achieve the overarching goal
of enabling safe and efficient autonomous operations in the
realm of advanced aerial mobility.

As can be inferred from the above discussion, autonomous
AAM certainly requires more than just vehicle dynamics.
Other elements such as intricate environmental conditions
(weather, time-of-day, wind speed and direction, flying alti-
tude), various sensor configurations and layouts, and airspace
rules and traffic must also be taken into account for build-
ing the software systems to facilitate safe and effective
operations. Fig 3 shows the proposed Autonomy Blocks
framework. The four major blocks (sensing, perception,
planning, and actuation) are further broken-down into sub-
modules depicting the underlying sensing mechanisms, data
processing modules, data flow patterns, and robotics algo-
rithms that accomplish various sub-task for enabling aerial
vehicle’s navigation in its specific environment.

1) SENSING
Sensing refers to the process of collecting data or informa-
tion from the environment using various sensors and sensory
technologies. Sensing involves capturing raw data from the
surrounding environment, such as visual imagery, distance
measurements, speed, altitude, and other relevant informa-
tion. In the context of aerial mobility, sensors are essential for
understanding the aircraft’s surroundings (i.e. environment)
and its own state (vehicle’s dynamics, configurations, etc.),
helping it gather real-time data. These sensors can include
cameras, LiDAR (Light Detection and Ranging), radar, GPS
(Global Positioning System), IMUs (Inertial Measurement
Units), and more. Main types of sensors employed in AAM
applications are listed and described below:

• RGB Cameras: RGB imaging devices operate within
the visible spectrum and find applications in tasks
such as object recognition, obstacle avoidance, and
navigation.

• Stereo Cameras: Utilizing multiple lenses, stereo cam-
eras capture images from distinct perspectives, facilitat-
ing the computation of depth information. Their utility

spans tasks such as obstacle avoidance, navigation, and
mapping.

• Stereo Omnidirectional Cameras: These cameras
possess omnidirectional capabilities while maintain-
ing stereo vision, enhancing their utility in various
applications.

• Monocular Cameras: Monocular cameras provide sin-
gular perspective imagery and are employed in scenarios
where depth perception is not a primary requirement.

• Monocular Omnidirectional Cameras: Combining
monocular vision with omnidirectional capabilities,
these cameras offer unique advantages in specialized
applications.

• Infrared Cameras: Infrared cameras are designed to
capture images in the infrared spectrum, serving func-
tions like heat signature detection, obstacle avoidance,
and navigation.

• Thermal Sensors: Thermal cameras create images
predicated on temperature differentials, and are instru-
mental in tasks such as heat signature detection, obstacle
avoidance, and navigation.

• GPS: Global Positioning System (GPS) is a satellite-
based navigation system that provides accurate position-
ing information over a wide area. While GPS is widely
used for outdoor localization, it may have limitations
in terms of accuracy and availability in dense urban
environments or indoor settings.

• IMU: An Inertial Measurement Unit (IMU) is an elec-
tronic device that measures and reports a body’s specific
force, angular rate, and sometimes the orientation of
the body, using a combination of accelerometers, gyro-
scopes, and sometimes magnetometers. IMU measures
the acceleration, angular velocity, and sometimes the
magnetic field of a host device in three-dimensional
space. The raw data from these sensors can be processed
to determine the orientation andmovement of the device.
However, an IMU alone cannot provide the absolute
location of a device in terms of latitude and longitude.
Instead, it provides relative position data from a known
starting point. To obtain the absolute location of a device,
an IMU is typically used in conjunction with other sen-
sors such as GPS or other external references. The output
format of an IMU can vary depending on the specific
device and its intended use, but it typically includes
data on acceleration, angular velocity, and orientation in
three-dimensional space. This data can be used to track
the movement and orientation of the device over time.
IMUs tend to accumulate errors over time and require
correction from other sensors.

Recent developments allow for the production of IMU-
enabled GPS devices. An IMU allows a GPS receiver to
work when GPS-signals are unavailable, such as in tunnels,
inside buildings, or when electronic interference is present.
IMUs contain sensors such as accelerometers, gyroscopes,
and magnetometers. Each tool in an IMU is used to capture
different data types:
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FIGURE 3. Autonomy blocks framework for aerial mobility.

- Accelerometer: measures velocity and acceleration
- Gyroscope: measures rotation and rotational rate
- Magnetometer: establishes cardinal direction (direc-
tional heading)

In summary, IMUs are sensing devices that incorporate at
least two (and often three) types of sensors to measure a host
device’s location in three-dimensional space. They are a valu-
able supplement to GPS or other navigational technologies.

• LiDAR or depth sensor: LiDAR (Light Detection and
Ranging) cameras use laser light to measure distances
and create 3D maps of the environment. By creating
a detailed map of the surroundings and comparing it
to real-time measurements, a vehicle can estimate its
position relative to the map. They are used for tasks such
as obstacle avoidance, navigation, and mapping.

• Radar: Radar (Radio Detection and Ranging) is a tech-
nology that employs radio waves to detect objects,
measure their distances, and track their movements
within the surrounding environment. By emitting radio
frequency signals and analyzing the reflected signals
(echoes), radar systems can create a comprehensive
understanding of the nearby area and determine the
location, speed, and direction of objects.

Radar and Lidar: Radar and Lidar are both wave-based
technologies that detect, track, and image the environment.
Although these two technologies serve similar purposes, they
are different in how they work. These differences then make

them appropriate for different scenarios, where one could be
favored over the others. Radar uses radio waves to detect
and locate objects. Radio waves can have wavelengths from
3 millimeters to thousands of meters. A larger wavelength
means a lower frequency and vice versa. Radars that use high
frequency, short wave radio waves have a shorter range of
detection but yield a much clearer image. Lidar, on the other
hand, uses light waves to detect its surrounding objects and
track them. Rather than radio waves, Lidar uses light waves
to detect its surrounding objects and track them. One of the
biggest differences between radar and lidar sensors is the level
of accuracy, Lidar being more accurate. Moreover, Radar
sensors tend to generate a lot less data as they just return a
single point, or a few dozen points. The Lidar sensors sense
and transmit lots of data about each individual laser point of
range data. Lidar has become increasingly popular in recent
years due to its high accuracy compared to other sensing
technologies [32]. This superior accuracy creates a clearer
map of a vehicle’s surrounding area. Yet, it is important
to note that Radar has been traditionally widely utilized in
various aviation applications, including weather monitoring,
and military defense, where it aids in tasks such as collision
avoidance, target tracking, and navigation.

Sensing mechanism is often associated solely with hard-
ware devices (called sensors). However, with the advances in
sensing technologies, the sensors are increasingly becoming
smart, that is, a certain level of data-processing abilities
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are present in the sensing hardware itself. This is referred
to as Micro-Electro-Mechanical Systems (MEMS) technol-
ogy. MEMS technology combines mechanical and electronic
components on a small scale, typically at the micro or
nanometer level, to create sensors and devices. The following
sub-section delineates MEMS further.

a: MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS)
SENSORS
It is a technology that incorporates both electronic and mov-
ing parts on a microscopic scale. MEMS devices are made up
of components between 1 and 100 micrometers in size and
generally range in size from 20 micrometers to a millimeter.
They usually consist of a central unit that processes data,
such as an integrated circuit chip, and several components
that interact with the surroundings, such asmicrosensors [33].
MEMS sensors can sense tiny changes in their environment,
be it motion, air pressure, magnetism, or even gases in the
air. They relay this information as an electrical signal, making
them the sensory organs of the technological world.

MEMS sensors have many applications in the aviation
domain [34]. For example, MEMS gyroscopes, accelerom-
eters, and IMUs are used in aircraft and aviation appli-
cations, including use in Altitude & Heading Reference
Systems (AHRS), standby instrumentation, and flight control
surface sensors. MEMS pressure sensors are also widely
used in the aviation industry for propulsion/turbomachinery
applications, turbulent flow diagnosis, experimental aerody-
namics, micro-flow control, and unmanned aerial vehicle
(UAV)/micro aerial vehicle (MAV) applications.

MEMS sensors are being applied more and more in
Unmanned Aerial Vehicles (UAVs), especially for flight con-
trol. They can be used to measure various parameters such
as rotation speed, air flow, pressure, force, position, temper-
ature, and vibration [35]. These measurements can be used
by the flight control system to make real-time decisions and
adjust the aircraft’s control surfaces accordingly. For exam-
ple, MEMS actuators can be used to control leading edge
vortex separation and growth, producing a desired aerody-
namic force for flight control. MEMS sensors can also be
used to detect anomalies in the flight control subsystem and
enhance its reliability [36].

b: SOLID-STATE SENSORS
Solid-state sensors, often referred to as the sensory cor-
nerstone of modern technology, are devices that employ
semiconductor materials to convert a physical property into
an electrical signal. They are engineered using advanced
semiconductor technology and operate without moving parts,
thus enhancing their durability and extending their opera-
tional life. These sensors offer several advantages over other
types, including high sensitivity, low power consumption,
fast response times, and long-term stability. Examples of
solid-state sensors include charge-coupled devices (CCD),
complementary metal oxide semiconductors (CMOS), and
semiconductor lasers.

In the aviation industry, solid-state sensors play a pivotal
role across various aviation systems, from monitoring air-
craft performance to ensuring flight safety and stability [37].
For example, solid-state temperature sensors are crucial for
engine health monitoring, ensuring that critical components
operate within safe temperature ranges [38]. Additionally,
solid-state pressure sensors contribute significantly to altitude
and airspeed calculations, supporting flight navigation and
control. These sensors also facilitate real-time data on critical
parameters, enabling precise adjustments to the aircraft’s con-
trol surfaces, engine performance, and navigation systems.
Notably, solid-state accelerometers and gyroscopes aid in
stabilizing the aircraft, while solid-state pressure sensors help
maintain cabin pressure at optimal levels.
FLASH LiDaR (Solid State LiDAR:)
Flash LiDAR, also known as Solid State LiDAR, repre-

sents an advanced and cutting-edge optical sensing technol-
ogy within the field of remote sensing and environmental
perception. It operates on the principle of light detection and
ranging (LiDAR) with a particular focus on the instanta-
neous illumination of the entire field of view. This innovation
leverages solid-state components, such as microelectrome-
chanical systems (MEMS) mirrors and semiconductor lasers,
to swiftly capture a three-dimensional spatial profile of the
surroundings. Flash LiDAR exhibits a distinctive capacity to
generate dense point clouds in a single laser pulse, allowing
for real-time, high-resolution mapping and object recognition
[39], [40].

c: SENSOR SIMULATION AND MULTIMODALITY
Multi-modal sensor simulation for autonomous aerial mobil-
ity is a closely associated research area that aims to develop
realistic and scalable methods for testing and validating the
performance of sensors and algorithms for UAVs [7]. Sensors
such as cameras, lidars, radars, and GPS are essential for
enabling autonomous aerial mobility, but they are also sub-
ject to noise, interference, occlusion, and other challenges in
real-world scenarios [41]. Therefore, it is important to simu-
late these sensors and their interactions with the environment
in a virtual setting, where different conditions and scenarios
can be easily controlled and replicated. Multi-modal sen-
sor simulation can also facilitate the integration of different
sensor modalities, such as vision and sound, to enhance the
robustness and reliability of the proposed autonomy blocks
stack. Some of the challenges and opportunities in this field
include modeling the physical properties and behaviors of
sensors and the environment, generating realistic and diverse
synthetic data, evaluating the accuracy and fidelity of sen-
sor simulation, and applying machine learning techniques to
improve sensor simulation and data augmentation.

