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ABSTRACT In intensive aquaculture systems, accurate water temperature prediction is crucial for
aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled,
nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction
is proposed to improve prediction generalization ability and robustness. The model integrates advanced
data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data
decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction
of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final
prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R2 of the VMD-
CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and
0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper
improves the R2 by 13.2% compared with LSTM and 13.7% over the GRUmodel. This study can be applied
in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.

INDEX TERMS Water temperature prediction, combination model, BiLSTM-self attention, variational
mode decomposition (VMD).

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

I. INTRODUCTION
The quality of aquaculture in conventional intensive systems
is often compromised due to fish growers relying solely
on their knowledge to manage water quality, leading to
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oversight of critical concerns. To mitigate financial losses
and enhance the overall quality of aquaculture products,
farmers need to adopt accurate and timely water quality
predictions before any deterioration occurs in the aquatic
environment [1], [2]. Aquaculture involves a multitude of
water quality parameters with various influencing factors.
Among these factors, water temperature plays a significant
role in determining the quality of the aquatic environment.
Different fish species thrive at specific temperature ranges,
and maintaining the appropriate water temperature is vital.
Deviations from the ideal temperature can promote bacterial
growth, potentially leading to fish diseases.

In contrast, temperature changes can significantly impact
fish feeding, consequently affecting fish growth and repro-
duction. Additionally, water temperature can influence
various water quality parameters, potentially threatening fish
growth. Describing the breeding water temperature using a
mathematical model is challenging due to its nonlinear, time-
varying, and stochastic nature, making it difficult to establish
an accurate and effective nonlinear prediction model through
conventional techniques such as ARIMA [3], NARX [4],
SVM [5], and BPNN [6] methods [7].
Predicting water temperature in rivers [8] and seas [9] has

significantly benefited from advanced deep learning and data
mining methods. However, a limitation in the previous deep-
learning predictions was the predominant use of a single
prediction model for forecasting. For instance, Qiu et al.
[10] utilized an LSTM to predict river water temperature
with remarkable precision. Similarly, Caissie et al. [11]
employed second and third-order autoregressive models
to achieve short-term predictions of river water tempera-
ture. Ferchichi et al. [12] explored several single-model
techniques, including multiple linear regression, random
forest, and artificial neural networks, to forecast daily
sea surface temperature, emphasizing the importance of
machine learningmodels for accurate sea surface temperature
predictions. Nevertheless, these studies employed a single
prediction model without incorporating noise reduction or
essential trait extraction, resulting in potential adverse effects
on the accuracy of water quality predictions. Therefore, there
is a need to explore more sophisticated approaches that
account for noise reduction and extraction of key features to
enhance the precision of water temperature forecasts.

With the continuous development of data processing tech-
nology, experts have proposed many methods to eliminate
noise interference and obtain high-quality data. Currently, the
commonly used methods are wavelet transform [13], empir-
ical modal decomposition (EMD) [14], ensemble empirical
modal decomposition (EEMD) [15], fully adaptive noise
ensemble empirical modal decomposition (CEEMDAN)
[16], and other decomposition methods. These methods can
realize the decomposition of nonlinear signals for noise
reduction, in which wavelet transform is one of the most
widely used data decomposition and noise reduction tech-
niques in recent decades. However, wavelet transform needs
to select the proper wavelet basis function to achieve sound

noise reduction. The choice of wavelet basis predominantly
affects the final noise reduction effect.EMD is an adaptive
decomposition noise reduction algorithm that overcomes
the limitations of the wavelet transform. However, EMD
is more sensitive to noise signals and often has modal
aliasing problems when decomposing the data. EEMD is
an improvement of EMD. Although EEMD improves the
modal aliasing problem to a certain extent, it still can’t
overcome the shortcomings of the EMDmethod.CEEMDAN
is an improvement of EEMD, which adds white noise
in the decomposition process and then decomposes the
modal components by EMD. VMD [17] is an entirely
non-recursive signal processing method that can adaptively
search for the optimal solution of the variational modes
by iteratively searching for the optimal center frequency
and finite bandwidth of each mode, which can effectively
overcome the modal aliasing problem of the EMD method
and realize the decomposition of the data for noise reduction
without the introduction of additional noise. Li et al. [18]
applied the Successive Variational Modal Decomposition
(SVMD) noise reduction algorithm to realize the feature
extraction of Ship Radiated Noise Signal (S-RNS), and
proved that the VMD and its improved algorithm are effective
in noise reduction of noise signals, and Javad et al. [19]
combined VMD with two artificial intelligence (AI) models
to realize the accurate prediction of total dissolved solids
in surface water quality. These studies have shown that
VMD exhibits a sound effect of noise reduction in the noise
processing of time-series data.

