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ABSTRACT Transformative reconfigurability refers to the ability of changing the current software stack of
a configurable device by fully replacing its existing one. In the context of IoT systems, such major device
reconfigurations can be used to change the role, adapt new functionality, and keep reconfigurable IoT devices
compatible with the IoT systems requirements as the ambient technology around them evolve, thus fostering
a thriving and continuously-connected IoT environment. In this paper, we introduce Phoenix, an IoT device
configuration management system that is designed to automate transformative reconfigurability for edge IoT
devices at small scales. Edge IoT devices are typically computationally capable and configurable devices that
have enough processing power to run user programs and control sensors and embedded devices in an IoT
environment. Enabling transformative reconfigurability for such devices at small scales can increase IoT
systems flexibility, efficiency, and adaptability in small IoT environments, for example, agri-farms, smart
homes, micro grids, and the like. Phoenix manages the life cycle of edge IoT devices configuration and uses
bare-metal provisioning to provide unattended installation of new software stacks that are defined by user
intents that instruct the reconfiguration process. We implemented a Phoenix proof-of-concept system and
deployed it on the SAVI testbed where we evaluated its performance in reconfiguring a variety of edge IoT
devices under different network conditions. Our results indicate that Phoenix can meet the requirements of
small-scale heterogeneous IoT systems in various application environments.

INDEX TERMS Bare metal provisioning, infrastructure automation, Internet of Things, reconfigurability.

I. INTRODUCTION
The Internet of Things (IoT) represents an emerging class
of distributed systems that provide enhanced awareness and
control of the physical environments [1]. These systems
(see Figure 1) typically use a wide range of capable and
configurable edge IoT devices (e.g., Raspberry Pi 4, Jetson
Nano, and Panda Latte 3) to collect data from sensors,
embedded devices, and data sources, to feed such data to local
edge applications (i.e., users programs) for immediate and
delay-sensitive processing, and to transmit the processed data
to the cloud for persistent storage and for processing by cloud
applications to enable remote monitoring, automation, pre-
dictive maintenance, and customizing users experience [1].
Today, edge IoT devices are used in different infrastructures
and environments such as homes, farms, hospitals, factories,
roads, and cities and empower IoT applications and services
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that are becoming essential for infrastructure management in
various areas such as healthcare, agriculture, transportation,
and energy systems [2], [3], [4], [5].

To meet the dynamically changing requirements of diverse
IoT applications, edge IoT devices must be agile and have the
ability to adjust with changes that may involve both hardware
and software components. Hardware improvements may
involve introducing new hardware capabilities (e.g., adding
new communication interfaces and sensors) or performing
maintenance upgrades on existing hardware that would
typically require human intervention to implement. Software
improvements, on the other hand, may involve changes and
maintenance upgrades on the edge IoT devices applications,
services, and operating systems and are preferably performed
with little to no human intervention (that is, fully automated)
to avoid timely and expensive field visits.

Software changes are sometimes minimal as in adjusting
application configurations or making incremental updates
for security reasons, or they may be more significant such
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FIGURE 1. A view of IoT edge-cloud continuum, showing several IoT verticals with programmable edge IoT devices.

as changing a device’s behavior, running new workloads,
or adding new software capabilities to edge IoT devices.
Although both groups of software changes apply modifica-
tions on a device software stack, the latter may include more
fundamental changes that can involve modifying the entire
device software stack (operating system and applications)
and may require a comprehensive solution that can reliably
reconfigure edge IoT devices across a range of scales and
heterogeneity in various IoT environments.

In this paper, we focus on automated reconfigurability
of edge IoT devices for scenarios where substantial and
transformative reconfigurations of edge IoT devices are
needed. Transformative reconfiguration entails that an edge
IoT device can undergo a major or clean-slate change of its
software stack, including its operating system, applications,
and services. Our focus is to support transformative recon-
figurability of edge IoT devices for IoT systems at small
scales (e.g., smart farms, homes, buildings, medium to small
factories, micro grids, hospitals, and small transportation
systems) using Phoenix, an IoT device configuration man-
agement system that we designed for this purpose. Phoenix
can support heterogeneous edge IoT devices and applications
and can be used to support the requirements of IoT
testbeds [6].

With Phoenix, the reconfiguration process can be triggered
internally by the edge IoT devices or by external stimuli
such as a user or an application intent. Reconfiguration can

be done on both wired and wireless edge IoT devices using
Over the Air (OTA) programming [7]. To support various
IoT applications, edge IoT devices typically offer a variety
of connectivity options (e.g., Wi-Fi, LoRa, cellular, etc.),
computational power, input/output capabilities, and storage
models. To be Phoenix-compatible, edge IoT devices must
support iPXE/PXE [8], [9] which can be provided via the
devices UEFI [10], through an intermediate boot loader,
or sometimes by the device network interface card firmware.
Phoenix can apply transformative changes on a single or a
group of compatible edge IoT devices.

Transformative reconfigurability of a group of edge
devices allows part or all of the devices in an IoT environment
to be changed and adapted in an automated fashion for
reasons such as providing new functionalities, meeting new
application requirements, supporting dynamic resource allo-
cation, switching workloads, and for remaining compatible
and optimized. Generally, transformative reconfigurability
extracts greater value from IoT investments thus promoting
a thriving, continuously connected, and multipurpose IoT
environment.

The rest of this paper is organized as follows.
In Section II, we describe the Phoenix architecture and
design. In Section III, we describe the Phoenix’s proof-
of-concept (POC) system implementation and deployment.
Section IV, presents our evaluation results from testing
transformative reconfigurability on various edge IoT devices
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FIGURE 2. A high-level view of Phoenix architecture with tinkerbell used as the provisioning engine.

using Phoenix. Section V and VI, provide various discus-
sions about reconfigurability requirements of different IoT
applications and discuss use cases that can benefit from
transformative reconfigurability. In section VII, we provide a
comprehensive discussion of related work, and Section VIII
gives a summary and discusses futurework.We end this paper
with a discussion of disclaimers.

II. PHOENIX SYSTEM OVERVIEW
As stated in section I, Phoenix is an IoT device configuration
management system designed for automating transformative
reconfigurability of edge IoT devices in small-scale IoT
systems. Such IoT systems are typically limited, confined,
and consist of a relatively small number of configurable edge
IoT devices, for example, Raspberry Pi devices. We note that
an IoT system may include a wide range of configurable
IoT devices, including some with limited computing and
storage capacity such as home appliances and smart locks
that can also be remotely configured. These devices are not
usually considered edge IoT devices and are not the focus of
Phoenix and this study. The focus of Phoenix is on edge IoT
devices with sufficient computing and storage capacity that
can at least run a real-time operating system and meet the
requirements of bare metal provisioning engines.