2) PERCEPTION
Perception is the higher-level process that comes after sens-
ing. It involves interpreting and making sense of the data
collected and preprocessed (to a certain extent) by sensors.
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Perception algorithms and systems combine data from differ-
ent sensing streams and analyze it to recognize and identify
objects, obstacles, terrain, landmarks, and other relevant fea-
tures in the environment. Perception also includes estimating
the relative positions and velocities of these objects, deter-
mining their significance for flight safety and navigation,
and predicting their future movements [42]. Assimilating
data about vehicle’s own states is also part of perception
process. In essence, perception enables the autonomous sys-
tem to understand its surroundings, its relative position and
state with respect to those surroundings, and make informed
decisions based on that understanding. A non-exhaustive
summary of various states variables and parameters that are
sensed, measured, and eventually fed to perception blocks is
given in Table 1.

a: 3D OBJECT DETECTION AND TRACKING
3D Object Detection is a task in computer vision where the
goal is to identify and locate objects in a 3D environment
based on their shape, location, and orientation. It involves
detecting the presence of objects and determining their loca-
tion in 3D space in real-time. This task is a crucial first step
in the perception component of the autonomy blocks stack of
AAM [43].

On the other hand, 3DObject Tracking is a computer vision
task dedicated to monitoring and precisely locating objects as
they navigate within a three-dimensional environment. It fre-
quently utilizes 3D object detection techniques to pinpoint the
objects and establish unique identifications that persist across
multiple frames. The goal is to continuously estimate the
position and orientation of the object, even in the presence of
occlusions, camera motion, and changing lighting conditions.

b: SEMANTIC SCENE UNDERSTANDING
Unlike 3D object detection which focuses on identifying and
locating the objects, semantic scene understanding attempts
to analyze objects in the context of the whole scene, unlike
object recognition that focuses only on identifying the objects
either as 2D or 3D bounding boxes [8]. Semantic scene
understanding, therefore, analyzes the objects with respect to
the properties like 3D structure of the scene, its layout, and
the spatial, functional, and semantic relationships between
different objects in the scene [44]. Recent models with high
success for scene understanding include [45], [46], [47].

c: LOCALIZATION
Localization, in the context of robotics and autonomous aerial
systems, refers to the process of determining the precise
position and orientation of a vehicle, robot, or object within a
given environment. It involves estimating the location relative
to a known coordinate system, such as a global map or a local
reference frame. Localization is a crucial aspect of navigation
and autonomy, as accurate knowledge of the position and
orientation is essential for safe and effective operation [9].

Localization can be achieved using various sensors and
techniques, often combined for improved accuracy and
robustness. Some common sensing technologies used for
localization include IMU, LIDAR, and GPS. From methods
standpoint, some of the commonly used ones are as follows:

• Visual Odometry (VO): Visual odometry involves
using cameras to track visual features and patterns in
the environment as the vehicle moves. By analyzing
the changes in these features, the system estimates the
motion and can update the position and orientation.
It’s particularly useful in environments with distinctive
visual cues.

• Beacon-based Localization: This method involves
placing fixed beacons with known positions in the envi-
ronment. The vehicle uses signals from these beacons to
triangulate its position.

• Radio Frequency (RF) Localization: Using radio sig-
nals, such as Wi-Fi, Bluetooth, or RFID, vehicles can
estimate their positions based on signal strength and the
known locations of access points or transmitters.

• Particle Filters and Kalman Filters: These are proba-
bilistic filtering techniques that combine measurements
from different sensors to estimate the vehicle’s position
and orientation while accounting for uncertainty and
sensor noise.

Accurate localization is essential for autonomous vehicles,
drones, robots, and other systems to operate safely and effec-
tively. By knowing their precise position, these systems can
plan routes, avoid obstacles, and make informed decisions
during their tasks.
Visual Odometry:
Visual odometry (VO) is the process of incrementally

estimating the pose of the vehicle/robot by examining the
changes that motion induces on the images of its onboard
cameras [48]. This technique estimates the motion and posi-
tion of a vehicle by using only the images captured by a
camera attached to it. VO is useful for navigation and obstacle
avoidance in various environments, especially where other
sensors or systems are not available or reliable, such as
indoors, underwater, or in space. VO can also provide 3D
vision and rich information about the surroundings.

VO can be classified into different types based on the type
of camera used, such as stereo, monocular, omnidirectional,
or RGB-D cameras. Each type has its own advantages and
disadvantages in terms of cost, accuracy, calibration, and
scale estimation. VO can also be approached in different ways
based on the method of image analysis, such as feature-based,
appearance-based, or hybrid methods. Feature-based meth-
ods extract and match distinctive features between image
frames, such as corners, lines, or curves. Appearance-based
methods use pixel intensity values to measure the changes in
the image appearance. Hybrid methods combine both feature
and appearance information to improve the robustness and
efficiency of VO.

VO, however, also facesmany challenges that affect its per-
formance and reliability. Some of these challenges are related
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TABLE 1. Summary of sensed and measured state variables and parameters - for both traditional and AAM based vehicles.

to the computational cost of image processing, the lighting
and imaging conditions of the environment, the presence of
noise and blurs in the images, the lack of texture or features
in the scene, and the drift accumulation over time. Therefore,
VO often requires integration with other sensors or systems,
such as GPS, INS, or laser sensors, to enhance its accuracy
and stability.
SLAM:
Simultaneous Localization and Mapping (SLAM) is a

technique that combines the process of building a map of
the environment with estimating the vehicle’s position within
that map [49]. It’s commonly used in robotics to navigate in
unknown or changing environments. It refers to a compre-
hensive approach used in robotics and autonomous systems
to simultaneously create a map of an unknown environment
while estimating the position and orientation of the vehicle or
sensor within that environment [50].

As a method, SLAM represents the general concept of
addressing the challenge of mapping an unknown area while
navigating within it. It involves the integration of sensor
data, such as LIDAR scans, camera images, and IMU mea-
surements, to build a coherent map of the environment.
As a technique, SLAM involves a specific set of algo-
rithms and computational processes that combine sensor
measurements, motion models, and probabilistic methods to
iteratively update the map and the estimated position as the
vehicle moves through the environment. These algorithms
handle uncertainties, noise, and errors in sensor data to main-
tain accurate localization and mapping over time.

In summary, SLAM is a concept or method that encom-
passes the overarching idea of mapping and localization

simultaneously. It is also a specific technique involving algo-
rithms and computational strategies to achieve that goal in
practice.

SLAM vs VO: The main difference between VO and
SLAM is that VO mainly focuses on local consistency and
aims to incrementally estimate the path of the camera/robot
pose after pose, and possibly performing local optimization
[51]. On the other hand, SLAM aims to obtain a globally
consistent estimate of the camera/robot trajectory and map.
In other words, VO is concerned with estimating the motion
of the camera/robot in real-time, while SLAM is concerned
with building a map of the environment while keeping track
of the camera/robot’s location within it. Both techniques
have their own strengths and weaknesses and are often
used together to achieve accurate and robust navigation and
localization.

d: Mapping
Mapping, in the context of robotics and autonomous sys-
tems, refers to the process of creating a representation or
model of the environment. The goal of mapping is to cap-
ture spatial information about the surroundings, including the
locations of objects, obstacles, landmarks, and other relevant
features [10].

Mapping is a crucial aspect of navigation, exploration,
and understanding for autonomous systems. By having an
accurate and up-to-date map of the environment, autonomous
aerial vehicles can make informed decisions, plan optimal
paths, avoid obstacles, and navigate effectively. Mapping can
be performed in various domains, such as indoor environ-
ments, outdoor landscapes, or even underwater areas.
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There are different types of mapping techniques and
technologies, each suited for specific environments and appli-
cations:

• Occupancy Grid Mapping: This method divides the
environment into a grid of cells and assigns probabilities
to each cell based on the likelihood of occupancy. It’s
commonly used for representing indoor environments
and detecting obstacles.

• Feature-Based Mapping: This approach focuses on
identifying and mapping specific features or landmarks
in the environment, such as corners, edges, or distinctive
objects. Feature-basedmaps can be useful for navigation
and localization.

• Topological Mapping: Instead of representing the envi-
ronment in a geometric way, topological mapping
focuses on capturing the connectivity and relationships
between different locations or areas. It’s often used for
high-level navigation planning.

• 3D Mapping: This involves creating a three-
dimensional representation of the environment using
technologies like LIDAR or depth-sensing cameras.
3D maps provide more detailed information about the
environment’s structure.

• Semantic Mapping: In addition to geometry, semantic
mapping includes information about the types and cat-
egories of objects in the environment. This can help in
understanding the context and making more informed
decisions.

• SLAM: SLAM, also covered under Localization
subsection above, combines mapping and localization.
It involves building a map of the environment while
simultaneously estimating the robot’s or vehicle’s posi-
tion within that map.

Mapping can be done in real time as a robot or vehicle moves
through the environment (online mapping) or offline by pro-
cessing recorded sensor data (offline mapping). Regardless
of the approach, mapping plays a crucial role in enabling
autonomous systems to interact with their surroundings in a
meaningful and intelligent way.

• Online Mapping: Online mapping is a real-time pro-
cess in which a robotic system, equipped with various
sensors such as LIDAR, cameras, and IMUs, creates a
representation of its environment as it navigates. This
process involves concurrently estimating the system’s
position and orientation while updating the map. The
robot employs algorithms like SLAM (Simultaneous
Localization and Mapping) to fuse sensor measure-
ments, motion models, and probabilistic methods to
iteratively build a coherent map of the environment
while maintaining an accurate estimate of its own loca-
tion. Online mapping is essential for tasks requiring live
interaction with the environment, enabling the robot to
adapt to dynamic changes and navigate in real time.

• Offline Mapping: Offline mapping, on the other hand,
involves the post-processing of recorded sensor data
to generate a map of an environment after the robotic

system has completed its exploration or mission. The
raw sensor data, such as LIDAR scans and camera
images, are collected during the robot’s operation and
then processed offline using mapping algorithms. These
algorithms analyze the accumulated data, align sensor
measurements, and reconstruct the environment’s fea-
tures and geometry. Offline mapping is advantageous
for situations where real-time constraints are less critical
and where a more accurate and refined map can be gen-
erated through careful data processing and optimization,
without the pressures of immediate decision-making.

Both online and offline mapping methods have their own
advantages and trade-offs, and their suitability depends on
the specific application, computational resources, and the
required level of accuracy and responsiveness. Online map-
ping is suitable for scenarios where real-time adaptation
and navigation are critical, while offline mapping offers the
opportunity to refine and analyze collected data to create
high-quality maps for subsequent analysis or planning.