To improve the problem of low prediction accuracy and
poor robustness of a single prediction model, researchers
have combined several methods to realize water temperature
prediction. Kim et al. [20], [20] utilized a recurrent neural
network (RNN)-based long short-term memory (LSTM)
model to predict water temperatures. Grbić et al. [21]
employed a combination of two Gaussian process regression
models to forecast stream temperature. Meanwhile, Yang and
Liu [22] improved the gated recurrent unit neural network
(IWOA-GRU) by using an enhanced whale optimization
method for predicting water quality in sea cucumber farming
environments, providing valuable insights for water quality
control.

However, traditional RNN models encounter issues such
as gradient explosion and disappearance. While LSTM
and GRU models partially address these problems, they
might not fully capture the hidden features for accurate
water temperature predictions. To overcome these limitations,
bidirectional LSTM models have been applied, which can
mitigate the gradient disappearance problem in RNNs and
consider both past and future data to make predictions. This
bidirectional LSTM model has proven successful in various
prediction tasks, including traffic [23], wind speed [24], and
temperature [25] forecasting.

Meanwhile, since the self-attentionmechanism can capture
the correlation between different locations in the input
sequence and increase the weight of important information,
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it can be combined with the bidirectional LSTM model
to improve the robustness and generalization ability of the
model, which is now widely used in code search [26] and
image classification [27].
This paper aims to enhance water temperature data’s

prediction accuracy and robustness, considering its high cou-
pling and nonlinearity characteristics. We propose a hybrid
model called CNN-BiLSTM-self-attention to achieve this
goal, incorporating VMD noise reduction processing based
on existing technologies and research. The contributions of
this model are as follows:

1. Aiming at the problem of more noise in the water
temperature data affected by many factors, this paper
adopts the VMD modal decomposition method to
decompose and reduce the noise of the original data
to provide high-quality datasets for the later feature
extraction and model prediction;

2. The CNN model is applied to extract potential salient
features of the data, thereby enhancing the accuracy of
predictions;

3. The bi-directional LSTM combined prediction model
and a self-attentive mechanism yield superior results
in predicting time-series data for aquaculture water
temperature.

The prediction model proposed in this paper is described
in the following sections. Section II, Data preprocessing and
method description. Section III, Results and Analysis, and
Section IV, Summary and Outlook.

II. MATERIALS AND METHODS
This section presents a comprehensive outline of the pre-
processing steps undertaken to address missing values and
outliers in the raw data. The subsequent section elaborates on
the fundamental structure of the model used in this research.
It provides an in-depth explanation of its implementation
procedure.

A. DATA PREPROCESSING
The data utilized in this paper was sourced from the intensive
recirculating water aquaculture farm of Nansha Aquatic
Extension General Station(23.11oN, 113.27oE). The farm has
a mild climate all year, making it ideal for aquaculture. The
farm covers an area of 200 square meters, with a total of
8 intensive breeding ponds, each with a depth of 1 meter and
a diameter of 2.7 meters, and the water temperature sensor
is located at a depth of 0.5 meters in the No. 1 breeding
pond. The aquaculture environment is shown in Figure 1.
Water temperature data were collected through an IoT-based
water quality monitoring system, encompassing the sensing,
transmission, and application layers, as depicted in Figure 2.
The sensing layer of this IoT system is equippedwithmultiple
sensors that are inexpensive, easy to install, and collect data
in a timely and accurate manner, which reduces the cost of
manual data collection and can be used to measure a variety
of water quality parameters, thus allowing for the continuous
collection of data on water temperature, dissolved oxygen,
pH, and other relevant indicators [28].

FIGURE 1. Real-time experimental setup.

For this investigation, experimental data consisted of
4659 records of water temperatures collected at 10-minute
intervals between August 13, 2022, and September 13,
2022, as displayed in Figure 3. Due to the influence of
sensor acquisition equipment and human activities, as well
as changes in weather and seasons, the water temperature
data is not homogeneous, and there are missing data and
anomalies. By observing the experimental data, the overall
trend of the data fluctuation change is small and periodic,
and through the data histogram, as shown in Figure 4. And
normality Kolmogorov-Smirnov (K-S) test results p greater
than 0.05 proves that this data meets the normal distribution,
as shown in Table 1, so this paper uses the mean method and
three sigma to deal with missing values and outliers data [29]
and normalize the processed data.