A. MAIN SYSTEM COMPONENTS
Phoenix has two main components: 1) a device configuration
management engine and 2) a bare metal provisioning
engine, as shown in Figure 2. The device configuration
management engine is composed of the Phoenix controller
and a distributed Edge Device Pool. The controller oversees
the life cycle of edge IoT devices configuration after they
join the Phoenix edge device pool for the first time. It also
registers users, enables them to define workflows for their
edge devices, and allows the users to programmatically
invoke reconfiguration of specific edge IoT devices by means
of intents. The bare metal provisioning engine in Phoenix is
responsible for configuring edge IoT devices by deploying

user-defined workflows on associated edge IoT devices.
Currently, we use an open source Tinkerbell bare metal
provisioning engine [11] for this purpose, but the Phoenix
architecture and the services it provides are designed to be
agnostic to the choice of the bare metal provisioning engine
and can work with any preferred engine. Hence without loss
of generality, the discussion in section II-B is specific to the
Tinkerbell provisioning engine used in this study. Similar
steps can be followed for other provisioning engines [12].
The Tinkerbell provisioning engine [11] has three main

components: 1) Provisioner, 2) Tink-Worker, and 3) Tink-
CLI, as shown in Figure 2. The Provisioner consists of
several microservices that are responsible for handling the
creation and deployment of workflows that configure the
edge IoT devices. The Tink-Worker is a service that runs on
the client/worker devices (that is, the edge IoT devices) that
have been selected for provisioning. The Tink-worker service
communicates with the Tink-Server to download and execute
workflows that configure the client devices. The Tink-CLI is
used to define workflows, insert templates, and add client-
specific data. The Tink-CLI has recently been replaced by
Rufio [11].

B. INITIALIZING EDGE IoT DEVICES
The first step to prepare an edge IoT device for Phoenix is to
add the device in the Phoenix edge device pool, also shown in
Figure 2. We assume that initially an edge IoT device is not
configured and has no function to perform. At this stage, the
edge IoT device must first initiate communication with the
bare metal provisioning engine (i.e., Tinkerbell in this study)
to undergo an initial configuration. To initiate communication
with the Tinkerbell provisioning engine an edge IoT device
must be pre-configured to run in iPXE mode [9]. IPXE is
an open source implementation of the Preboot Execution
Environment (PXE) [8] that specifies a standard client-server
execution environment where clients (i.e., edge IoT devices)
can retrieve and boot a pre-defined software stack (i.e.,
workflow) from the network. When an edge IoT device boots
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in iPXE mode, it broadcasts a DHCPDISCOVER packet to
fetch a desired IP address [9], [11]. The request is captured
and handled by the Tinkerbell Boots microservice, as shown
in Figure 2 (step A1). The Boots microservice offers the
desired IP address that was in the DHCPDISCOVER request
to the given edge IoT device and passes the Tinkerbell OSIE
microservice endpoint to the device to contact next [11].

The edge IoT device then asks the OSIE microservice for
the files and configurations needed to prepare an in-memory
execution environment for workflow deployment, as shown
in Figure 2 (step A2). The workflow deployment involves
installation of an entire software stack (i.e., operating system
and its applications, services, and configurations) on the
device. After communicating with OSIE, the edge IoT device
will then interact with the Tink-Server (Figure 2, step A3) to
obtain the specific workflow (i.e., software stack) image that
has been prepared for the given edge IoT device [11]. Users
can leverage the Phoenix APIs to define initial workflow
configurations for their given devices, as shown in Figure 2.
After the workflow image is obtained by the edge IoT
device, it will be executed on the device, and upon successful
completion, will boot the device into its initial configuration.
We note that we can define a default initial (onboarding)
workflow for all edge IoT devices that join Phoenix, or we
can use different workflows for different device types (e.g.,
Raspberry Pi, etc.) or for different application environments
where the edge IoT devices are deployed.

Once an edge IoT device boots into its initial configuration,
it contacts the Phoenix controller that performs device
registry and configuration management. Although, it is not
necessary, the Phoenix controller can be placed on the
same server where the IoT gateway is deployed to be
easily reachable by all edge IoT devices. The same also
applies to the bare metal provisioning engine. To establish
communication with the Phoenix controller, the edge IoT
device uses a client service, called Flame (see Figure 2)
that comes as part of the initial software stack installed
on the edge devices. We note that all devices that join
Phoenix will obtain Flame during initial and forthcoming
configurations.

When an edge IoT device uses Flame to contact the
Phoenix controller for the first time, it introduces itself
(Figure 2, step B1) by informing the controller of its device
type (e.g., Raspberry Pi), MAC and IP addresses, admin
user(s), energy source and battery status (if applicable),
and the time since the device was booted to its initial
configuration. The Phoenix controller stores this information
in its registry for the device and adds the device into
the Phoenix edge device pool. The controller uses the
information provided by the device to continually pull
other relevant information about the device (e.g., associated
user-defined workloads) from the Tinkerbell Provisioner.
This information will be used by the Phoenix controller when
processing intents (see section II-C) and to roll back the
device to its initial configuration in situations where a future
reconfiguration attempt fails to complete.

C. RECONFIGURING EDGE IoT DEVICES
After an edge IoT device is added to the Phoenix edge
device pool, the Phoenix controller monitors the edge device
configuration life cycle, as shown in Figure 2 (step B2). The
controller and the edge device communicate using Message
Queuing Telemetry Transport (MQTT) protocol [13] where
the edge device informs the controller of its configuration
changes such as the energy levels for battery powered devices,
operating system upgrades, newly installed applications and
services by its users, and other user-applied changes. Phoenix
is very extensible to the type of configuration information that
edge IoT devices and the Phoenix controller can exchange
during the monitoring phase.

The information the edge IoT devices provide to the
Phoenix controller during the monitoring phase will be stored
on the device records in the controller and can be used to
plan reconfiguration strategies. During the monitoring phase,
edge IoT devices can be automatically selected, directed
through users intents, or self-triggered for reconfiguration,
as shown in Figure 2 (step B3). The latter can happen
safely by using the Flame client services or unwantedly via
an internal stimulus that unsafely triggers reconfiguration
process by rebooting the device in iPXE mode. In unsafe
scenarios, the device contacts the provisioner to obtain a
new workflow/configuration (i.e., software stack). However,
rebooting into a new configuration without the knowledge
of Phoenix controller will lock the device for safety reasons
and will prevent the device from reconfiguration. The device
admin user will be notified to either remove the lock or
investigate the event.