3) PLANNING
‘‘Path Planning’’ and ‘‘Mission Planning’’ are two distinct
concepts in the context of autonomous aerial mobility or
robotics in general. While they are related and often work
together, they serve different purposes:

a: PATH PLANNING
Path planning refers to the process of determining an optimal
path or trajectory for a vehicle (e.g., drone or other UAV)
to navigate from its current position to a specific goal or
destination while avoiding obstacles and adhering to certain
constraints. The path planning algorithm takes into account
the vehicle’s dynamics, environment information (obstacles,
terrain, etc.), and other relevant factors to calculate the most
efficient and collision-free path. The goal of path planning is
to find a feasible and safe trajectory that guides the vehicle
from start to end while optimizing for criteria like time,
energy consumption, or smoothness. Some of the commonly
utilized path planning algorithms for aerial vehicles include:

• Dijkstra and A∗ algorithms: These are the most com-
monly used methods in autonomous mobile robots.
While the Dijkstra algorithm determines the shortest
path between two nodes, the A∗ algorithm also finds the
shortest path by using heuristic approaches [52].

• Artificial Potential Field methods: These are conven-
tional global path planning algorithms [53].

• Ant Colony Algorithms: These are optimization algo-
rithms inspired by the behavior of ants. They have been
used in drone path planning [53], [54].

• Rapidly Exploring Random Trees (RRT): This is a data
structure and method that is designed for efficiently
searching nonconvex, high-dimensional spaces [54].

• Swarm Optimization Algorithms: These include ant
colony optimization (ACO), fruit fly optimization
algorithm (FOA), artificial bee colony (ABC), and
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FIGURE 4. Three stage process of mission planning.

particle swarm optimization (PSO). They provide intel-
ligent modeling for drone path planning [54].

• Genetic Algorithm: This is a search heuristic that is
inspired by Charles Darwin’s theory of natural evolu-
tion [55].

• Deep Neural Networks: These are artificial neural net-
works with multiple layers between the input and output
layers [56].

• Hybrid Algorithms: These combine two or more algo-
rithms to get better results.

Each of these algorithms has its own advantages and is used
based on the specific requirements of the application scenario
in which the path planning is to be conducted by the UAVs.

b: MISSION PLANNING
Mission planning, on the other hand, is a higher-level con-
cept that involves defining and organizing a set of tasks or
objectives that an autonomous system needs to accomplish to
achieve a specific goal. It involves determining the sequence
of actions, waypoints, and goals that the vehicle or robot
should follow to complete its mission successfully. Mis-
sion planning encompasses multiple aspects, including path
planning for individual segments, task allocation, resource
management, and coordination among multiple vehicles or
agents if applicable. It considers the overall mission objec-
tives and optimizes the allocation of resources and tasks to
achieve the mission’s end goal efficiently. Fig 4 below shows
the various factors that Mission Planning takes into account.
Path Planning, therefore, can be considered a sub-module
within the Mission Planning process.

In summary, path planning deals with finding the best
trajectory or path for a single vehicle to navigate through
its environment, while mission planning involves defining a
higher-level strategy that organizes multiple tasks and objec-
tives to achieve a specific mission or goal. Path planning is a
component of mission planning, as a successful mission often
requires the autonomous vehicle to navigate through various
paths and trajectories to accomplish its tasks along the way.

4) CONTROLS
The fourth and the last functional block of an autonomous
system framework is actuation. Actuation translates to con-
trols in case of aerial autonomy. After the environment is

perceived and understood, the vehicle needs to maneuver
accordingly. This is achieved through control algorithms.
These algorithms determine how the vehicle should move
based on the dynamically perceived environment, vehi-
cle’s aerodynamics in the meteorological conditions at the
moment.

In case of UAV like a drone, the primary controls include:
• Roll: This allows the drone tomove to the right or the left
along the roll axis that runs from the front of the drone
to the back of the drone.

• Pitch: This tilts the drone forward or backward.
• Yaw: This rotates the drone clockwise or counterclock-
wise, allowing it to make circles or patterns in the air.

• Throttle: This controls the amount of power sent by the
battery to the motors, which makes the drone go faster
or slower.

Similarly, in case of a passenger carrying commercial aircraft,
primary flight controls are:

• Ailerons: These control the rolling motion of the aircraft
through the longitudinal axis.

• Elevator: This controls the pitch of the aircraft through
the lateral axis.

• Rudder: This controls the yaw of the aircraft through the
vertical axis.

And the secondary flight controls:
• Flaps and Slats: These help to slow down the aircraft for
landing and help to reduce the ground roll on take-off.

• Trim Control Surfaces: These reduce the effort the pilot
has to apply to fly the aircraft.

• Spoilers and Speed Brakes: These assist the pilot in roll
and speed and lift reduction.

In a flight control system, the mixer and actuators play crucial
roles. The mixer takes force commands (e.g., turn right) and
translates them into actuator commands which control motors
or servos. For example, in a plane with one servo per aileron,
this means to command one of them high and the other low.
Depending on the complexity of the aircraft or UAV, the
cyclic and collective may be linked together by a mixing
unit, a mechanical or hydraulic device that combines the
inputs from both and then sends along the ‘‘mixed’’ input to
the control surfaces to achieve the desired result. Actuators
are devices that convert energy into motion. In an aircraft
flight control system, actuators convert hydraulic pressure
or electrical signals into control surface movements. For
instance, in power-by-wire systems, electrical actuators are
used in favor of hydraulic pistons. The power is carried to
the actuators by electrical cables. These components work
together to ensure precise control of the aircraft’s movement
and behavior.

Control systems in traditional aircraft are generally divided
into two categories, open- and closed-loop systems. A com-
mon type of controller used in these systems is the
Proportional-Integral-Derivative (PID) controller, which is a
closed-loop control system. The PID controller adjusts the
control inputs to the aircraft based on the error between
the desired and actual states of the aircraft. In addition to
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PID, other control strategies like Linear Quadratic Regulator
(LQR), and neural networks have also been experimented
[57]. In the case of drones, the control algorithms determine
the rotational speed of the propellers that guide the drone to a
particular position in 3D space. Evenmore fundamentally, the
asymptotic stability of the UAV in the air is ensured by ‘‘ker-
nel control law’’. Several algorithms have been analyzed for
autonomous quadrotors including their advantages and disad-
vantages: PID, LQR, Sliding mode, Backstepping, Feedback
linearization, Adaptive, Robust, Optimal, L1, H∞, Fuzzy
logic and Artificial neutral networks [58]. Fundamentally,
the objective of the controller is to reduce the error between
the estimated and desired states – desired states being fed to
the controller in the form of reference commands.

In the case of autonomous operations, the higher-level
control commands are guided by the path planning layer
– that generates waypoints to follow specific trajectories.
Path planning layer also encompasses battery management
system to optimize flight time and return to the base or charg-
ing station when required. All these four functional blocks
of autonomously navigating aerial vehicle work together to
dynamically detect obstacles and avoid collision by chang-
ing the trajectory in response to perceived obstacle. This
advanced capability closes the fully autonomous operations
loop of an aerial vehicle. This capability is often referred to
as Obstacle Detection and Avoidance.

B. ORCHESTRATION OF AUTONOMY BLOCKS
TECHNOLOGY WITH THE ECO-SYSTEM
Autonomy blocks, the core components of autonomous aerial
vehicles, are intricately designed and meticulously integrated
into a complex ecosystem. This intricate fashion encom-
passes a delicate interplay between the hardware platform,
cloud platform, on-board computing systems, and an under-
lying operating system that runs on the on-board compute that
underpin them.

These autonomous AAM vehicles are engineered to seam-
lessly support a myriad of protocols and standards, enabling
the vehicle to interact with a diverse array of sensing devices
and establish efficient communication with other entities,
such as fellow vehicles, ground stations, vertiports, and
charging infrastructure.

This multifaceted orchestration is essential to ensure the
smooth and safe operation of autonomous vehicles, highlight-
ing the depth of engineering and innovation involved in their
development. Fig 5 depicts the interplay of these components.
Note that the Perception and Planning blocks for a particular
vehicle type can either be housed in the cloud platform or
on the on-board computer depending on the size, weight,
and power (SwaP) constraints of a specific UAV design and
the specific application scenario the vehicle is designed for
and operated in. In summary, this orchestration (also called
flight stack or autopilot) serves the function of acquiring data
from sensors, regulating motor functions to maintain UAV
stability, and facilitating communication for ground control
and mission planning.

FIGURE 5. Orchestration of Hardware, Software, Cloud and On-board
computer platforms where Autonomy Block technology operates.

C. AUTONOMY-ASSISTED PHASES OF FLIGHT
The Autonomy Blocks, as outlined in our proposed frame-
work, are modular and can be utilized in one or more flight
phases. Although there is a constant requirement for sensing
mechanisms to operate throughout all flight phases, certain
Autonomy Blocks may not be necessary in specific phases.
For instance, in a commercial aircraft, once the cruising
phase has begun, trajectory planning is seldom required.
However, for firefighting survey drones, the path planning
task is dynamic and thus the block is engaged for the entire
duration of the flight. At its core, different phases of flight are
marked by the changes in speed and direction of the vehicle,
which in turn translates to acceleration. At its core, there are
three types of acceleration that help maneuver an aircraft or
a drone: 1) Linear Acceleration, 2) Radial Acceleration, and
3) Angular Acceleration.

• Linear Acceleration: This is observed when there’s a
change in speed along a straight line. In the context of a
quadrotor drone, this happens during actions like take-
off, landing, or when there’s an adjustment in the throttle
setting. It’s determined by the sum of gravity, thrust from
the motors, and linear friction force causing drag.

• Radial Acceleration: This is associated with a shift in
direction. For example, when the drone performs a sharp
turn or rapidly changes altitude. In quadrotor dynamics,
this can be linked to alterations in the flight path due to
external influences or navigational instructions.

• Angular Acceleration: This is the result of a change in
both speed and direction at the same time. In quadro-
tor control systems, angular acceleration is vital during
complex maneuvers like spins and climbing turns and
for maintaining stability and control during flight.

These accelerations are crucial for accurately tracking
aggressive quadcopter trajectories and are utilized to refine
control algorithms for robust tracking of linear and angular
accelerations.

The Fig 6 illustrates the engagement or utilization of var-
ious autonomy blocks during different flight phases for an
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FIGURE 6. Mapping of various autonomy blocks to the phases-of-flight.

autonomously operating commercial aircraft, as an example.
It’s important to note that the usage pattern of the proposed
modular autonomy blocks varies from one type of aerial
vehicle to another. This variation can also depend on the
specific application for which the aerial vehicle is used. For
instance, a drone conducting a site inspection in aGPS-denied
environment would require robust on-board localization and
trajectory planning capabilities. Conversely, a drone tasked
with delivering a meal in urban areas, where the starting
and ending points are precisely mapped out, may not require
functionality for localization in GPS-denied environments.
Furthermore, depending on the types of environments and
the types of applications an aerial vehicle is employed for,
the on-board compute capability – which is required to house
one or more autonomy blocks – vary.

In the following subsection, we further delineate the
acceleration characteristics in different phases of flight and
intentionally offer two contrasting examples for each – one
from traditional aviation scenario and another from the
fast-growing UAV sector of aerial mobility (e.g. eVTOLS and
drones).

1) TAKE-OFF AND CLIMB PHASE
During take-off, the airplane accelerates from zero ground
speed to a speed at which it can lift itself from the ground.
The thrust must exceed drag for acceleration to take place.
Once the aircraft has lifted off and begins to climb, some of
the excess thrust goes into climbing, so horizontal accelera-
tion decreases. Both vertical and horizontal accelerations are

significant during the take-off and climb phase of an aircraft’s
flight.