1) AVERAGE FILLED NAN
Calculate the average before and after the missing values, and
use the average to fill the NaN present in the experimental
data, calculated as follows:

F (xt) =


xt−1 + xt+1

2
, xt ∈ NaN

xt , else
(1)

xt is the value of the water temperature at moment t.
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FIGURE 2. IoT water quality monitoring system.

TABLE 1. Normality test.

2) 36 INSTEAD OF OUTLIERS
Use ‘‘Three-sigma rules’’ to replace outliers in the data. The
replacement formula is as follows:

F (xt) =

{
avg (xt) + 2σ (xt) , if xt > x∗

t

xt , else
(2)

where x∗
t is calculated from avg (·) and σ (·).

3) MIN-MAX STANDARD NORMALIZATION
Normalizing the preprocessed water temperature data using
the Min-Max scalar helps save time and resources by
eliminating extreme values:

xscaled =
xt − min(x)

max (x) − min(x)
(3)

B. VARIATIONAL MODE DECOMPOSITION (VMD)
This work employs the Virtual Mode Decomposition (VMD)
approach to eliminate noise from the recorded water tem-
perature data, which can be influenced by human activities
and may contain noise artifacts. To overcome the sensitivity
of Empirical Mode Decomposition (EMD) to noise and
sampling issues, Dragomiretskiy and Zosso [30] introduced
VMD. This robust and adaptivemodal decompositionmethod
effectively reduces noise.

The primary objective of Virtual Mode Decomposition
(VMD) is to partition a real-valued signal into several

band-limited sub-signals using Intrinsic Mode Functions
(IMFs). During the modal decomposition process, each
modal function is centered around a specific frequency,
and its bandwidth is constrained. The following procedures
outline how to determine the bandwidth of each modal
function: Obtaining the analytic signal by the Hilbert
transform for each modal function.
(1) It transfers the spectrum of each modal function to its

baseband using an estimated central frequency with
exponential trimming.

(2) The bandwidth is obtained by demodulating the
Gaussian smoothness of the signal, i.e., L2. The
corresponding constrained variational expression is
given as follows:

min
{uk} , {ωk}

{
K∑
k=1

∥∥∥∥∂t [(δ (t) +
j

π t
) ∗ uk (t)]e−jωk t

∥∥∥∥2
2

}
(4)

s.t.
K∑
k=1

uk = F(t) (5)

where uk is the modal component, ωk is the center frequency;
likewise, {uk} and {ωk} are shorthand symbols for all modal
components and the set of central frequencies,

∑K
K=1 is the

sum of all modal components; actual data is denoted as F(t).
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FIGURE 3. Original water quality data.

The constraint issue may be solved by transforming
the variational problem with constraints into a variational
problem without constraints using the quadratic penalty
paramete α Lagrange multiplier λ . Thus, the augmented
Lagrangian L expression is obtained as:

L
(
{uk} , {ωk} , λ

)
= α

K∑
k=1

∥∥∥∥∂t [(δ (t) +
j

π t
) ∗ uk (t)]e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥F (t) −

K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+ ⟨λ (t),F(t) −

K∑
k=1

uk (t)⟩ (6)

The solution of the minimization problem in Eq. (4) is
transformed into the problem of solving the incremental
Lagrangian in a series of iterative sub-optimized targets.
The alternate direction method of multipliers (ADMM) is
used to update continuously iteratively. {uk}, {ωk} and λ

to obtain the Lagrangian function targets, which lead to
the modal components and central frequencies. The specific
implementation process is shown in Figure 5.

The VMD (Variational Mode Decomposition) technique,
as proposed by Heddam et al. [31], relies heavily on two
crucial factors: the secondary penalty factor and the number
of decomposition layers, denoted as K. The outcomes of
the decomposition process are directly influenced by how
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FIGURE 4. The original data histogram.

these parameters are determined. VMD allows us to obtain
the central frequency of each Intrinsic Mode Function (IMF)
component, enabling us to calculate the appropriate value
for K based on the main frequency. Previous studies [32]
have highlighted the central frequency, sample entropy, and
optimization methods [33] as the most popular approaches to
determine the number of decomposition layers, K.