If Flame client services are used for self-reconfiguration,
the device asks the Phoenix controller for reconfiguration
before attempting to reboot itself. In this scenario, the
Phoenix controller instructs the device to safely reboot in
iPXE mode to obtain a new workflow/configuration (i.e.,
software stack) by following the exact same steps presented
in section II-B. Once the new configuration is successfully
installed on an edge IoT device, the device updates its status
with the Phoenix controller, as shown in Figure 2 (step B4).

FIGURE 3. An example YAML-based presentation of intents in Phoenix.

Similar steps are followed for obtaining a new workflow
(i.e., software stack) when the reconfiguration process is
initiated by a user intent. A major difference is that the edge

137824 VOLUME 11, 2023



M. Moghaddassian et al.: Phoenix: Transformative Reconfigurability for Edge IoT Devices

FIGURE 4. A view of the SAVI testbed demonstrating the deployment of Phoenix architecture.

IoT devices are now instructed through external stimuli (i.e.,
user intents). A Phoenix intent is a YAML-based definition
of a desired state/configuration for an individual or group
of edge IoT devices that are in the edge device pool. In the
example set of intents shown in Figure 3, edge IoT devices
(i.e., target devices) are selected for reconfiguration based
on their MAC or current IP addresses or in bulk by creating
target classes that specify a group of devices based on their
types, operating system, and other grouping criteria. Phoenix
also has the ability to assign edge IoT devices to specific IoT
verticals, for example, the edge IoT devices that are related
to smart farming in a particular region, or to smart homes
of interest. Users can use vertical type or spatio-temporal
attributes to reconfigure the edge IoT devices for which they
have administrative rights.

Once an intent is created by a user, it is passed to the
Phoenix controller for rendering using the Phoenix controller
APIs, as shown in Figure 2. The controller processes the
intent and signals the target edge devices in the pool to reboot
in iPXE mode if the device information in the intent matches
the existing pool devices, their device records, and intended
workflows. The target edge devices then follow the same
steps described in section II-B to undergo reconfiguration
without being locked for security reasons. We note that users
who create intents must have administrative rights to manage
the target devices. These users can directly use Phoenix APIs
to define the intended workflows for their target edge IoT
devices, as shown in Figure 2.

III. PHOENIX IMPLEMENTATION
We created a Phoenix proof-of-concept (POC) system to
demonstrate the practicality of Phoenix in real-life scenarios
involving edge IoT devices in small-scale IoT systems.
We deployed our POC system on the SAVI IoT testbed.
In the following subsections we briefly introduce the SAVI
testbed and discuss our proof-of-concept implementation and
deployment in more details.

A. THE SAVI IoT TESTBED
The Smart Applications on Virtual Infrastructure (SAVI) [14]
is a private research cloud and network testbed that provides
a multi-tier cloud infrastructure. SAVI has two infrastructure

tiers: the SAVI Core and the SAVI Smart Edges, as shown
in Figure 4. The SAVI Core provides high-performance
compute and storage nodes for cloud applications, while
the SAVI Smart Edges connect end-user devices to the
testbed and provide computing closer to the end users to
meet low-latency applications requirements. The two tiers
provide a fully connected environment for IoT applications.
Currently, end-user devices can either directly connect to
SAVI Smart Edges via SAVI-supported access technologies
or through the Internet. SAVI currently supports various
wired and wireless access technologies, including Ethernet,
Wi-Fi, Bluetooth, and LoRa for direct device connectivity,
and it is expanding its access to support 5G radio. The
SAVI Core and Smart Edges are connected directly via a
dedicated network, as shown in Figure 4. The SAVI Core
node is placed in Bahen Center for Information Technology
at University of Toronto and the SAVI Smart Edges are
distributed across different locations in the Greater Toronto
Area (GTA). In this study, we used the SAVI Toronto Smart
Edge node to place our IoT Gateway, Phoenix Controller,
and Tinkerbell Provisioning engine. This SAVI Edge node is
directly connected to the SAVI Core node.

B. POC IMPLEMENTATION AND DEPLOYMENT
As explained in Section II-A, Phoenix has two major
components: the device configuration management engine
and the bare metal provisioning engine. As shown in Figure 4,
we deployed the IoT Gateway and the Tinkerbell bare metal
provisioning engine on the SAVI Toronto Smart Edge node.
The IoT Gateway role is to handle messaging with cloud
applications, as shown in Figure 1. (We hope that in the
future we can extend the Phoenix services to cloud-based
automation and monitoring applications that are running on
the SAVI IoT testbed.) The Phoenix device configuration
management engine has two major components, the Phoenix
controller and the edge device pool. The controller is
deployed on the SAVI Toronto Smart Edge node and uses the
PostgreSQL [15], [16] to maintain its device registry and the
Nginx [17] to power its API server.

The edge device pool is distributed in different geograph-
ical locations and currently contains a set of heterogeneous
edge IoT devices. These edge devices include Raspberry Pi 3,
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Raspberry Pi 4 (8GB configuration models), Panda Latte 3,
BeeLink Mini PCs, and Intel NUC II. In the future, we plan
to add Jetson Nano, Jetson AGX, Asus Thinker, and Beagle
Bone devices. All edge IoT devices in the edge device pool
can use Ethernet or Wi-Fi to connect directly to the SAVI
Toronto Smart Edge Node where the Phoenix controller and
Tinkerbell provisioning engine are also deployed, as shown
in Figure 4. We use MQTT messaging between the Phoenix
controller and the edge IoT devices in the device pool for
whichwe leverage the open sourceMosquittomessage broker
[18], [19]. The message broker is also deployed on the
SAVI Toronto Smart Edge Node. We note that our Phoenix
deployment strategy is fully aligned with the real-life IoT
system design, also presented in Figure 1: that is all our
system components are deployed where they would usually
be deployed in practice, giving us confidence that our POC
evaluations (see section IV) can provide tangible and realistic
evaluation results.

IV. EVALUATION OF EDGE IoT DEVICE CONFIGURATION
USING PHOENIX POC
To assess the ability of Phoenix tomeet our small-scale design
goal, we measured the performance of edge IoT devices
in terms of boot time and energy consumption during the
reconfiguration process. Boot time is the duration it takes for
an edge IoT device to be instructed for reconfiguration by
the Phoenix controller, transformed to its new configuration,
and to update the Phoenix controller of its new status. Energy
consumption is the energy consumed by an edge IoT device
during the boot time.