The process of take-off and climb for an eVTOL (Electric
Vertical Take-off and Landing) aircraft differs slightly from
that of a traditional aircraft, given its capability to ascend
vertically, similar to a helicopter. In the take-off phase, the
eVTOLmoves from a standstill to a speed that allows it to rise
vertically off the ground. This is accomplished by amplifying
the thrust of its electric motors, which drive its propellers or
rotors. The eVTOL must generate thrust that surpasses its
weight to lift off. Following lift-off, the eVTOL enters the
climb phase. During this stage, the eVTOL transitions from
hovering to forward flight. This transition involves increasing
thrust and adjusting the propellers’ or rotors’ angle to provide
both lift and forward thrust. As with conventional aircraft,
both vertical and horizontal accelerations play a significant
role during the take-off and climb phase of an eVTOL’s flight.

2) CRUISE / MISSION PHASE
In the cruising phase of an aircraft’s flight, the plane main-
tains a steady airspeed and altitude. The vertical forces,
namely weight and lift, are in equilibrium, leading to nearly
zero vertical acceleration or velocity. This is because the
aircraft isn’t ascending or descending during this phase. The
main forces in play during cruise are thrust and drag, which
are balanced in the horizontal axis.

While an aircraft in its cruise phase maintains a steady
airspeed and altitude with balanced forces of thrust and
drag, a drone inspecting a transmission line operates quite
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differently. It hovers and maneuvers around the lines, collects
detailed data, handles interference from the lines, all while
ensuring safety. The autonomy blocks in action during such
mission execution are different from the ones that would be
employed for cruising phase of a commercial jet.

3) FINAL APPROACH AND LANDING PHASE
In the final approach phase, the aircraft follows a descent
path towards the runway. There might be a slight increase in
thrust to make minor speed corrections. However, this stage
of flight should not necessitate substantial thrust increases.
As the aircraft lands, it makes contact with the runway at
landing speed and slows down to a standstill. The deceler-
ation is achieved through braking, aerodynamic drag, ground
friction, and potentially reverse thrust, bringing the plane’s
speed to a halt. This represents a state of decelerated motion.
Therefore, during the final approach and landing phases of an
aircraft’s flight, there is significant deceleration and minimal
acceleration. All of the autonomy blocks modules need to be
engaged during this phase of flight.

This process varies in the case of other types of aerial
vehicles. For example, during the final approach phase, the
eVTOL shifts from forward flight to a hoover in prepara-
tion for landing. This shift involves a decrease in forward
speed while the eVTOL descends towards its landing des-
tination. The eVTOL’s electric propulsion system is used
to manage its descent and ensure stability. As the eVTOL
approaches the ground, it might slightly increase its thrust to
counteract the ground effect (a phenomenon that can cause
the aircraft to ‘float’ when near the ground), guaranteeing a
smooth and controlled landing. When the eVTOL touches
down, it decelerates until it has come to a complete stop.
This deceleration is achieved through a mix of reduced
thrust and aerodynamic drag. Unlike conventional aircraft,
eVTOLs typically lack reverse thrust capabilities or mechan-
ical brakes, so they depend on their motors and propellers for
deceleration.

4) AUTONOMOUS TAXI, TAKE-OFF AND LANDING (ATTOL)
One example of ATTOL is a project (with the same name)
conducted by Airbus in the year 2020. The Autonomous
Taxi, Take-Off and Landing (ATTOL) project by Airbus
has been successfully completed after an extensive two-year
flight test program. This achievement marks a significant
milestone in the traditional aviation industry as it demon-
strates the capability of a commercial aircraft to taxi, take-off,
and land autonomously using cutting-edge on-board image
recognition technology [59]. The project involved more than
500 test flights, with approximately 450 flights aimed at
collecting raw video data to refine the underlying algo-
rithms. A set of six distinct test flights, each consisting of
five take-offs and landings, were specifically designed to
evaluate the autonomous flight capabilities. This successful
demonstration of autonomous capabilities signifies not only
the industry’s commitment but also the rapidly approaching
future of autonomous aviation.

FIGURE 7. Intersection of three spheres where technology meets
demand: Autonomy Blocks, Application Scenarios, and Phases-of-Flight.

V. APPLICATIONS OF UAVs
Autonomy blocks framework presented in this article can
be conceptually mapped with the phases-of-flight and appli-
cations as shown in Fig 7. In other words, the modular
design of autonomy blocks enables themapping of these three
dimensions (block type, application type, and phase of flight)
in a many-to-many fashion. As an example, a ‘‘Delivery’’
drone, in its descend phase, can have multiple autonomy
blocks (sensing, perception, obstacle avoidance) engaged in
enabling its navigation to the pre-planned destination. Also,
one or more autonomy blocks can be utilized for an applica-
tion’s specific phase-of-flight.

UAVs can be categorized based on various attributes
including lift technology (vectored thrust, multirotor, lift
plus cruise), propulsion type (fully electric, hybrid, electric
hydrogen), mode of operations (autonomous, piloted), and
applications. This section details the applications categoriza-
tion. UAVs of different shapes and sizes have a plethora of
applications across various domains and sectors.

In this article, we provide three different ways of catego-
rizing the applications of UAVs:

1. Domains: this classification is specific to the purpose
for which the UAV is designed.

2. Sectors: this classification is specific to the sector that
the UAV serves.

3. Scenarios: one or more UAVs of different types and
designs can be employed in serving a single scenario.
We demonstrate this using three specific scenarios.

Flowchart in Fig 8 enlists the applications within the above
three types of categorizations.

A. DOMAINS
The five application domains, in which the fast growing
UAVs sector can be classified, are: Passenger Mobility
(UAM), Inspection, Package Delivery, Surveying and Map-
ping, and Intelligence, Surveillance, Reconnaissance (ISR).
The following subsections discuss these in more details:

1) URBAN AIR MOBILITY (UAM)
Urban Air Mobility (UAM) represents a system for the air
transportation of passengers and cargo within a metropoli-
tan area, including operations over densely populated urban
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FIGURE 8. UAV applications, categorized.

areas [60]. It also includes an urban air ambulance ser-
vice which is a part of UAM that prioritizes the use of
air transportation for emergency medical services. The FAA
perceives the burgeoning cities and increasing population
density as an opportunity to revolutionize air transporta-
tion by materializing UAM [61]. Similarly, government and
private sector around the world are considering urban air
transportation a worthwhile effort to manage the growing
mobility requirements of the increasing urban population
and alleviate congestion of road transportation networks.
The UAM ecosystem expands transportation networks to
incorporate both crewed and uncrewed aircraft and explores
solutions utilizing agile infrastructure and diverse operations.
The UAM Program addresses interactions with existing Air
Traffic Control (ATC) and the role of cooperative traffic man-
agement concepts explored in Unmanned Aircraft System
(UAS) TrafficManagement (UTM), further details in Section
VI-A below.

The concept development considers the introduction of
new aircraft types, such as electric Vertical Takeoff and
Landing (eVTOL) [62], [63], with an increasing level of
autonomy and the data exchanges they require. The majority
of eVTOL aircraft currently in design or prototype stages
utilize electric or hybrid electric propulsion systems. These
systems comprise Energy Storage Systems (ESS), typically
large Lithium-Ion battery modules, and associated Battery
Management Systems (BMS) connected to various electric
motors and propellers.

Through collaboration with NASA [64] and industry part-
ners, the UAM Program identifies and validates critical
paths to determine minimally viable operations for the near
future. Engineering and analysis for the UAM Program
focus on the unique traffic management requirements, pro-
cedures, airspace design, and policies for the operational
environment.

2) INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR)
ISR is a military and security concept that involves
gathering, analyzing, and utilizing information to support
decision-making and operations. ISR activities aim to pro-
vide a comprehensive understanding of the operational
environment, enemy activities, potential threats, and other

relevant factors. Here’s a breakdown of each component
of ISR:

• Intelligence: Intelligence refers to the collection, analy-
sis, and interpretation of information to gain insights into
the intentions, capabilities, and activities of potential
adversaries or entities of interest. This information can
come from various sources, such as signals intelligence
(SIGINT), human intelligence (HUMINT), open-source
intelligence (OSINT), and more. Intelligence helps
decision-makers understand the context in which they
operate, identify potential risks, and develop effective
strategies.

• Surveillance: Surveillance involves the continuous
observation and monitoring of areas, assets, or indi-
viduals to gather real-time information. This can be
done using various technologies, including cameras,
sensors, drones, satellites, and aircraft. Surveillance pro-
vides live updates on activities, movements, and changes
in the environment, allowing for rapid response and
decision-making.

• Reconnaissance: Reconnaissance, often abbreviated as
‘‘recon’’, is the act of exploring and gathering infor-
mation about an area, route, or target. This can involve
sending personnel, vehicles, aircraft, or unmanned sys-
tems into an area to assess its characteristics, potential
threats, and opportunities. Reconnaissance helps to
identify potential targets, vulnerabilities, and valuable
information that can inform future actions.

ISR activities are critical in military, security, and law
enforcement operations for a variety of purposes:

• Search and Rescue: ISR capabilities can assist in locat-
ing and providing assistance to individuals in distress,
whether in a combat zone or a disaster-stricken area.

• Strategic Planning: Intelligence gathered through
ISR supports long-term strategic planning, including
assessing the capabilities and intentions of potential
adversaries.

• Force Protection: ISR helps protect personnel and
assets by identifying potential threats and allowing for
preemptive action or evacuation.

• Situational Awareness: ISR provides a real-time under-
standing of the operational environment, enabling
decision-makers to respond to emerging threats or
changes effectively.

• Target Identification and Tracking: ISR supports the
identification and tracking of potential targets, such as
enemy forces, vehicles, or infrastructure, which is cru-
cial for planning and executing operations.

• BattlefieldManagement: In military contexts, ISR aids
in managing the battlefield by providing commanders
with timely information to allocate resources and adjust
strategies.

ISR plays a pivotal role in enhancing decision-making, opera-
tional effectiveness, and safety across a wide range of security
and defense scenarios. UASs and UAVs play an increasingly
crucial role in ISR operations [65], [66].

136336 VOLUME 11, 2023



S. Mishra, P. Palanisamy: Autonomous AAM—An End-to-End Autonomy Framework

3) INSPECTION, PACKAGE DELIVERY, SURVEYING AND
MAPPING
Drones offer versatile, cost-effective, and efficient solutions
in all these three domains. Various applications with these
three domains are summarized in the table below.

B. SECTORS
1) COMMERCIAL

• Agriculture and Surveying Drones: These drones are
equipped with Level 3 and above autonomous flight
capabilities for precision agriculture and surveying.

◦ DJI Agras Series: Drones designed for precision
agriculture and crop spraying.

◦ SenseFly eBee Series: Fixed-wing drones for map-
ping and surveying large areas.

• Delivery Drones: These delivery drones are designed to
navigate autonomously to deliver packages to specific
locations.

◦ Amazon Prime Air: Drones designed for package
delivery.

◦ Wing by Google: Delivery drones for transporting
goods to consumers.

• Inspection Drones: These drones often come with
autonomous flight features for conducting inspections of
infrastructure and confined spaces.

◦ DJI Matrice Series: Professional drones equipped
with sensors for infrastructure inspection.

◦ Flyability Elios: Collision-tolerant drones for con-
fined space inspection.