Investigation in this study used the central frequency
method to decompose the training and test sets into eight
eigenmodes labeled IMF1 to IMF8. For this process, we set
the quadratic penalty factor, α, to 2000, employing a trial-
and-error approach. The proposed model decomposition and
central frequency analysis results, presented in Figure 6,
demonstrate effective noise reduction, leading to more stable
and smoother IMF values than the original water temperature
data. Consequently, these improved IMF components con-
tribute to enhanced model prediction [34].

C. CNN LAYER(CNN)
Convolutional neural networks (CNNs), a leading deep
learning model, are widely used in image processing for
feature extraction because of their unique features like local
perception, weight sharing, and downsampling. Additionally,
they have found applications in analyzing time-series data,
such as stock prices [35], wind speed [29], and power
load [36].

There are three types of convolution operations: 1D,
2D, and 3D convolution [37]. One-dimensional convolution
is often used to process sequential data, while two-
dimensional convolution is more commonly employed for
multi-dimensional data processing, such as images. On the
other hand, three-dimensional convolution finds its use in
video data processing [38]. Since this paper mainly predicts

the water temperature for one-dimensional time series data,
1D-CNN is used for feature extraction, and the 1D-CNN is
calculated as shown:

ht = σ (W ∗ Xt + b) (7)

where W is the convolution kernel, b denotes the bias vector,
Xt denotes the data input to the convolutional network at
moment t, σ denotes the activation function, and ht is the
output result after convolutional computation.

In this paper, the multimodal water temperature data
after variable modal noise reduction is composed into a
k×m matrix, which is input to the CNN network and
undergoes two convolution layers for feature extraction. After
the convolution procedure, maximum pooling is used to
aggregate data, decrease feature dimension, and remove weak
features to prevent model overfitting.

D. BI-DIRECTIONAL LSTM LAYER (BILSTM)
Recurrent Neural Networks (RNNs) have been widely
utilized for predicting time series data due to their ability to
learn relationships between current moments and information
from earlier moments [38]. However, as the prediction time
horizon increases, RNNs face challenges in capturing these
relationships, leading to the issue of gradient disappearance
and a subsequent decline in prediction accuracy [39].

To address this problem, Hochreiter and Schmidhuber
[40] proposed the Long Short-Term Memory (LSTM)
architecture in 1997. LSTM effectively mitigates the gradient
disappearance problem by incorporating cellular states to
retain long-term memory alongside the hidden states of the
original RNN. Figure 7 illustrates the structure of the LSTM,
wherein each cellular state comprises three gates: an input
gate, a forgetting gate, and an output gate. Additionally, the

137290 VOLUME 11, 2023



M. Wang et al.: Ensemble Model for Water Temperature Prediction in Intensive Aquaculture

FIGURE 5. VMD flow chart.

computational equation governing the LSTM information
block is utilized for efficient computations. [11].

It = σ (Wi · [ht−1,Xt ] + bi) (8)

Ft = σ (Wf · [[ht−1,Xt ] + bf ) (9)

Ot = σ (Wo · [[ht−1,Xt ] + bo) (10)

C̃t = tanh(Wc · [[ht−1,Xt ] + bc) (11)

Ct = Ft × Ct−1 + It × C̃t (12)

ht = Ot · tanh(Ct ) (13)

It denotes the input gate, Ft denotes the forgetting gate, Ot
denotes the output gate, Ct denotes the cell state at time t,Wi,
Wf ,Wo,Wu denote the respective weight matrices, bi, bf , bo,
bu denote the respective bias terms, σ denotes the sigmoid
function.

While LSTM addresses the issue of long-term dependen-
cies, it can only gather knowledge about the past of the input
data. For the long-time series problem, the present state may
be tied to previous or future information. On the other hand,
Bidirectional Long-Short Term Memory (BiLSTM) consists
of two LSTM networks operating in opposing directions,

which may extract the before and after features of the input
data [41]. The structure is shown in Figure 8. The information
transfer in the bidirectional LSTM is the same as that of
the LSTM. The final output is superimposed by the LSTM
outputs in both directions. Training water temperature data
using bidirectional LSTM may significantly enhance the
accuracy of predictions [42]. In this paper, data extracted by
CNN features were put into the BiLSTMmodel, and the two-
layer prediction model predicted the output of each modal
result.