In our experiments we used a variety of edge IoT
devices to demonstrate the scale and heterogeneity needed
by small-scale IoT systems. Raspberry Pi 4 is the main edge
IoT device used in our evaluations in sections IV-A and IV-B
because of its highly affordable and popular nature that allows
us to generalize our experiment results to a wide range of
IoT applications. We report performance evaluations on other
edge IoT devices in section IV-C.

A. RASPBERRY PI 4 (FIVE-DEVICE SCALE)
We first measured the boot time and energy consumption
during the reconfiguration process for a single Raspberry
Pi 4 Model B device [20] (see Figure 5) and then increased

FIGURE 5. Raspberry Pi 4 Model B specifications.

by one the number of Raspberry Pi 4 devices that undergo
concurrent reconfiguration, up to the five-device scale.

In each trial, we connect the given number of unconfigured
Raspberry Pi 4 devices (e.g., one, two, etc.) to Phoenix and
allow them to be configured to their initial configuration, and
shortly there after, to have them concurrently undergo two
rounds of reconfiguration invoked by the Phoenix controller.
The results in the figures below are for the average of
the performance metrics in the two reconfiguration rounds
of all the devices included in each trial. We explored a
variety of network conditions by repeating the above cycle
of evaluations in settings with different levels of packet loss,
ranging from zero to five percent. The workflow image size
is 2.5GB in all rounds of reconfiguration.

FIGURE 6. Average boot time for Raspberry Pi 4 Model B devices in the
presence of network packet loss.

FIGURE 7. Average energy consumption for Raspberry Pi 4 Model B
devices in the presence of network packet loss.

As shown in Figures 6 and 7, the average boot time for the
lower packet loss rates is about 5-6 minutes and the average
energy consumption is between 0.55 to 0.65 Watt-hour per
device in 1 to 5 device-scale. We can see that when the packet
loss rate is zero, the average boot time per device remains
nearly constant as the number of Raspberry Pi 4 devices
increases from 1 to 5 (see Figure 6). However the average
boot time increases gradually up to a packet loss rate of
2.5 percent and then increases at a faster rate as the packet
loss rate increases.

Figure 7 shows that the average energy consumption per
device for a single Raspberry Pi 4 is lower than when
more Raspberry Pi 4 devices are concurrently reconfigured.
Nonetheless, as with boot time, the average energy con-
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sumption of Raspberry Pi 4 devices increases slowly up to
around 2.5 percent, and then increases at a faster rate as
the packet loss rate increases. We can also see that average
energy consumption of Raspberry Pi 4 devices increases
with increasing boot time. We measured energy consumption
using special hardware that is designed for this purpose to
improve measurement accuracy (see Figure 8).

FIGURE 8. Energy tester equipment (Left is a tester for non-USB powered
devices and Right is a tester for USB powered devices).

We believe that the reason why increasing packet loss
rates impact boot time and energy consumption levels of
Raspberry Pi 4 devices are twofold. First, this can be partly
due to retransmissions in the Trivial File Transfer Protocol
(TFTP) [21] that is used by iPXE/PXE to load parameters
and configurations [8], [9]. The TFTP protocol uses simple
ARQ mechanisms for reliability [21]. Second, Tinkerbell
uses HTTP(S) for workload image retrieval which relies
on TCP byte streaming for image delivery [11]. As the
packet loss rate increases in the network, the TCP session
can observe more timeouts and consequently devices may
experience more delays and consume more energy due to
packet retransmissions. This reasoning similarly applies to
all other edge IoT devices in our experiments. We believe
that by using other protocols supported by iPXE clients like
Fiber Channel over Ethernet (FCoE) [22] or leveraging new
Internet protocols for image retrieval like NDN [23] with its
ability to use network caches we can help to reduce the boot
times and energy consumption at higher network packet loss
rates.

It is also important to note that as indicated in prior
work [24], Raspberry Pi 4 devices may exhibit performance
fluctuations during workload execution. This may also result
in some fluctuations in the observed boot time and energy
consumption levels. We repeated each round of experiment
to reduce such effects.

B. RASPBERRY PI 4 (TEN-DEVICE SCALE)
To confirm our results at higher scales, we extended our setup
to 10 Raspberry Pi 4 devices. Table 1 shows that the average
boot time and energy consumption levels for 10 Raspberry
Pi devices exhibit the same pattern as for the smaller
number of Raspberry Pi 4 devices do (see section IV-A).
Below %2.5 loss rate, the average boot time per device
hovers between 5-6 minutes for the same workflow image
size (i.e., 2.5GB) and the average energy consumption per
device is also similarly between 0.55 to 0.65 Watt hour.
Average boot time and energy consumption rise quickly as

TABLE 1. Average boot time and energy consumption levels
for 10 Raspberry Pi 4 Model B devices in the presence of network packet
loss.

the loss rate increases beyond%2.5. From these experimental
results, we can conclude that Phoenix is able to deliver a
consistent performance under network packet loss rates less
than %2.5 as the number of edge IoT devices (i.e., Raspberry
Pi 4 devices in this case) increases.

At higher packet loss rates, Raspberry Pi 4 devices
exhibit higher boot times and energy consumption levels
but the higher values appear to be independent of the
number of devices. The higher measured values are related to
retransmissions which can be partially optimized via protocol
changes/improvements as discussed earlier. We note that the
packet loss rate in Ethernet and Wi-Fi networks as well as
in the Internet is typically deemed acceptable between 0.1 to
1 percent where Phoenix can exhibit a consistent performance
regardless of the number of parallel reconfigurations. Beyond
%1 percent, the quality of communication may begin to
deteriorate depending on the nature of data and applications.

We also note that the network bandwidth and the image
server capacity in terms of available Memory and CPU can
become a bottleneck if the available bandwidth is low or
if the number of edge IoT devices undergoing concurrent
reconfiguration scales beyond the processing power of
the image server. In these situations, scaling the network
bandwidth or increasing the image server capacity can be
beneficial. In our experiments, the image server is equipped
with 8 physical CPU cores (64-bits) and 32GB of RAM.

FIGURE 9. Panda Latte 3 Delta 864 specifications.

C. OTHER EDGE IoT DEVICE TYPES
In this section, we repeat the experiment we performed on
Raspberry Pi 4 with several other edge IoT devices to expand
the heterogeneity of our measurements. We follow the same
steps and use the same workflow image size of 2.5GB.
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FIGURE 10. The average boot time and energy consumption levels of Panda Latte 3 Delta 864 (Left) and BeeLink Mini PC M1 (right) in the presence
of network packet loss.