• Mapping and 3D Modeling Drones: These drones can
execute pre-planned autonomous flights for mapping
and creating 3Dmodels. These drones are equipped with
cameras and sensors to create high-resolution maps and
3D models of the terrain.

◦ DJI Phantom Series: Used for aerial mapping, cre-
ating 3D models, and topographical surveys.

◦ Parrot Anafi USA: UAVs for mapping, inspection,
and situational awareness.

2) DEFENSE
• Reconnaissance and Surveillance UAVs: These UAVs
are capable of autonomous flight for reconnaissance
and surveillance missions. They can also be armed for
strikes, but human operators often make the final deci-
sion to engage targets. They can carry sensors, target
designators, offensive ordnance, or electronic transmit-
ters designed to interfere with or destroy enemy targets.

◦ Predator/Reaper: Long-endurance UAVs for intel-
ligence gathering, surveillance, and reconnaissance
with strike capabilities.

◦ Global Hawk: High-altitude, long-range UAVs for
wide-area surveillance and data collection.

◦ Shadow: Tactical UAVs used for real-time recon-
naissance, target tracking, and battle damage
assessment.

• Combat UAVs (UCAVs – Unmanned Combat Aerial
Vehicles): Similar to the Predator/Reaper, they are
semi-autonomous for strike missions, but human opera-
tors typically retain control over engagement decisions.

◦ MQ-9 Reaper: Multi-role UAV with strike capabil-
ities for offensive operations.

◦ X-47B: Experimental UAV for carrier-based opera-
tions, including strike and reconnaissance.

• Drone Swarms: Drone swarms can exhibit different
levels of autonomy, from individual drones following
a predetermined path to more advanced collaborative
behaviors.

◦ Swarms of small UAVs for collaborative missions,
surveillance, and coordinated attacks.

◦ Perdix: Micro-drones used in swarm formations for
various military applications.

3) CONSUMER
• Aerial Photography (Selfie) and Videography Drones:
these consumer and prosumer drones offer various levels
of autonomy, such as follow-me modes, waypoint navi-
gation, and obstacle avoidance.

◦ DJI Phantom Series: Consumer-level drones
equipped with cameras for photography and
videography.

◦ DJI Mavic Series: Foldable drones with advanced
camera systems for professionals.

• Racing and Acrobatic Drones: These drones are typi-
cally flown manually by experienced pilots and may not
focus as much on autonomous features.

◦ FPV racing drones: Customizable drones for com-
petitive racing and aerial maneuvers.

◦ Betaflight HX100: Micro-sized drones for indoor
and outdoor acrobatics.

• Toy Drones: These drones are generally more basic and
may not include advanced autonomous features.

◦ Hubsan X4: Small drones designed for fun and
entertainment.

◦ Ryze Tello: Programmable drones suitable for edu-
cational purposes.

C. SCENARIOS – DEEP DIVE EXAMPLES
The following three sub-sections describe multitude of use
cases of drones for three specific applications – Fire Fight-
ing, Precision Agriculture, and Forest Planting. The rationale
behind categorizing the applications of UAVs in ‘scenarios’
categories is to demonstrate the versatility of applications that
UAVs offer within a single use-case (e.g. fire-fighting).

1) FIRE FIGHTING
UAVs, specifically drones, play a crucial role in firefighting
scenarios by providing valuable data, real-time monitoring,
and support to firefighting teams. Drones enhance situational
awareness, improve decision-making, and aid in managing
firefighting operations in both urban and wildland environ-
ments. Drones contribute to firefighting in following ways:
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TABLE 2. Application with inspection, package delivery, surveying and mapping domains.

• Aerial Surveillance and Situational Awareness
(Rapid Response): Drones provide aerial views of the
fire scene, allowing firefighters to assess the size,
spread, and intensity of the fire. Real-time imagery
and video feed enable commanders to make informed
decisions about resource allocation, evacuation routes,
and deployment strategies.

• Early Detection and Monitoring – Thermal imag-
ing: Drones equipped with thermal cameras can detect
hotspots and areas of intense heat, even in smoke-filled
environments. This early detection helps prevent the
fire from spreading and allows firefighters to focus on
containment efforts.

• Real-TimeMapping and Assessment: Drones can cre-
ate detailed live maps of the fire-affected area, helping
firefighters understand the terrain, identify safe zones,
and plan evacuation routes, thereby enhancing situa-
tional awareness. Thesemaps can also assist in assessing
the fire’s progress and estimating its potential impact.

• Search and Rescue Operations: Drones aid in locating
missing individuals in areas affected by fires. Drones
can navigate hazardous environments to locate people
in distress. Thermal cameras can detect human heat
signatures, helping rescue teams find and save people
in danger.

• Safety Monitoring: Drones allow firefighters to
remotely monitor fire behavior and conditions in haz-
ardous areas. This reduces the risk to personnel and
provides critical information for making timely evacua-
tion decisions.

• Communication Support: Drones equipped with
communication equipment can establish temporary
communication networks in areas where traditional
infrastructure has been compromised, enabling better
coordination among firefighting teams.

• Smoke and Air Quality Monitoring: Drones can mea-
sure air quality and smoke concentration levels, helping
authorities provide accurate information to residents and
manage potential health risks.

• Aerial Suppression – Water and Retardant Drops:
Specialized drones equipped with firefighting payloads,
such as water or fire retardant, can assist in suppressing
flames and creating firebreaks in hard-to-reach areas.

• Post-Fire Assessment: After the fire is extinguished,
drones can conduct post-fire assessments to evaluate the
extent of damage, assess structural integrity, and aid in
recovery efforts.

• Documentation and Investigation: Drones capture
high-resolution imagery and videos that can be used for
post-incident analysis, insurance claims, and investiga-
tions into the cause of the fire.

The use of drones – which are equipped with advanced
autonomy capabilities – in firefighting and other such disaster
management scenarios enhances the effectiveness of response
and rescue operations and also improves personnel safety.

2) PRECISION AGRICULTURE
The role of drones in precision agriculture is transforma-
tive, enabling farmers to make informed decisions, optimize
resource usage, and increase productivity while minimizing
the environmental footprint of their operations. Precision
agriculture involves using technology to gather precise infor-
mation about crop conditions, soil variability, and other
factors that influence farming decisions. UAVs, specifically
drones, contribute to precision agriculture in the following
multi-faceted ways:

• Aerial Imaging and Mapping: Drones equipped with
high-resolution cameras capture aerial imagery of agri-
cultural fields. This imagery can be processed to create
detailed maps that show variations in crop health, mois-
ture levels, and growth. These maps provide farmers
with insights into the spatial distribution of issues like
pests, diseases, and nutrient deficiencies.

• Crop Monitoring and Management: Drones enable
frequent and efficient monitoring of crops throughout
the growing season. Farmers can identify stress factors
early, such as inadequate irrigation, nutrient imbalances,
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or pest infestations. This allows for timely interventions,
optimizing resource usage and minimizing crop losses.

• NDVI and Multispectral Imaging: Drones can carry
multispectral cameras that capture images in various
wavelengths, including those beyond the visible spec-
trum. Normalized Difference Vegetation Index (NDVI)
calculations are used to assess plant health by analyzing
the reflection of different light frequencies. NDVI maps
help identify areas of low vigor or stress.

• VariableRateApplication: By analyzing data collected
from drone surveys and mapping, farmers can create
prescription maps for variable rate application of inputs
like fertilizers, pesticides, and water. Drones equipped
with sprayers can precisely apply these inputs to specific
areas, reducing waste and environmental impact.

• Yield Estimation: Using aerial imagery and 3D mod-
eling, drones contribute to accurate yield estimation by
analyzing the size, density, and health of crops. This
information aids in forecasting harvest quantities and
planning logistics.

• Disease and Pest Detection: Drones help in early detec-
tion of diseases and pest outbreaks. Their ability to cover
large areas quickly allows farmers to spot issues before
they spread extensively, enabling targeted treatment.

• Soil Health Assessment: Drones can be equipped with
sensors to analyze soil properties, moisture content, and
compaction levels. This information guides decisions
about soil management and irrigation.

• Land and Resource Management: Drones assist
in land assessment, identifying areas with erosion,
drainage problems, or soil compaction. This information
helps plan land management strategies.

• Environmental Monitoring: Drones aid in monitoring
conservation efforts, tracking biodiversity, and assessing
the impact of agricultural practices on the surrounding
environment.

3) FOREST PLANTING
Drones with advanced AI capabilities like aerial mapping can
accomplish planting more effectively. Their unique features
are essential for reforestation efforts:

• Access to Remote Areas: Drones can reach areas that
are difficult for humans to access, which can help speed
up the reforestation process and ensure that trees are
planted in the right locations.

• Speed and Efficiency: Drones can plant seeds at a much
faster rate than manual planting. They can work together
in a ‘‘swarm’’ to complete the task autonomously or with
a single human supervisor overseeing the process.

• Precision: Drones can be equipped with specialized
planting equipment, allowing them to quickly and accu-
rately plant seeds directly into the ground. They can drop
seeds along a predefined route.

Additionally, their ability to monitor and analyze the growth
of newly planted trees can significantly contribute to the

success of reforestation efforts, helping address the climate
change problem more effectively.

VI. MULTI-AGENT FLEETS – COORDINATED OPERATIONS
Multi-agent fleets of Urban Air Mobility (UAM) and other
UAVs, including electric vertical takeoff and landing aircraft
(eVTOLs) and delivery drones, will increasingly become
indispensable for the modern cities with burgeoning popu-
lation density. As urban congestion and traffic continue to
escalate, the need for efficient, eco-friendly, and time-saving
modes of transportation is paramount. Multi-agent UAM
fleets can help alleviate this congestion and reduce the envi-
ronmental impact of urban commuting by taking to the skies.
However, to ensure the seamless integration of these fleets
into our urban environments, it is crucial that they operate in
a coordinated and economical manner. Similarly, for applica-
tions such as inspection and delivery, coordinated operations
of drone fleets are undoubtedly required to ensure effective
operations. However, as the number of AI-powered partial or
fully autonomous UAS scales to thousands and beyond, tech-
nical and market mechanisms to operate the fleets optimally
need to be in place.

A. FLEET OPERATIONS AND MANAGEMENT
Integrating existing National Airspace System (NAS) oper-
ations with UAM operations faces several hurdles: 1) an
increased volume of operations, 2) heightened operational
density, 3) operations at lower altitudes, and 4) variations in
the performance of different operators and air vehicles. These
challenges place significant demands on the current air traffic
control (ATC) system, indicating the shortcomings of the
current Air TrafficManagement (ATM) systems in effectively
serving the large-scale UAM operations, and highlighting the
necessity for substantial changes/amendments in this system
[67]. Before we proceed, we need to define some terms and
acronyms that are relevant to this topic:

• AGL - Above Ground Level. The altitude measured with
respect to the underlying ground surface.

• MSL - Mean Sea Level. The average height of the
surface of the sea for all stages of the tide.

• Flight Levels (FL). A measure of altitude (in hundreds
of feet) used by aircraft flying above 18,000 feet with the
altimeter set at 29.92 "Hg. For example, FL 200 means
20,000 feet MSL.