E. SELF-ATTENTION LAYER
The model employed self-attention to enhance its capac-
ity for accurately capturing the relationship between pre-
and post-water-temperature information. Using self-attention
mechanisms, the model becomes proficient at recognizing
long-term dependencies within data sequences before and
after a specific point [43], [44]. Consequently, the model
gains the ability to concentrate on crucial data points that
significantly impact the prediction process, assigning them
higher weights while downplaying the relevance of less
essential data by assigning them lower weights [45]. This can
be expressed as follows:

Q = Xt ·WQ (14)

K = Xt ·WK (15)

V = Xt ·WV (16)

During training, the parametersWQ,WK ,WV are learned,
and the softmax function is applied to obtain the normalized
attention weight matrix α. The α matrix is normalized
column-by-column using a specific normalization function.
The self-attention is calculated as follows:

α = softmax(QKT ) (17)

Atten = Attention (Q,K ,V ) = αV (18)

At last, we use the attention weights α to create a weighted
sum and H_i^a On all output vectors of the BiLSTM layer
with the following formula:

Ha
i =

m∑
j=1

αijVj (19)

m∑
j=1

αij = 1, i ∈ {1, 2, . . . ,m} (20)

where αij Serves as the attention vector at position i,
representing the attention received at position j.

F. VMD-CNN-BILSTM-SA MODEL
The study presents an innovative prediction model, VMD-
CNN-BiLSTM-SA, which combines multiple techniques
to achieve high prediction accuracy in aquaculture. The
model’s architecture, depicted in Figure 9, consists of three
key components: noise reduction, feature extraction, and
prediction.
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FIGURE 6. Modal decomposition plots and central frequency plots of the training set and test set. (a) Modal decomposition diagram of the training set.

Initially, the VMD method decomposes the water tem-
perature data into multiple eigenmodes, known as intrinsic
mode functions (IMFs). Subsequently, the CNN is utilized to
extract relevant features from each IMF. Finally, the extracted
features are fed into a bi-directional LSTM model that
incorporates a self-attentive mechanism to ensure accurate
prediction of the water temperature data.

The uniqueness of the VMD-CNN-BiLSTM-SA model
lies in its capability to effectively capture complex temporal
dependencies within the water temperature data. By decom-
posing the data into IMFs and conducting feature extraction
on each mode, the model can discern relevant patterns
and relationships critical for accurate prediction. Moreover,
including a self-attentive mechanism further enhances the
model’s ability to selectively focus on essential data points,
thereby improving prediction performance.

The particular procedure for implementation is as follows:
Step 1: Using the approach given in Section II-A, separate

the preprocessed raw data into a training set and a test set;
Step 2: Decompose the training set data into K eigenmode

IMFs based on modal center frequencies using the VMD
method to achieve noise reduction on the data;

Step 3: The decomposed and noise-reduced modes are
input into a two-layer 1D-CNN to train feature extraction on
the data;

Step 4: Training the prediction model by feeding the
multimodal feature matrix extracted by CNN features into a
BiLSTM with a self-attentive mechanism;

Step 5: The final prediction results are obtained by
inputting the test set into the trained model, which has been
optimized to provide correct predictions across all modalities,
and then superimposing the outcomes of those predictions.
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FIGURE 6. (Continued.) Modal decomposition plots and central frequency plots of the training set and test set. (b) Frequency graph of training
concentration.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL CONFIGURATION
In this article, all experiments were conducted using an Intel
i5-8265U processor with a clock speed of 1.80GHz and a
Windows 10 (64-bit) operating system. The test software
platform employed was PyCharm, with the programming
language set to Python 3.6. Due to Keras’ notable advantages,
such as excellent scalability, modularity, and the ability to
freely combine model layers, this paper utilizes Keras to
develop a VMD-CNN-BiLSTM-Self Attention model.

The first 3659 water temperature data points from
the experimental dataset were selected for training,
and the remaining 1000 data points were used as the test set.
The model’s hyperparameters were configured as presented
in Table 2, and the parameter settings for each model layer
were determined through debugging. The number of epochs
was set to 150, and a batch size 32 was employed.

TABLE 2. Model hyperparameter configuration table.

B. EVALUATION CRITERIA
To assess the prediction accuracy in this study, we have
chosen five evaluation indicators: Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Mean Absolute
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FIGURE 6. (Continued.) Modal decomposition plots and central frequency plots of the training set and test set. (c) Modal decomposition diagram
of the test set.