1) PANDA LATTE 3 DELTA 864
Panda Latte 3 [25] is a powerful Single Board Computer
(SBC) that supports an array of input/output options,
as shown in Figure 9. Panda Latte 3 comes with a
semi-powerful Intel Celeron CPU that can support a diverse
set of IoT applications ranging from smart homes to industrial
IoT, and automation applications. Panda Latte 3 can be a rea-
sonable choice for a capable edge IoT device. We measured
the performance of Panda Latte 3 in terms of the average boot
time and energy consumption during reconfiguration process
with Phoenix. We carried our measurements in two different
setups where: 1) the device internal eMMC storage is used
for workflow deployment, and 2) an external USB Memory
is used for workflow deployment. We do this to allow a fair
comparison with Raspberry Pi 4 performance in terms of
boot time and energy consumption during reconfiguration
process, and second, to support scenarios that may involve
using different storage systems by different IoT applications.
We note that Raspberry Pi 4 devices do not come with an
embedded internal memory.

Our measurement results of boot time (see Figure 10)
reveals that the average boot time is significantly less at lower
packet loss rates (i.e., less than %2.5) when the Panda Latte
internal eMMC memory is used. The difference in average
boot time between using internal versus external memory
systems become less distinct at higher packet loss rates which

indicates that the impact of network condition on the boot
time is higher than the performance of the underlying storage
system used for workflow deployment as the packet loss rate
increases.

In terms of the average energy consumption during
reconfiguration, Panda Latte 3 noticeably consumes less
energywhen its internal eMMCmemory is used for workflow
deployment, as shown in Figure 10. Our results indicate
that energy consumption can rise significantly for Panda
Latte 3 devices regardless of the memory system used as the
network packet loss rate increases above %2.5. Our results
also indicate that the energy consumption of Panda Latte
3 devices at packet loss rates below %0.5 is significantly
much lower when the Panda Latte 3 internal memory is used
for workflow deployment. At higher packet loss rates (i.e.,
above %0.5), energy consumption of Panda Latte 3 devices
can rise significantly on internal memory, as shown in
Figure 10. We believe that this may be related to how
increasing packet losses impacts the device I/O energy
consumption.

2) BEELINK MINI PC M1
Like the Panda Latte 3, the BeeLink Mini PC M1 [26],
[27] is a reasonable choice for a capable edge IoT device.
BeeLink Mini PC devices are powerful small computers with
several input/output options (see Figure 12) that can support
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FIGURE 11. The average boot time and energy consumption levels of Intel NUC 11 in the presence of network packet loss.

a variety of IoT applications, especially those that require
more powerful edge resources like industrial IoT, automation,
and transportation systems. We measured the performance
of BeeLink Mini PC M1 in terms of boot time and energy
consumption during reconfiguration process with Phoenix
using either its internal eMMC storage or an external USB
memory in the presence of various packet loss rates.

FIGURE 12. BeeLink Mini PC M1 specifications.

Figure 10, shows a similar performance between average
boot time of BeeLink Mini PC M1 devices as Panda Latte
3 for scenarios that involve using internal as well as external
storage systems. This is primarily due to the fact that both
devices benefit from relatively similar hardware configu-
rations with Panda Latte 3 have a slightly more powerful
CPU and RAM (see Figures 9 and 12). For higher network
packet loss rates (i.e., larger than %2.5), BeeLink Mini PC
M1 devices can show on average 2 to 5 percent higher boot
time. A comparable pattern of energy consumption can be
also seen between the BeeLink Mini PC M1 devices and the
Panda Latte 3 for both scenarios of using internal and external
storage systems, as shown in Figure 10. However, our result
suggest that BeeLink M1 devices can consume on average
about 5 to 10 percent less energy than Panda Latte 3 devices
during the boot time. Interestingly, our results suggest that
Raspberry Pi 4 devices can deliver a much better boot time at
higher network packet loss rates when compared with Panda

Latte 3 and BeeLink Mini PC M1 on external memory at
a much lower energy consumption. BeeLink Mini PC M1
and Panda Latte 3, however, can outperform Raspberry Pi
4 devices in boot time when an internal memory is used for
workflow deployment for network packet loss rates below
%3. We note that less than %1 percent network packet loss
rate is deemed acceptable by various network applications on
the Internet.

3) INTEL NUC 11 ENTHUSIAST
The Intel NUC 11 is a more performant device than
the Panda Latte 3 or Beelink Mini PC M1. The use of
NUC 11 as an Edge IoT device can be very beneficial to
high-performance and AI-oriented IoT applications such as
smart transportation, smart building, and federated learning
applications [28]. The version used in our experiments is
equipped with an 11th generation Intel Core-i7 CPU and
a very high performance Nvidia Geforce RTX 2060 GPU,
as described in Figure 13 [29]. The Intel NUC 11 is also
equipped with Intel Ethernet i225-LM network interface
card that is capable of delivering bandwidth up to 2.5Gbps.
However, in our experiments, we used a Gigabit Ethernet for
all devices for a fair performance comparison.

FIGURE 13. Intel NUC 11 enthusiast specifications.

We measured the performance of Intel NUC 11 devices
using both internal and external USB memory options. Our
results suggest that (see Figure 11) the Intel NUC 11 can
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deliver a reasonably lower boot time than all other edge
devices in our experiments for network packet loss rates
below %3 when internal memory is used. However, when
external memory is used or at higher network packet loss
rates, the results are comparable to Panda Latte 3 andBeeLink
Mini PC M1 devices. In terms of energy consumption,
NUC 11 devices consume much higher energy during the
boot time and workflow deployment than any other edge IoT
device we used in our experiments. This is, however, expected
as NUC 11 uses very powerful CPU, GPU, and Connectivity
interfaces that can lead to higher power consumption.

4) RASPBERRY PI 3 MODEL B+

In our experiments, we tried to also work with Raspberry
Pi 3 Model B+ devices [30]. Our findings show that while
Raspberry Pi 3 Model B+ supports iPXE and is Phoenix-
compatible, the lack of enough RAM to support large
image retrieval can prevent them from successful workflow
deployments. In our case, we used a 2.5GB workflow image
in our experiments across all other edge devices. The 2.5GB
image size does not work with Raspberry Pi 3 Model B+.

FIGURE 14. Raspberry Pi 3 Model B+ specifications.

We believe to successfully use Raspberry Pi 3 model B+

devices as a reconfigurable edge IoT device with Phoenix,
a much smaller workflow image must be created and used,
preferably less than 1GB in size. A difficulty is to create
compatible images that also match the applications software
requirement. We note that the 2.5GB workflow image we
used in our experiments is a very basic andminimal workflow
image that only contains a basic operating system and
necessary services that allows the device to work with
Phoenix successfully.