• ATM (right side of the figure) – UAS are certified and
receive traditional air traffic services where required.
This concept is based on the existing manned aviation
system, where ATC provides separation and sequenc-
ing services to aircraft operating in controlled airspace.
ATM requires UAS to comply with the same rules and
regulations as manned aircraft, such as equipage, com-
munication, navigation, surveillance, and identification.

• UTM (applicable up to 400 ft AGL) – UAS meet estab-
lished performance requirements and cooperatively sep-
arate through shared situational awareness. Air Traffic
Services (ATS) not provided. This concept is based on a
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distributed network of information providers and users,
where UAS operators are responsible for planning, coor-
dinating, and executing their own flights. UTM requires
UAS to share their flight information and intentions with
other UAS operators and stakeholders, such as local
authorities, law enforcement, and emergency services.

Table 3 provides a summary of controlled and uncontrolled
airspace classification in the U.S. Class G airspace, also
known as uncontrolled airspace, is the part of the airspace
that isn’t classified as Class A, B, C, D, or E. It is thus termed
uncontrolled airspace. The extent of Class G airspace is from
the surface up to the base of the Class E airspace that lies
above it. Class G airspace is where the majority of the UAV
applications are to be operated. While Air Traffic Control
(ATC) doesn’t have the authority or responsibility to manage
air traffic in this space, there are minimums for Visual Flight
Rules (VFR) that are applicable to Class G airspace. VFR are
a set of regulations under which a pilot operates an aircraft in
weather conditions generally clear enough to allow the pilot
to see where the aircraft is going. Specifically, the weather
must be better than basic VFR weather minima, i.e., in visual
meteorological conditions (VMC), as specified in the rules
of the relevant aviation authority. The pilot must be able to
operate the aircraft with visual reference to the ground, and
by visually avoiding obstructions and other aircraft. Visual
Line of Sight (VLOS), on the other hand, refers to a type of
UAS operation in which the aircraft is flown within the Pilot
in Command’s (PIC) visual line of sight. In essence, VLOS
operations are similar to VFR in that they both require the
operator tomaintain visual contact with the aircraft. However,
VLOS is specific to UAS, while VFR applies to all types of
aircraft. Beyond Visual Line of Sight (BVLOS), conversely,
are operations wherein the aircraft is flown beyond the PIC’s
or VO direct sight of the aircraft. BVLOS operations repre-
sent a departure from VFR because they do not require the
operator to maintain visual contact with the aircraft. Instead,
they rely on communication and sensing tools and technology
such as the Remote Pilot Station (RPS) or Ground Control
Station (GCS) for control. Fig 9 provides an integrated view
of NAS and UTM operations where Class A through Class G
vehicles operate with their respective VLOS and BVOLS
protocols.

1) UAS TRAFFIC MANAGEMENT – NOT MERE EXPANSION
OF ATM SYSTEM
Unmanned Aircraft Systems (UAS) Traffic Management
(UTM) Concept of Operations (ConOps) effort is undertaken
collaboratively across FAAwhich includes participation from
Air Traffic Organization (ATO), Office of NextGen (ANG),
Aviation Safety (AVS) organization, and NASA. UTM is
being developed as a scalable, flexible, and adaptable sys-
tem that can support the full range of UAS operations and
technologies, coexist with manned traffic, and minimize
disruption to the existing ATM system. UTM design can
also adapt to new technologies and automation. It is aimed
at minimizing deployment and development time by using

current industry-provided technologies and capabilities that
meet performance requirements for safety, security, effi-
ciency, environmental impacts, and privacy.

UTM is a system to support low-altitude UAS operations
in the NAS. UTM system would integrate UAS operations
in the airspace above buildings and below traditional avi-
ation operations. It is developed by the FAA, NASA, and
industry partners through research, testing, and standards
development. UTM consists of a network of actors and ser-
vices that exchange information and services to enable safe
and efficient UAS operations. UTM provides a set of ser-
vices to support UAS Operators in meeting regulatory and
operational requirements. These include Performance Autho-
rization, Airspace Authorization, Operation Planning, Con-
straint Information & Advisories, Separation, and Remote
Identification. UTM defines the roles and responsibilities
of various actors and entities in the UTM ecosystem. The
FAA establishes the regulatory framework and operational
rules, while the Operators and USSs are responsible for
the coordination and management of operations. UTM ser-
vices include registration, airspace authorization, remote
identification, de-confliction, weather, surveillance, and oth-
ers. UTM presents five scenarios that demonstrate different
aspects of UTM operations in uncontrolled and controlled
airspace. These include nominal operations, UAS Volume
Reservations, interactions with manned aircraft, remote iden-
tification, and public safety requests [68].

a: UTM AIRSPACE MANAGEMENT - A NEW OPERATIONAL
PARADIGM
Airspacemanagement is a function of UTM that ensures UAS
operations are authorized, safe, secure, and equitable in terms
of airspace access. The factors impacting [69] the airspace
design are summarized in Fig 10. UTM ConOps, introduced
in the previous section, takes a layered approach to airspace
management. It includes multiple layers including Perfor-
mance Authorization, Airspace Authorization, Operation
Planning, Constraint Information & Advisories, Separation,
Remote Identification (RID), Contingency Management,
Data Management and Access.
Performance Authorization is a process by which the

FAA grants an Operator permission to conduct UTM oper-
ations based on their ability to meet performance criteria
and requirements. Airspace Authorization, on the other hand,
is a process by which the FAA grants an Operator access to
operate in controlled airspace and provides situational aware-
ness to air traffic facilities. Operation Planning is a process
by which the Operator develops and shares their operation
intent with other UTM participants and de-conflicts with
other operations, airspace constraints, and environmental fac-
tors. Constraint Information & Advisories is a service by
which the USS provides relevant data to the Operator, such as
weather, terrain, obstacles, hazards, and UAS Volume Reser-
vations (UVRs), to support safe and efficient UAS operations.
Separation is a function by which the Operator maintains
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TABLE 3. Controlled and uncontrolled airspace classification in the U.S.

FIGURE 9. Integration of National Airspace System (NAS) operations with Urban Air Mobility (UTM) operations. Airspace Classes A to G.
Traditional and AAM vehicles sharing the airspace managed by ATM and UTM (see the right side of the diagram).

FIGURE 10. Factors influencing the design of UTM operations.

safe distance from other aircraft, airspace, weather, terrain,
and hazards using shared intent, shared awareness, strategic
de-confliction, vehicle tracking and conformancemonitoring,
and detect and avoid (DAA) technologies. Remote Identifica-
tion (RID) is a function by which the UAS transmits a unique
identifier and other information to enable identification of the
UA/Operator by authorized entities and the general public.

ContingencyManagement is another function by which UTM
handles unexpected events or emergencies that may affect
UAS operations, such as system failures, communication
losses, weather changes, or airspace conflicts. Contingency
management involves operation planning, coordinated pro-
cedures and response protocols, and pre-programmed system
or vehicle responses to flight anomalies. Data Management
and Access is a function by which UTM ensures the secu-
rity, privacy, and integrity of data exchanged among UTM
participants and stakeholders. Data management and access
involves data protection measures, such as encryption and
authentication; data access policies and controls; data archiv-
ing and retrieval; and data sharing agreements.

2) VERTIPORT DESIGN, PLACEMENT, AND AIRSPACE
INTEGRATION
Vertiport design refers to the physical layout and infrastruc-
ture of the landing and take-off sites for urban air vehicles.
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It is imperative that the design of vertiports considers their
capacity to accommodate various vehicle types and sizes,
in addition to accommodating diverse operational scenarios,
including passenger transport, cargo delivery, and emergency
services. Furthermore, it is essential for vertiports to incor-
porate communication, navigation, and surveillance systems
to facilitate the secure and efficient execution of operations.
Several critical factors impacting vertiport design encompass
considerations of noise levels, safety measures, accessibility,
environmental implications, and land utilization.

Vertiport placement pertains to the strategic position-
ing and dispersion of vertiports within urban environments,
necessitating a careful evaluation of the demand and supply
of urban air mobility services, as well as alignment with
the pre-existing transportation infrastructure and land utiliza-
tion patterns. Equally significant is the need for vertiport
placement to mitigate adverse effects such as noise pollution,
emissions, and visual disturbances on nearby communities.
In addition, the coordination of vertiport placement with
the urban airspace structure and traffic management system
is of utmost importance to ensure the safe and efficient
integration of urban air vehicles with other users of the
airspace [70].

3) V2X COMMUNICATIONS
Vehicle-to-Everything (V2X) communication technology
represents a transformative paradigm in the realm of intel-
ligent transportation systems, where vehicles become active
participants in a comprehensive network of information
exchange [71]. V2X encompasses both Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communications,
thereby enabling vehicles to interact with each other and
infrastructure elements such as Air Traffic Control (ATS)
systems, other UTM participants, and ground infrastruc-
ture. Leveraging wireless communication protocols, such as
Dedicated Short-Range Communications (DSRC) or Cellu-
lar Vehicle-to-Everything (C-V2X), V2X empowers vehicles
to share critical information, including real-time potential
airspace conflicts, weather conditions, and even anticipate the
movements of nearby vehicles [72].

B. CHARGING THE BATTERY-POWERED UAM FLEETS
Deployment of fleets of UAMs underscores a critical impera-
tive: the establishment of a comprehensive and sophisticated
charging infrastructure. The majority of new designs and
types of urban aerial vehicles are battery powered and hence it
necessitates a nuanced approach, as their unique operational
characteristics and requirements mandate specialized charg-
ing solutions. Urban environments, in particular, demand
fast-charging networks, collocated with the vertiports and
strategically positioned to accommodate UAM and UAS
fleets [73]. Furthermore, the implementation of standardized
charging protocols and interoperability standards assumes
paramount importance to ensure seamless integration across
a myriad of platforms.

1) CHARGING INFRASTRUCTURE
Charging infrastructure for UAVs like eVTOLs and drones,
is a pivotal component that intricately intertwines the aerial
mobility field with the broader energy grid. These vehi-
cles require charging solutions that cater to their distinct
operational needs, electric propulsion systems, and types of
batteries installed on-board. The challenges are manifold,
extending to the management of the low-voltage distribution
grid, which must handle the increased demands posed by
charging numerous electric aerial vehicles. To address this,
charging infrastructure must be adaptable to the diverse bat-
tery charging needs of various UAVs, encompassing different
charger designs and types, current and voltage ratings, and
the time it takes to complete recharge. The standardization of
charging protocols and interoperability standards is a critical
step towards ensuring a seamless integration of these diverse
platforms into urban environments where fast-charging net-
works are strategically positioned alongside vertiports to
serve UAM and UAS fleets, enabling efficient, reliable, and
sustainable aerial mobility solutions [74].

2) CHARGING STATION OPERATIONS
The operations of charging stations in the context of AAM
demand a level of technical sophistication commensurate
with the cutting-edge nature of urban air mobility (UAM)
systems. These stations must employ optimized charging
schedules and network routing algorithms to ensure the
timely and efficient replenishment of electric aerial vehi-
cle batteries [75]. The interplay between charging stations
and on-demand mobility within both intercity and intracity
UAM ecosystems requires precise orchestration to facili-
tate rapid, controlled, and conflict-free access to charging
infrastructure. The debate over privatization versus public
charging infrastructure will unfold in the next few years as
various technological, capital, and regulatory forces play out.
Yet, betting on an open-market-based system where various
operators and service providers coexist, this coordination
is vital for ensuring safety, minimizing airspace conflicts,
and optimizing the utilization of airspace resources. These
factors collectively represent the foundation upon which the
seamless integration of electric aerial vehicles into urban
environments hinges, fostering a safer, more efficient, and
environmentally conscious aerial mobility landscape.