Percentage Error (MAPE), and R-squared R2. Lower MAE,
RMSE,MSE, andMAPE values reflect a forecast’s precision.
R-squared quantifies the ratio of the mean squared error of a
prediction to the variance of the actual data, indicating how
closely the projected value aligns with the real value R2.

MAE =
1
m

m∑
i=1

∣∣yi − y′i
∣∣ (21)

RMSE =

√√√√ 1
m

m∑
i=1

(yi − y′i)
2 (22)

MAPE =
1
m

m∑
i=1

|
yi − y′i
y′i

| ∗ 100 (23)

R2 = 1 −

∑m
i=1 (yi − y′i)

2∑m
i=1 (y

′
i − ȳ′i)

2 (24)

C. MODEL COMPARISON
The trend of the loss function of the training set and test
set during the training process is shown in Figure 10.
The image demonstrates that as the number of iterations
increases, the loss function for the model’s training and test
sets diminishes. It progressively stabilizes, eventually and
infinitely converging to zero. This trend underscores the
enhanced generalization capability of the proposed prediction
model in this study. In addition, the images show that the loss
errors of the training and test sets are minor, proving that the
model does not have overfitting and underfitting problems
during the training process.

To establish the superiority of the proposed model,
we conducted a comprehensive experiment in aquaculture.
This experiment involved comparing multiple single deep-
learning prediction models with various combined prediction
models. The single deep learningmodels used were BiLSTM,
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FIGURE 6. (Continued.) Modal decomposition plots and central frequency plots of the training set and test set. (d) Frequency graph of test
concentration.

FIGURE 7. LSTM structure diagram.

GRU, and LSTM, while the combined models included
VMD-CNN-LSTM-SA, VMD-BiLSTM-SA, VMD-CNN-
BiLSTM, and several others.

To evaluate the performance of these models, we con-
sidered five different indicators, such as MAE and MSE.
Using the same dataset for evaluating all the models
was crucial, ensuring a fair comparison across the board.
This experiment’s primary objective was to identify each
model’s strengths and weaknesses and determine which one
outperformed the others based on the established evaluation
criteria.

By conducting this comprehensive analysis, we aim to
provide valuable insights to the aquaculture community,
thereby assisting researchers and practitioners in mak-
ing well-informed decisions when utilizing deep learning
prediction models in their research. Table 3 summarizes
the experimental results, demonstrating that the proposed
model outperformed all other models. The proposed model
exhibited the lowest values for evaluation indices such
as MSE, MAE, AMSE, and MAPE while achieving the
highest value for the R-squared evaluation index. These
compelling findings unequivocally indicate that the proposed
model offers superior predictive performance, generating
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FIGURE 8. Bidirectional LSTM structure diagram.

FIGURE 9. Structure of VMD-CNN-BiLSTM-SA model.

FIGURE 10. Structure of VMD-CNN-BiLSTM-SA model.

remarkably accurate results compared to the other models
considered in this study.

Furthermore, Figure 11 compares the actual and predicted
value curves for the proposed and other models. Notably, the
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TABLE 3. Model comparison table.

FIGURE 11. Overall model comparison diagram.

proposed model displays the highest level of fitting degree
with the real value curve, signifying its exceptional overall

performance when contrasted with all the other models
evaluated in the experiment.
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FIGURE 12. Single model comparison diagram.

FIGURE 13. VMD-CNN-GRU-SA, VMD-CNN-RNN-SA, VMD-CNN-LSTM-SA and VMD-CNN-BiLSTM-SA models comparison
diagram.

Traditional single-prediction models can only make basic
predictions based on existing data. They cannot effectively
eliminate the noise factors in the data or extract key features.

In order to prove that the combined model proposed in
this paper has a better prediction advantage, this paper
selects several machine learning models, such as SVR, RNN,
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FIGURE 14. VMD-CNN-BiLSTM, VMD-BiLSTM-SA, CNN-BiLSTM-SA and VMD-CNN-BiLSTM-SA models comparison diagram.

