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ABSTRACT To address the challenges related to poor positioning accuracy and high usage cost of 6DOF
visual measurement systems in industrial settings, this paper presents a monocular vision-based robot vision
guidance approach. The goal is to address the issues of expensive 6DOF pose measurement and limited
measurement robustness when robots need to manipulate metal objects in industrial environments. The
proposed approach enables precise and robust measurement of the 6DOF pose of the target workpiece. The
approach integrates two main algorithms: a virtual reality-based image data enhancement algorithm and
a 6DOF pose measurement algorithm that combines a multi-keypoint detection model and the Efficient
Perspective-n-Points (EPnP) algorithm. The image data enhancement algorithm enhances the data of
small-sample industrial objects using image enhancement techniques. This improves the robustness of the
detection model by mitigating the challenges of high-cost image acquisition and long acquisition time
associated with industrial objects. On the other hand, the 6DOF pose measurement algorithm performs
the pose measurement of the target workpiece using a single image, enabling cost-effective 6DOF pose
measurement by utilizing only a monocular camera. Experimental results demonstrate that the proposed
method achieves measurement errors of 4.21% in the X direction, 2.94% in the Y direction, and 0.39% in
the Z direction of the target workpiece. These results highlight the effectiveness of the proposed approach
in achieving accurate and reliable pose measurement.

INDEX TERMS Machine vision, industrial robot, data augmentation, object detection, visual guidance.

I. INTRODUCTION
With the advancement of machine vision technology, 2D
vision-based robot visual guidance has found widespread
application in the industrial sector. Industrial robot sys-
tems equipped with visual guidance offer several advantages,
including cost reduction in labor, enhancement of work qual-
ity, and optimization of production cycles. Currently, existing
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2D vision systems are commonly utilized for 3DOF position-
ing tasks that do not necessitate depth information [1]. In the
industrial sector, due to the complex application environ-
ments and high stability requirements, single-camera visual
6DOF pose measurement technology is not yet prevalent.
However, in recent years, the continuous progress of artifi-
cial intelligence technology has injected fresh vitality into
vision-based pose measurement techniques [2]. Integration
of deep learning-based image processing techniques within
the domain of machine vision holds the potential to reduce

136910

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6700-9056
https://orcid.org/0009-0009-3023-1065
https://orcid.org/0000-0001-5433-6667


G. Wan et al.: Research on Robot Monocular Vision-Based 6DOF Object Positioning and Grasping Approach

the cost associated with implementing robot visual guidance
while also paving the way for future upgrades in the manu-
facturing industry.

The vision sensor based on machine vision technology
provides industrial robots with an accurate, efficient, and
cost-effective perception system, addressing the weak envi-
ronmental perception capability of industrial robots [3].
Among the available vision sensors, the 2D vision system
based on monocular vision stands out due to its combi-
nation of high sampling speed and stability, making it a
cost-effective choice for visual systems. However, when it
comes to measuring the 6DOF pose of objects, traditional
2D vision systems suffer from low measurement accuracy
and poor robustness, which restricts their application in the
industrial field [4].
There have been numerous successful cases of integrat-

ing robot systems with machine vision. In reference [5],
combining stereo vision with virtual reality and heavy-duty
industrial robots improved operational efficiency by enabling
the robots to handle heavy loads. Reference [6] utilized a
combination of 2D and 3D vision to accomplish positioning
and grasping tasks for mobile platforms and 6DOF robots.
In reference [7], a 2D vision system was employed to achieve
high-precision assembly of target workpieces using industrial
robots. All of these cases demonstrate the successful utiliza-
tion of machine vision in the industrial domain. Nevertheless,
while there are numerous applications of 2D vision in the
field, relatively few incorporate 6DOF posemeasurement and
grasping of target workpieces by industrial robots. Monoc-
ular vision systems face challenges in obtaining accurate
6DOF pose information from 2D images. Compared to other
technologies, single-camera vision’s high speed and stabil-
ity provide an irreplaceable edge in the industrial space.
Consequently, achieving stable 2D vision 6DOF pose mea-
surement remains a significant research topic in the industrial
field.

Numerous researchers have conducted studies on 6DOF
pose measurement techniques based on 2D vision. Early
methods often utilized template matching for measuring
the 6DOF pose of the target object. CAD-view [8] and
the Line-MOD algorithm [9] are notable examples. The
CAD-view algorithm determines the 6DOF pose of the tar-
get object by employing its 3D model and has become a
well-established method in the industrial field. Subsequently,
the Line-MOD method incorporated depth information of
the target object, building upon the CAD-view approach
and enhancing the accuracy and robustness of the algorithm.
However, these algorithms heavily rely on a single contour
feature, making it challenging to guarantee localization accu-
racy and precision when the contour feature of the target
object is not visible. In recent years, with the advancement
of artificial intelligence, many scholars have explored the
use of deep neural networks to measure the 6DOF pose
of target objects [10]. SSD-6D [11], YOLO-6D [12], and
other methods have emerged as representative approaches

in this category. Deep learning-based methods deduce the
pose information of the target object from high-dimensional
features in the images and exhibit superior generalization
performance compared to traditional image processing tech-
niques. Nevertheless, these methods depend on extensive
training data and suffer from noticeable drawbacks in terms
of measurement accuracy.