V. RECONFIGURABILITY REQUIREMENTS OF IoT
APPLICATIONS
Transformative reconfigurability of edge IoT devices is a
powerful tool for enabling IoT systems and applications
to change role, adapt new functionalities, and remain
compatible. In section IV, we evaluated the reconfigurability
performance of various small PCs and Single Board Comput-
ers (SBCs) that can be used in different IoT environments.
In this section, we review some common IoT applications
in terms of their reconfigurability requirements and provide
guidelines for choosing appropriate edge IoT devices to meet
IoT application reconfigurability requirements. We hope the

insights from this section will be applicable to a wider range
of IoT application scenarios.

A. BOOT TIME SENSITIVITY
While boot time varies from one edge IoT device to
another, IoT applications have different degrees of boot time
sensitivity in order to remain functional and this affects the
type of edge IoT devices they can use.

FIGURE 15. IoT applications boot time requirements.

Figure 15 considers some IoT applications where Seismic,
UAV, and Connected Vehicles demand a low boot time. These
applications are boot time sensitive and reconfiguration of
edge IoT devices for these applications must be as fast as
possible to ensure reliable and continued functionality. Under
lower network packet loss rates (i.e., less than %3.5), these
IoT applications can benefit from affordable edge IoT devices
such as or similar to Panda Latte 3 and BeeLink Mini PC M1
with internal memory which have shown the fastest boot time
in our tests, considering the devices cost. Generally, edge IoT
devices with internal memory are the most ideal for low boot
time IoT applications.

Intel NUC 11 with internal memory is the fastest to
reconfigure under lower packet loss rates (i.e., less than
%3.5). However, if we also consider cost and portability
constraints (power and weight) of Intel NUC 11 devices,
some applications like Seismic and UAV may prefer smaller
devices like Panda Latte 3. Raspberry Pi 4 devices are
also ideal for boot time sensitive applications. They show
a higher boot time when compared with Panda Latte 3 and
BeeLink Mini PCM1 with internal memory, but they are less
expensive, more portable, consume far less energy, and can
also perform relatively better under higher network packet
loss rates (i.e., more than %3.5). We also note that boot time
sensitive applications should use reasonable image sizes for
workflow deployment since image size can affect boot time,
especially in IoT applications where the network environment
is not reliable, such as Seismic.

Many IoT applications can sustain a much longer boot
time (reconfiguration time), as depicted by Figure 15. For
example, a smart home application can tolerate a much longer
boot time as sensors and smart devices in a smart home
environment are less time sensitive to manage. The same
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applies to some extent to a smart farm or a smart building
management system. For these applications, Raspberry Pi
4 devices are ideal as they offer a reasonable boot time
and energy consumption while being very affordable. If cost
is not an issue, other edge IoT devices are also ideal for
such applications. For example edge IoT devices like the
Intel NUC 11 can provide GPU processing that can provide
AI-based safety features using image and video processing.
Panda Latte 3 can also provide a wide range of input/output
options that are suitable for smart homes and farming at an
affordable price.

B. ENERGY CONSUMPTION REQUIREMENTS
IoT applications may also have different levels of energy
constraints (see Figure 16) that may affect their choice of
edge IoT devices. In general, the energy consumption of edge
IoT devices during the reconfiguration process increases as
the edge devices boot time increases, so it would appear
that IoT applications with energy constraints can also benefit
from devices that can deliver faster boot time to meet
their reconfigurability requirements. However, this requires
careful consideration. For example, Intel NUC 11 devices
can deliver a very fast boot time under normal network
conditions but they consume large amounts of energy to
deliver that performance and are not ideal for energy sensitive
IoT applications like UAV and Connected Vehicles, as shown
in Figure 16.

FIGURE 16. IoT applications energy requirements.

On the other hand, edge IoT devices such as or similar
to Panda Latte 3 and BeeLink Mini PC M1 can relatively
deliver the same boot time as Intel NUC 11 but with 5 to 6
times less energy consumption. These devices can be ideal
for connected vehicles, UAV, and smart farming applications,
as shown in Figure 16. For IoT applications with tighter
energy constraints like Seismic, remote air quality, and even
some UAV applications, Raspberry Pi 4 devices can deliver a
reasonable performance with much less energy consumption.
In IoT applications like Seismic and remote air quality,
edge IoT device may function on battery for a period of
time. Consuming low amount of energy (i.e., on average
0.55 to 0.65 Watt hour) during reconfiguration process

makes Raspberry Pi 4 an ideal candidate for these type of
applications to meet their reconfigurability requirements.

VI. OPPORTUNITIES FOR USING TRANSFORMATIVE
RECONFIGURABILITY
In this section, we consider examples where transformative
reconfigurability can benefit IoT applications. We also
discuss unique opportunities where transformative recon-
figurability is a technology enabler in IoT settings and
beyond. We aim for the insights presented to have broader
applicability across IoT systems and digital infrastructures
that require automated reconfigurability.

A. ON-DEMAND WORKLOAD ADJUSTMENT
Transformative reconfigurability can empower edge IoT
devices to perform on-demand tasks as requested by IoT
applications. An example could involve a small group of
edge IoT devices transforming from one role to another, such
as transforming a simple protocol gateway to also support
data pre-processing as part of a machine learning pipeline
[31] or into becoming a managed firewall for protecting an
entire or part of a connected infrastructure or environment
[32], [33]. In a broader context, a heterogeneous class of
edge IoT devices (e.g., all edge IoT devices in a region,
all Connected Vehicles of a particular model belonging to
a company, and all edge IoT devices in a power grid)
may need to be transformed to adapt to new roles or to
support new protocols and functionalities. These forms of
reconfigurability may require transforming the entire edge
device software stack and can directly benefit from Phoenix’s
ability of bulk reconfiguration.

B. CONTEXT SWITCHING
Edge IoT devices with transformative reconfigurability can
be configured to dynamically switch context to support
various application requirements. For example, the software
stack of an edge IoT device in a smart home environment
[34] can be switched between running in safety mode [35]
when residents are not at home and comfort mode when
residents are present in the home. We note that implementing
such scenarios can be also done without changing the entire
software stack of the edge IoT devices, but having the ability
to safely transform these devices can allow their power and
resources to be optimally used in accordance to changing
conditions without needing to keep all workloads accessible
and running at all times. To enable context switching, the
Phoenix’s client service (i.e., Flame) can be used to inform
the Phoenix controller when a change of stack is needed.
Basically, once the edge IoT device is informed that the
condition of the home has changed (i.e., all residents left
the premises), it can use Flame to request the Phoenix
controller for reconfiguration. If this process has been
allowed previously by the device admin user, Phoenix will
perform a context switch on the corresponding device. If this
process has not been allowed before, the Phoenix controller
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can lock the device to prevent the smart home application
from being compromised (see section II-C).