LSTM and GRUto compare with the model proposed in this
paper. The comparison results are shown in Fig. 12, from
which it can be seen that, in a single prediction model,
the bidirectional LSTM reduces the MSE results by 21.3%,
1.7%, 7.7%, compared with the RNN, LSTM, and GRU
models, respectively. The MSE is reduced by 11.11% and
63.2%, respectively, and the comparison of a single model
can show that the selected bidirectional LSTM model has
a smaller error and a higher accuracy. However, the single
bidirectional LSTM model significantly decreases the MSE,
MAE. Compared to the combined model proposed in this
paper. The proposed model has a significant decrease in the
RNN, LSTM and GRU models in terms of the RNN, RNN,
LSTM and GRU models in terms of the MSE and the MAE.
However, compared with the combination model proposed in
this paper, the model proposed in this paper has a significant
reduction in MSE, MAE, and a significant improvement in
R2, which fully indicates that the combination prediction
model proposed in this paper has a better prediction effect and
stronger robustness than a single machine learning model for
the data selected in this paper.

In data prediction, existing literature mostly uses GRU
[46] and LSTM [47], [48] models to predict data. However,
one-way LSTM and GRU cannot capture the contextual
information of time series signal data. The gradient van-
ishing problem will occur with the increasing sequence
processing. At the same time, two-way LSTM can alleviate
the gradient vanishing problem when dealing with long
sequence prediction. In order to further prove that the

model proposed in this paper has the same advantage in
combinatorial models, we selected several commonly used
machine learning combinatorial models, such as RNN, GRU,
and LSTM, for comparison and verified that the bi-directional
LSTM model selected in this paper has a better prediction
effect. The comparison results are shown in Fig. 13. From
the validation results, it can be seen that bidirectional LSTM
reduces 61.9%, 60%, and 61% in MAE and increases 14.1%,
13.2%, and 13.7% in R2 than RNN, LSTM, and GRU,
respectively, in the combined model.

In order to prove that each part of the combined model
proposed in this paper has an impact on the final prediction
results and has a better processing effect on the data,
we compare the model proposed in this paper with VMD-
CNN-BiLSTM, VMD-BiLSTM-SA, and CNN-BiLSTM-SA
in ablation experiments, as shown in Fig. 14. In terms
of real-time prediction of time-series data, the prediction
efficiency of the model is crucial, based on the existing base
model VMD-CNN-BiLSTM we embedded the self-attention
mechanism, by comparing it with the VMD-CNN-BiLSTM
model, from the comparison results, we can see that the
MAE and MSE of the model after adding the self-attention
mechanism were reduced by 11.1% respectively, 13.0%,
and R2 is improved by 0.6%, which fully demonstrates
that the self-attention mechanism effectively improves the
overall prediction accuracy and prediction effect of the
model, and comparing the model proposed in this paper
with CNN-BiLSTM-SA, the model proposed in this paper
significantly reduces the MAE, and MSE by 86.3%, and
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86.5%, respectively. It proves that the VMD method selected
in this paper has a significant noise reduction effect on the
data.

IV. SUMMARY AND OUTLOOK
This study presents a novel VMD-CNN-BiLSTM-SA model
designed to predict aquaculture water temperature data with
high reliability. The model employs various techniques
for data processing and prediction. VMD is utilized to
decompose and reduce noise in the original data. At the
same time, CNN extracts pertinent image and time-series
data features, such as water temperature. The experimental
results demonstrate that the VMD effectively isolates the
noise components in the original data and obtains a high-
quality dataset, which provides a good database for the later
model prediction.

Furthermore, CNN plays a crucial role in extracting
valuable features of image and time-series data, enhancing
the model’s predictive capabilities. The bidirectional LSTM
model with self-attention effectively predicts water temper-
ature time-series data, even in the presence of significant
coupling, nonlinearity, and noise within the data. Therefore,
the combined VMD-CNN-BiLSTM-SA model proposed in
this paper has a better prediction effect on aquaculture water
temperature data with high coupling and nonlinearity, solves
the problems of low prediction accuracy and poor robustness
of traditional methods, and provides solid technical support
for aquaculture water quality monitoring and management.

Meanwhile, our study has some limitations. The effects
of pH, dissolved oxygen, and other factors on the model’s
performance are unclear, and further research is needed.
Because the proposed model has more modules and the
influence of the power network, the actual operation and
use will increase the time overhead of the model. In the
future, we will reduce the temporal overhead of the model
by improving the model, optimizing the parameters, and
using other methods to enhance the model’s performance and
extend it to the long-term prediction so that the model can
obtain the prediction results for the future time.
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