VII. BENCHMARKING AND VALIDATION TO FACILITATE
CERTIFICATION
‘‘Standard’’ refers to the guidelines or requirements set by the
regulators and industry, while ‘‘Certification’’ is the process
of verifying adherence to these standards. Both play crucial
roles in maintaining safety and quality in the aviation indus-
try. Aviation is probably one of the most safety-conscious
industries in modern times. Therefore, certification-readiness
of any AI based technology that’s built to be deployed in this
industry is very tightly knit with the process of adhering to
the safety-standards put forth by national and international

136342 VOLUME 11, 2023



S. Mishra, P. Palanisamy: Autonomous AAM—An End-to-End Autonomy Framework

agencies. These safety standards are collaboratively built by
the regulatory bodies, industry bodies, and government. One
of the challenges of developing and deploying UASs such,
as eVTOLs and delivery drones, is obtaining the necessary
certifications from the FAA in the U.S. (and respective regu-
latory agencies in other parts of the world) to operate them
commercially. The FAA has a rigorous and complex pro-
cess for ensuring the safety and reliability of aircraft, which
involves three types of certifications: type, airworthiness, and
production.
Type certification is for the aircraft design itself, which

must meet certain performance and structural standards.
Depending on the category of the aircraft, the FAA has
different regulations that apply. For most UAS, drones, and
multicopter eVTOLs, the relevant regulation is Title 14 Code
of Federal Regulations, Part 21 [76]. For other eVTOLs, such
as those that resemble conventional airplanes, the applicable
regulation is Part 23 [77], which covers ‘‘normal, utility,
acrobatic, and commuter category airplanes’’. Airworthiness
certification is for the operation of a type-certified aircraft
outside of the scope of Part 107, which governs small UAS
operations. Airworthiness certificates can be either standard
or special class, depending on the intended use of the air-
craft. However, most UAS and eVTOLs do not qualify for
a standard airworthiness certificate, as they do not meet the
criteria established by the FAA. Production certification is
for the manufacturing process of a type-certified aircraft,
which must ensure consistent quality and conformity with
the approved design. Production certificates are issued by
the FAA Manufacturing Inspection District Offices (MIDO),
while type certificates are issued by the FAA Aircraft Certi-
fication Offices (ACO).

Because most UAVs including eVTOLs are a new and
innovative technology, the FAA does not have existing
standards or regulations that fully address their unique
features and capabilities. Therefore, the FAA relies on
industry-developed standards, known as Means of Compli-
ance (MOC), to evaluate and certify eVTOLs. The MOCs
must be acceptable to the FAA and demonstrate how the
UAV meets the performance criteria set by the agency. The
certification process for UAVs begins with a proposal from
the applicant, known as a G1 issue paper, which specifies the
applicable standards and special conditions that must be met
to achieve certification. The FAA reviews the proposal and
either approves or rejects it. If it is rejected, the applicant must
revise it to address the FAA’s concerns and resubmit it. This
process can take several iterations until a consensus is reached
between the applicant and the FAA.

UAVs, built on a new conceptual foundation of auton-
omy, pose a new set of safety challenges, such as increased
complexity, cyber-security threats, and human-machine inter-
actionmatters. The following subsections focusmainly on the
software certification aspects as it pertains to the proposed
Autonomy Blocks framework and their integration into the
UAVs with certification requirements in mind.

A. SOFTWARE CERTIFICATION IN AVIATION
DO-178C, ‘‘Software Considerations in Airborne Systems
and Equipment Certification’’, is the primary document by
which the certification authorities such as FAA, EASA and
Transport Canada approve all commercial software-based
aerospace systems. It is published by RTCA, Incorporated,
in a joint effort with EUROCAE, and replaces DO-178B.
It defines the software development process and the verifica-
tion activities for each software level, from A (most critical)
to E (least critical). It covers all aspects of software devel-
opment, from planning and requirements to coding, testing,
configuration management, and verification.

One of the challenges posed by the use of software in
safety-critical applications is how to ensure confidence in
the performance and behavior of complex systems that rely
on machine learning and artificial intelligence. In particu-
lar, neural networks (NNs) are a type of machine learning
technique that can learn from data and perform various tasks
within the sensing, perception, planning, and controls mod-
ules. However, NNs are also difficult to understand, explain,
and verify, due to their nonlinear and non-deterministic
nature.

To address this challenge, EASA and Daedalean AG col-
laborated in an Innovation Partnership Contract (IPC) on
the Concepts of Design Assurance for Neural Networks
(CoDANN). The purpose of this IPC was to investigate
ways to gain confidence in the use of NNs in aviation,
in the broader context of allowing machine learning and
more generally artificial intelligence on-board aircraft for
safety-critical applications. The project ran from June 2019 to
February 2020 and resulted in a public report that presents the
outcome of the collaboration.

1) MEANS OF COMPLIANCE WITH THE SPECIAL CONDITION
VTOL
In light of the dearth of appropriate certification criteria
pertaining to the type certification of Vertical Take-off and
Landing (VTOL) aircraft, an exhaustive set of specialized
technical specifications has been meticulously formulated
in the guise of a Special Condition for VTOL aircraft.
This aforementioned Special Condition is explicitly tailored
to cater to the unique attributes characterizing these air-
craft, thereby prescribing airworthiness standards requisite
for the conferment of a type certificate. These stringent
requirements also encompass provisions for any modifi-
cations to an extant type certificate, all of which are
directed towards person-carrying VTOL aircraft belong-
ing to the small category. Notably, the purview of this
Special Condition encompasses VTOL aircraft equipped
with lift/thrust units designed for the generation of pow-
ered lift and control. In addition to these aforementioned
aspects, the Special Condition VTOL simultaneously delin-
eates safety and design objectives essential to this specialized
realm [78].
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2) FAA / EASA TEST SUITE
The FAA conducted a joint research project with Daedalean,
a company that develops machine learning applications for
avionics, to study and flight test a neural network and
vision-based runway landing guidance system for general
aviation aircraft [79]. The system, called Visual Landing Sys-
tem (VLS), uses cameras and convolutional neural networks
to detect and track runways and provide guidance cues to the
pilot or the autopilot. The project aimed to evaluate whether
the VLS can serve as a backup for other navigation systems
in case of a GPS outage, and whether the W-shaped Learn-
ing Assurance process proposed by Daedalean can satisfy
the FAA’s intent for setting the future certification policy
for machine learning systems. The W-shaped process con-
sists of four main stages: data collection, model learning,
model implementation and model verification. The flight test
campaign took place in March 2021 in Florida, with FAA
members on board, and involved 18 approaches over trained
and untrained runways in various conditions. The results
showed that the VLS performedwell, detecting runways from
up to 5 km away, and that the LearningAssurance process was
compatible with the FAA regulatory framework.

EASA also collaborated with Daedalean on a series of
joint studies to explore the key elements of the W-shaped
development model for machine learning avionics software.
The first study, Concepts of Design Assurance for Neural
Networks (CoDANN) I [80], published in 2020, established
the baseline understanding that the use of neural networks
in safety-critical avionics applications is technically feasi-
ble. The second study, CoDANN II [26], published in 2021,
focused on the implementation and inference parts of the
W-shaped process, defined the role of explainability for the
various actors involved in the certification process, and pro-
vided a system safety assessment process for integrating
neural networks into avionics systems. The study also pre-
sented a case study of Daedalean’s visual traffic detection
system, which uses cameras and neural networks to detect
cooperative and uncooperative traffic around the aircraft. The
study demonstrated how the system can be verified using
synthetic data, simulation and flight tests, and how explain-
ability techniques can be used to analyze its performance and
behavior.

In summary, both FAA and EASA have made significant
progress in developing test suites for neural-network based
software for aviation, in collaboration with Daedalean. These
test suites are based on the W-shaped development model
shown in Fig 11, which provides a structured and rigorous
approach to ensure the safety and reliability of machine learn-
ing systems. The test suites also incorporate explainability
methods, which enable the understanding and interpretation
of neural network outputs and decisions. These test suites
are expected to facilitate the certification of neural-network
based software for aviation applications, such as runway
landing guidance and visual traffic detection, especially for
UAVs.

FIGURE 11. W-shaped development cycle for learning assurance - path to
certification of neural network based autonomy blocks.

3) NHTSA TEST SUITE FOR GROUND-AIR PACKAGE
DELIVERY DRONES
The National Highway Traffic Safety Administration
(NHTSA) is the federal agency responsible for regulating
the safety of motor vehicles and highway transportation in
the United States. NHTSA also has a role in overseeing the
integration of unmanned aircraft systems (UAS) or drones
into the national airspace system, especially for ground-air
package delivery operations. Ground-air package delivery
drones are UAS that can transport goods from a ground
vehicle to a customer’s location using autonomous flight
capabilities. These drones have the potential to improve
the efficiency, convenience, and environmental impact of
e-commerce and other delivery services.

However, ground-air package delivery drones also pose
unique safety challenges that need to be addressed before
they can be widely deployed. NHTSA has developed a test
suite [81] for evaluating the performance and safety of these
drones in various scenarios and environments. The test suite
consists of a set of standardized procedures, metrics, and
criteria that can be applied to different types of ground-air
package delivery drones and operations. The test suite covers
aspects such as:

• Ensuring the drone design and specifications meet the
safety requirements and standards for UAS operations

• Testing and verification the drone flight control and nav-
igation systems for accuracy, reliability, and robustness

• Development of secure the drone communication and
data link systems from interference, jamming, or hack-
ing

• Design and operations of the drone payload and delivery
mechanisms to avoid damage, loss, or theft of goods

• Integration of the drone launch and recovery systems
with the ground vehicles and infrastructure without
causing traffic disruptions or accidents

• Compliance with traffic rules and regulations for both
ground and air operations

• Obstacle and hazard detection and avoidance in the air
and on the ground

• Respond to emergencies and contingencies such as
weather, malfunctions, and collisions
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The purpose of this test suite is to provide a consistent
and objective framework for assessing the safety and per-
formance of ground-air package delivery drones, which are
likely equipped with varying autonomy capabilities, under
various conditions and scenarios. The test suite can be used
by drone manufacturers, operators, regulators, researchers,
and other stakeholders to validate, verify, certify, or evaluate
ground-air package delivery drones and operations. The test
suite can also support the development of standards, best
practices, and regulations for this emerging sector of UAS
applications.

4) CHALLENGES IN ADOPTING ISO 26262 / ASIL-D FOR
AIRBORNE SYSTEMS
ISO 26262 is an international standard that defines require-
ments and processes for ensuring functional safety of elec-
trical and electronic systems in passenger vehicles [82].
Functional safety is the absence of unreasonable risk due to
hazards caused by malfunctioning behavior of these systems.
It defines guidelines to minimize the risk of accidents and
ensure that automotive components perform their intended
functions correctly and at the right time. ISO 26262 is based
on the IEC 61508 standard for general industrial applications,
but it is adapted to the specific needs and challenges of the
automotive sector. ISO 26262 covers the entire lifecycle of
safety-related automotive systems, from concept phase to
development, production, operation, service, and decommis-
sioning.