C. IoT TESTBED
IoT testbeds are controlled environments with sensors,
actuators, and integrated computing and storage capabilities
that are specifically designed for testing and validating
Internet of Things technologies, applications, and devices
[6]. IoT system and application developers can use IoT
testbeds to verify the applicability and functionality of
their systems and applications, to analyze evolving IoT
technologies, and to plan implementation strategies in
smaller scales before conducting real-world experiments and
deployments [36]. A system enabled with transformative
reconfiguration can reduce the operational costs of the testbed
and allow the developers to quickly validate and refine their
implementation once it is changed without having to touch
the actual devices and equipment [6], [36]. Transformative
reconfigurability also allows IoT testbeds to dynamically
allocate their resources (i.e., physical and virtual) to different
IoT applications that use the testbed without needing to
manually prepare the testbed resources for new usage.

D. IoT NETWORK RECONFIGURABILITY
In addition to programmable edge IoT devices, recent
hardware developments in the area of reconfigurable Single
Board Routers (SBRs) have shown promising designs
and implementations that offer an array of programmable
connectivity options. The Banana Pi BPI-R3 single board
router shown in Figure 17 is one of the most versatile SBRs
of its kind [37]. The Banana Pi BPI-R3 provides a low-power
and powerful ARM Cortex A-53 CPU and 2GB of DDR
RAM that together can empower the device to benefit from
Phoenix’s transformative reconfigurability power [37].

FIGURE 17. Banana Pi BPI-R3 router board specifications.

Banana Pi BPI-R3 and similar other reconfigurable SBRs,
like the Banana Pi BPI-R64 and Mikrotik router boards, are
powerful devices that can be used as: 1) edge IoT devices
with extended input/output capabilities and, 2) network
routers to support building reconfigurable IoT networking
infrastructures. In the latter case, Phoenix’s capability of
managing the life cycle of SBRs configuration (i.e., software

stack) can enable versioning and on-demand adjustment of
the IoT networking infrastructures. We note that Phoenix
can also provide the same services to any networking
infrastructure with reconfigurable hardware.

E. IoT SERVICE RECONFIGURABILITY
Service reconfigurability refers to the automation of service
definitions, deployments, and configuration management of
service resources. In the context of IoT, service reconfig-
urability enables IoT systems and applications to efficiently
define, deploy, and update the software stack of several
edge IoT devices that belong to the same service definition,
as supported by Phoenix.

FIGURE 18. Service orchestration and automation using Phoenix.

As shown in Figure 18, users can request an IoT service in
the form of a workflow definition from a service orchestration
and automation system. Such systems must typically handle
the service workflow deployment on a group of separate edge
IoT (i.e., service infrastructure) devices that involves provi-
sioning of the entire device software stacks. State-of-the-art
service orchestration systems typically support deployment
of changes at the level of service software configurations
on a pre-configured (provisioned) infrastructure [38]. Using
Phoenix’s transformative reconfigurability capability, IoT
service orchestration systems can improve their functionality
by configuring the entire software stack of infrastructure
devices and applying dynamic changes and versioning of the
entire service infrastructure. We note that the applicability of
service reconfigurability is beyond the IoT ecosystem and can
be also used in other service-oriented settings.

VII. RELATED WORK
A. BARE METAL PROVISIONING ENGINES
Bare metal provisioning engines are the closest existing
systems to Phoenix [12]. Tinkerbell [11], TOSKA [39], and
Foreman [40] are examples of bare metal engines that can
support compatible IoT devices. Tinkerbell, for instance,
can deploy workflows on PXE-compatible IoT devices [11],
as discussed in section II-B. TOSKA [39] is primarily used
for automating cloud services rather than provisioning of IoT
devices, but by using the TOSKA Nodetype models, one can
define compatible IoT device models that TOSKA can use for
provisioning [39]. Foreman [40] is also capable of providing
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life cycle management tools for automating the provisioning
of physical and virtual servers, including IoT devices [40].

Using Foreman, devices can be either specified by their
MAC address or discovered via the Foreman discovery ser-
vice. Once a device is known to Foreman, the provisioner can
automatically orchestrate the configuration process. There
are also components called Smart Proxies which provide
easy ways for system developers to extend the existing
subsystems and APIs supported by Foreman [40]. Such
proxies can be extended with subsystems to further support
PXE-compatible IoT devices. In contrast to Phoenix, none of
the aforementioned systems can alone provide automated life
cycle management of edge IoT devices configuration for the
purpose of transformative reconfigurability. These systems
mainly provide the management tools for provisioning of the
IoT devices. In addition to life cycle management, Phoenix
allows users to control the state and configuration of edge
IoT devices using intents.

Like the aforementioned provisioning engines, Ironic [41]
and MAAS [42] can be used for unattended workflow
installation and provisioning of bare metal devices, including
compatible IoT devices [41]. While Ironic and MAAS have
different goals, together they can provide provisioning and
life cycle management of any physical server [43]. A major
difference, however, would be the scale of operation, as these
services are better suited for large-scale solutions (e.g., cloud
data centers) that can justify the cost. Phoenix, on the
other hand, is well-suited for small to medium scale IoT
environments. Besides, Phoenix can additionally provide
configuration management of edge IoT devices.

B. AUTOMATION AND ORCHESTRATION TOOLS
In addition to bare-metal provisioning engines, there are
also automation and orchestration tools and systems that
are designed for unattended configuration and installation of
software and application environments. While these tools and
systems are specific to certain infrastructures, they can also
be used for automated configuration of IoT devices (including
edge devices). We note that in compare, Phoenix is agnostic
to infrastructure specifications and can additionally provide:
1) life cycle management of edge IoT device configurations
and, 2) an intent-driven method of supporting transformative
reconfigurability. The followings are some examples of
automation and orchestration tools.

Razor [44] is an open source tool for automating physical
and virtual server configurations, including IoT devices.
Razor is designed to work with Puppet [45] and can auto-
matically discover and provision different Linux distributions
on bare metal machines. Cobbler [46] is another powerful
tool and provisioning engine for automated installation of
Linux distributions. Cobbler enables a rapid installation of
Linux systems and can put together many associated tasks
that Linux system developers must perform in a manual
installation [47]. Using Cobbler, Linux-based edge IoT
devices can be automatically provisioned.