One of the main challenges for applying ISO 26262 to
UAVs is the definition and classification of safety goals
and automotive safety integrity levels (ASILs). Safety goals
are high-level requirements that specify the necessary risk
reduction for avoiding ormitigating hazards. Safety standards
assign integrity levels to systems or functions based on initial
consequences analysis, with clear guidance for integrity level
identification. ASILs are a measure of the severity, exposure,
and controllability of hazards, ranging from A (lowest) to D
(highest). For example, an eVTOL system that controls the
flight stability would likely have a high ASIL level, while
a system that provides entertainment functions would have
a low ASIL level. The allocated integrity level dictates the
rigor and stringency of development processes. However, it is
important to note that ISO 26262 provides guidance and
examples for defining safety goals and ASILs for passenger
vehicles, but not for UAVs / eVTOLs specifically. Fig 12
below shows the various integrity levels for DO-178C AND
ISO 26262.

UAVs have different types of hazards and risks than pas-
senger vehicles, depending on their size, weight, speed,
payload, operation mode, mission type, flight environment,
and regulatory framework. For example, a small UAV flying
over a rural area may have a lower risk of causing harm
than a large UAV flying over an urban area. Therefore, it is
necessary to adapt the ISO 26262 methodology for defining

FIGURE 12. DO-178C and ISO 26262 comparison.

safety goals and ASILs for UAVs according to their specific
characteristics and scenarios.

Another challenge for applying ISO 26262 to UAVs is
the verification and validation of autonomous functions. ISO
26262 proposes model-in-the-loop (MIL), software-in-the-
loop (SIL), and hardware-in-the-loop (HIL) simulation for
conducting software safety requirements verification. All of
these simulation processes can be applied towards the com-
mon goal of generating autonomous vehicle requirements.
However, simulation alone may not be sufficient to ensure the
safety and reliability of autonomous functions that involve
complex interactions with dynamic and uncertain environ-
ments. Therefore, it is necessary to complement simulation
with real-world testing and evaluation of autonomous func-
tions in representative scenarios and conditions.

Despite these challenges, applying ISO 26262 to UAVs
also offers some opportunities for improving their safety and
quality. One of the opportunities is the reuse and adaptation
of existing standards and best practices from the automotive
domain. ISO 26262 provides a comprehensive framework
for managing functional safety throughout the lifecycle of
safety-related systems. It also provides detailed guidance
and recommendations for performing various activities and
tasks related to functional safety. Therefore, applying ISO
26262 to UAVs can help to establish a common terminol-
ogy,methodology, and documentation for ensuring functional
safety of UAVs and their autonomous operations. It can also
help to leverage existing knowledge and experience from the
automotive domain and benefit from the lessons learned and
good practices developed by other industries.

Another opportunity for applying ISO 26262 to UAVs is
the innovation and advancement of new technologies and
solutions for autonomous operations. ISO 26262 encour-
ages the use of state-of-the-art methods and tools for
designing, developing, testing, and operating safety-related
systems. It also supports the continuous improvement and

VOLUME 11, 2023 136345



S. Mishra, P. Palanisamy: Autonomous AAM—An End-to-End Autonomy Framework

optimization of functional safety processes and products.
Therefore, applying ISO 26262 to UAVs can stimulate the
research and development of new technologies and solutions
that can enhance the capabilities, performance, and efficiency
of autonomous functions. It can also foster the collabora-
tion and integration of different disciplines and domains that
are involved in the creation and operation of autonomous
systems.

VIII. EXPLORING ADJACENT TERRITORIES: A CLOSER
LOOK AT TWO KEY ASPECTS
A. SIM-TO-REAL ROBOTS AND SYSTEMS
Sim-to-real robots and systems are challenging to develop
and deploy due to the gap between simulation and reality
[83]. In striving for a streamlined workflow to transition
seamlessly from simulation to real-world applications, the
key to success lies in: A) the meticulous optimization of
the runtime and inference architecture, catering specifically
to the target hardware and the intricacies of the application
domain and B) comprehensively addressing all edge cases
during the process of developing autonomy blocks, ensuring
the robustness of algorithm performance to adhere to the
standards of the safety-critical aviation industry. DO-178C
and CoDANN help with the latter.

A fundamental aspect of this optimization pertains to
domain adaptation. Domain adaptation refers to the process
of customizing the sensing and perception modules of the
robot according to the specific application domain [84]. For
example, different types of sensorsmay be required for indoor
and outdoor environments, or for different weather condi-
tions. Moreover, the sensor data may vary significantly from
simulation to reality, requiring robust and adaptive models
that can handle domain shifts. Various techniques such as
data augmentation, domain randomization, and adversarial
learning can be leveraged to train and test the AI models
(powering various Autonomy Blocks) in diverse and realistic
scenarios.
Online fine-tuning refers to the ability of the robot to

adapt its behavior and decision-making modules based on
the feedback from the environment and the user [85]. Online
fine-tuning enables the autonomous system to improve its
performance based on continuous learning and real-world
experiences, thereby promoting enhanced autonomy and reli-
ability. For example, the aerial vehicle may need to adaptively
adjust its speed, trajectory, or navigation strategy according
to the dynamic and uncertain situations it encounters in the
real world, which it has or hasn’t necessarily encountered
during the simulation-based training and testing. Methods
such as reinforcement learning, imitation learning, and active
learning can be employed to enable online learning and
improvement of the AI models in an interactive and data-
efficient manner.
IoT edge device deployments refer to the implementa-

tion of autonomy solutions on power-efficient embedded AI
computing devices that can be integrated with the aerial

vehicle’s hardware [86]. For example, the UAV may need
to run its models on a low-power CPU or GPU that can fit
within its SWaP-c constraints. Moreover, the V2X capability
will require the vehicle to communicate with other devices
or cloud services via wireless networks, requiring reliable
and secure data transmission protocols. The models need
to be optimized for edge deployment using techniques such
as model compression, quantization, pruning, and distilla-
tion, as well as leveraging edge computing platforms such
as Azure IoT Edge. Leveraging the potency of embedded
AI computing devices, this paradigm facilitates the efficient
and seamless integration of autonomous capabilities into
resource-constrained UAV environments.

B. MONOLITHIC DEEP LEARNING FOR AUTONOMOUS
AERIAL VEHICLES: CHALLENGES AND OPPORTUNITIES
Monolithic deep learning algorithms typically refer to com-
prehensive, end-to-end machine learning models that handle
multiple aspects of autonomous flight. These can include
tasks such as obstacle detection and avoidance, path planning,
and navigation. Monolithic deep learning models are tightly
coupled systems where all the layers work in a highly syn-
chronized manner. These models are often seen as a single,
centralized unit, which can make them easier to develop, test,
and debug. These algorithms are ‘‘monolithic’’ in the sense
that they are designed to handle multiple tasks within the
same framework, rather than relying on separate models or
systems for each task. This can lead to more efficient and
coordinated behavior in autonomous aerial robots. Mono-
lithic models emphasize tight integration and synchronization
of all components. However, this can also make them less
flexible and adaptable compared to more modular or dis-
tributed systems.

In recent years, the field of AI has witnessed a significant
transformation, shifting from task-specific, narrow models
to larger, more versatile monolithic neural networks. For
instance, within the domain of natural language processing
(NLP), models like GPT-4 have demonstrated an impressive
array of capabilities, encompassing tasks such as text sum-
marization, translation, and sentiment analysis. Concurrently,
visual-language models have been gaining proficiency in a
multitude of tasks, including object detection, image cap-
tioning, and even generative tasks like creating artwork. This
progression implies the potential for a unified, generalized
model to potentially replace numerous task-specific models,
offering enhanced efficiency and a simpler system architec-
ture. However, when transitioning from NLP to the realm of
robotics, a number of complexities come to the forefront.

Firstly, there is a notable scarcity of data (see Section III-B
for challenges with Synthetic Data creation process), as end-
to-end foundation models necessitate extensive training data,
and there is a limited availability of curated datasets for pre-
training robots. Consequently, the emphasis shifts towards
enhancing the intelligence of existing foundation models
for each of the proposed Autonomy Blocks (namely, Sense,
Perceive, Plan, Actuate) even when their original application
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differs from that of aerial autonomy. Additionally, in the field
of robotics, the wide variability in actuators and control sys-
tems introduces an additional layer of intricacy. Each type of
aerial vehicle, whether it’s a quadcopter, eVTOL, traditional
aircraft, or helicopter, possesses a distinct set of actuators
and corresponding control systems. This makes the concept
of generalization more challenging. Employing a monolithic
neural network that directly maps sensor inputs to actuator
outputs is therefore not scalable and also risks overlooking
the wealth of existing research in control theory.

IX. CONCLUSION AND OUTLOOK
The outlook of the Advanced Aerial Mobility (AAM) field is
poised for transformative change, with an increasing recog-
nition of the need for AAM solutions in both urban and
rural contexts. Urban congestion and gridlock have become a
ubiquitous problem, and AAM holds the potential to alleviate
these issues by introducing unmanned aerial vehicles (UAVs)
for passenger and cargo transportation. In parallel, the use
of UAVs is already revolutionizing various industries, from
agriculture and construction to healthcare and logistics. These
aircraft provide cost-efficient and rapid solutions for tasks
such as crop monitoring, site surveys, medical supply deliv-
ery, and last-mile logistics, offering a glimpse into the future
where AAMwill play a pivotal role in enhancing productivity
and quality of life.

The research and development of fully autonomous aerial
vehicles is advancing at an impressive pace, propelling the
AAM field toward its full potential. In this paper, we have
presented a comprehensive study of the autonomous aerial
mobility field, consisting of four main components: sim-
ulation, data, autonomy, and multi-agent fleets. We have
described the functionalities and technical underpinnings of
each component and how they interact with each other to
enable safe and efficient operations of aerial vehicles, partic-
ularly AAMs based UAVs, in complex urban environments.
We have outlined key innovations as well as existing sys-
tems. The focal point of our work is the autonomy blocks
framework. This modular AI-based approach aims to address
the full spectrum of autonomy for advanced aerial mobil-
ity, from sensing and perception to planning and control.
We have proposed a customizable, modular, and extensible
design paradigm that allows for building autonomy stack for
different levels of autonomy and different types of aerial vehi-
cles. We have also reviewed the state-of-the-art research and
technologies in various domains and sectors that are relevant
to our framework, including deep learning algorithms that
cater to specific modules of the proposed autonomy stack.

Furthermore, we have discussed the challenges and oppor-
tunities for benchmarking and validating our framework
based on the up-and-coming standards, guidelines, and
ConOps being established by regulatory bodies around the
world. Autonomous aerial vehicles need to comply with the
tight regulatory oversight that governs the aerial mobility
industry as ensuring the safety of passengers, property, and
infrastructure is of paramount importance. This requires high

standards of safety, security, and reliability. Therefore, AAM
requires a multidisciplinary effort that integrates cutting-edge
research and development from various fields, such as avi-
ation engineering, computer science, artificial intelligence,
robotics, and human factors. We believe that our auton-
omy blocks framework offers a holistic and comprehensive
approach to developing the underlying technology – rooted
in the multidisciplinary foundations - to advancing the field
of autonomous aerial mobility. We hope that our work will
inspire further research and innovation in this exciting and
important domain.
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