Terraform [48] and Cloud-init [49] are also well-known
open-source tools for provisioning, changing, and also
versioning of infrastructure configurations [50]. Unlike
Phoenix which is designed to work in small to medium scale
IoT environments, Terraform and Cloud-init are primarily
used with large scale cloud service providers, but they
can be also leveraged for automated configuration and
deployment of IoT networks that can also include edge IoT
devices. We must note, however, that these systems are not
specifically designed for supporting IoT settings. There are
also other orchestration and automation tools like Ansible
[51], Chef [52], [53], and Salt [54], [55] that can be similarly
used for automated configuration and deployment of digital
infrastructures including IoT environments. We note that
automation tools like Ansible, Chef, and Puppet must
typically be used by an automation controller. In this case,
Phoenix can use the services of such automation tools to
enable group-based transformative reconfigurability.

C. CONFIGURABILITY IN IoT TESTBEDS
Modern IoT testbeds provide configurability support of
programmable IoT devices, including the edge IoT devices.
Such configurability is typically provided in two ways:
1) changing the IoT device configurations (e.g., updating
its applications) but without changing the device operating
system, and 2) provisioning of programmable IoT devices.
For instance, FIT IoT-LAB [56] is an IoT testbed that
provides a programmable environment to test and verify small
wireless sensor network nodes. Using FIT IoT-LAB, IoT
developers can automate workflow deployment on a variety
of wireless sensor nodes that are supported by the IoT testbed.
Similarly, the Poor Man’s IoT testbed [57] is a well-known
testbed that supports remote configuration of IoT devices.
The testbed is open access and there are many IoT projects
that have used the testbed for their test, debugging, and
implementation efforts. TinySDR is also another IoT testbed
that enables configuration of programmable IoT devices
[58]. TinySDR mainly provides a Low-Power SDR testbed
platform.

LinkLab is a powerful IoT testbed that can support exper-
imentation with programmable IoT devices and facilitates
Edge-Cloud integration of distributed IoT applications [59].
Link Lab can provide programming support for on-site
testbed devices and enables offloading of serverless functions
on programmable IoT devices. The testbed also supports a
heterogeneous set of IoT devices and provides support for
external users. As in IoT testbeds, there are also software
systems that can support Over-the-Air Software updates
for IoT devices. Mender [60] is an example that can
provide a secure and reliable remote update service for
IoT devices in connected IoT environments [60]. Mender’s
support can include both device and application levels
configurability and software updates and can cover wide
range of configurability features that can help automating
remotely connected IoT environments [61]. JFrog [62] is a
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very secure and scalable software supply chain platform that
can support remote software delivery to programmable IoT
environments. JFrong uses JFrog Connect [63] for controlling
updates and managing remotely monitored IoT devices.

In conclusion, IoT testbeds can provide powerful tools and
systems that can support configuration, software updates and
adjustments, and provisioning of programmable IoT devices
in different sizes and scales. IoT testbeds also play a crucial
role in testing and verifying real-world IoT applications
deployment. As stated in section VI-C, Phoenix can empower
IoT Testbeds with transformative reconfigurability that
enables an IoT testbed to dynamically allocate their resources
to different applications in an automated way.

D. CLOUD IoT SERVICE PROVIDERS
IoT cloud service providers also provide various tools and
systems for configuration and automation of programmable
IoT devices [64], [65] at different scales. These tools and
systems can also support integration of IoT applications
with edge and cloud resources, including data processing
and machine learning systems. However, aside from scale,
a major difference between Phoenix and cloud service
providers is their management goal. While Phoenix enables
clean-slate reconfigurability of edge IoT devices, IoT cloud
service providers mainly focus on offering incremental
updates or service provisioning without changing the oper-
ating system or default software stack that empowers IoT
devices [64], [65]. In fact, they may also have specific
preferences. In this regard, Phoenix can improve cloud IoT
providers services as the Phoenix controller can be easily
integrated with cloud IoT gateways.

VIII. SUMMARY AND FUTURE WORK
As cost falls and complexity of programmable IoT devices
increases, reconfiguration of these devices becomes highly
desirable. In this paper, we proposed Phoenix as an IoT
device configuration management system for enabling auto-
mated transformative reconfiguration of edge IoT devices
in small-scale IoT systems. We implemented a proof-of-
concept Phoenix system and deployed it on a real research
cloud testbed, called SAVI [14]. Using the Phoenix’s proof-
of-concept system, we evaluated various edge IoT devices
performance in terms of boot time and energy consumption
during the reconfiguration process in the presence of various
network conditions (i.e., network packet loss). Our results
indicate that Phoenix can provide consistent service quality
under normal network conditions, independent of the number
and heterogeneity of edge IoT devices that undergo parallel
reconfiguration.

In the future, we are looking to improve this study and
Phoenix capabilities in multiple ways. We are planning to
extend support for wider range of reconfigurable edge IoT
devices including Jetson Nano, Jetson AGXs, Asus Thinker,
and Beagle Bone devices. We are also planning to expand
our evaluation results to include experiments with larger
number of parallel reconfigurations, using Raspberry Pi 4

devices and possibly other single board computers. The
aim is to understand the performance of edge IoT devices
and the consistency of Phoenix’s quality at larger scales.
We are also planning to perform and evaluate transformative
reconfiguration for programmable router boards like Banana
Pi BPI-R3. Another area of improvement is designing and
implementation of the Phoenix’s device discovery service.
The service can enable Phoenix to recognize and add edge
IoT devices to the edge device pool before they even undergo
their initial configuration round (see section II-B). In terms
of workflow deployment, we are also looking to improve
Phoenix’s support of portable edge IoT devices by improving
support for QUIC [66] and Named Data Networking (NDN)
[23] protocols for workflow image retrieval. Finally, we are
also looking into expanding the Phoenix’s intent-driven
model to also support IoT service deployments in bare metal
infrastructures.

IX. DISCLAIMERS
In this paper, we used multiple open source software
solutions and various devices in the forms of Single
Board and Standard computers to evaluate the performance
of workflow deployment using Phoenix’s proof-of-concept
system. Although various experimental results are shared in
this paper, the intention is not to compare nor to promote
any performance advantage of the software solutions and the
devices we used in our experiments. These experiments are
solely performed for academic purposes and are designed
specifically to evaluate transformative reconfigurability for
different devices, network conditions, and IoT use cases using
the Phoenix POC and its deployment environment. Hence,
the reported results can not be used nor they are valid for
benchmarking of the software solutions and the devices we
used in our experiments.
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