To broaden the application of monocular vision in indus-
trial robot guidance, this paper presents a deep learning-based
strategy for the 6DOF localization and grasping of robots
using monocular vision. The strategy encompasses an image
generation technique based on deep learning, which allows
for data augmentation of industrial objects with limited
samples. Robust pose measurement of surface key points
of the target object is achieved through an enhanced
anchor-based object detection network [13]. By combining
this with the EPnP pose estimation iterative algorithm [14],
the robot becomes capable of measuring the 6DOF pose
and grasping the target workpiece. The proposed method
represents a valuable exploration of utilizing monocular
vision for guiding robots in 6DOF positioning and grasp-
ing tasks within real-world industrial environments. It has
the potential to significantly reduce the cost of visual sys-
tems in the industrial field, expand the range of robot
applications, and enhance production intelligence in the
future.

The proposed algorithm primarily focuses on workpieces
with planar features. The main innovations of this paper are
as follows:

1) A novel method was proposed that combines virtual
reality and image generation technology to augment the
data of small-sample industrial objects. By leveraging
a virtual engine and generative adversarial networks,
data augmentation for industrial objects with limited
samples is achieved.

2) A visual-guided grasping strategy for robotic manip-
ulation of target workpieces was introduced, utilizing
monocular vision technology. This strategy enables
accurate 6DOF pose estimation of objects with planar
features, facilitating precise and efficient grasping.

3) The integration of generative adversarial networks
and attention mechanisms led to the development of
an image enhancement algorithm based on image
generation.

This algorithm aims to enhance the quality of images and
improve visual perception, leading to more accurate object
detection and pose estimation. The remainder of this paper is
organized as follows: Section II provides a brief review of the
related work in the field. Section III presents our monocular
vision detection strategy, which utilizes virtual reality and
object detection methods. In Section IV, we describe the
experimental results and validate the effectiveness of the
proposed method by comparing its performance with other
detection methods. Finally, Section V concludes the paper
and summarizes the key findings.
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II. RELATED WORK
With the ongoing digitalization, informatization, and intelli-
gent transformation of the manufacturing industry, robots are
increasingly being utilized in various fields such as welding
and polishing. As a result, the performance requirements for
robots in these applications are becoming more demanding.
Industrial robots equipped with 6DOF pose measurement
capabilities have become the preferred automation equipment
in the industrial sector due to their expansive workspace,
compact design, and high degree of freedom. In the early
stages of development, visual localization techniques relied
on template matching algorithms that utilized prior knowl-
edge of the target’s geometry and pose to establish a model.
Methods such as those proposed by Cao et al. [15] and
Hinterstoisser et al. [16] required the construction of pre-
existing 3D models of the targets and the generation of
template image-matching libraries by rendering the 3D mod-
els from various viewpoints. During testing, the estimated
image would be matched against the template images, and the
pose corresponding to the highest match would be considered
as the result of pose estimation. While these methods were
effective in handling textureless objects, their accuracy heav-
ily depended on the completeness of the matching database.
Furthermore, their efficiency and robustness were reliant on
the matching strategy employed, and they exhibited limita-
tions in dealing with partially occluded objects and changes
in appearance. Consequently, their applicability in complex
scenes was hindered. These limitations highlight the need for
more advanced techniques that can overcome the challenges
posed by complex industrial environments. The proposed
algorithm in this paper aims to address these limitations by
introducing a deep learning-based strategy for monocular
vision 6DOF localization and grasping of robots. By utiliz-
ing deep learning techniques and an improved anchor-based
object detection network, the algorithm achieves robust pose
measurement of surface key points of the target object.
In combination with the EPnP pose estimation iterative
algorithm, the robot is capable of accurate 6DOF pose
measurement and grasping of the target workpiece. The
proposed method represents a valuable exploration of utiliz-
ing monocular vision to guide robots in 6DOF positioning
and grasping tasks within real-world industrial environ-
ments, with the potential to reduce the cost of visual
systems in the industrial field and enhance production
intelligence.

Researchers have made significant efforts to overcome the
limitations of template matching techniques. One notable
contribution is themethod proposed by Crivellaro [17], which
focuses on estimating object pose in the presence of clut-
tered backgrounds. An interesting aspect of this method
is that it eliminates the requirement for a color camera,
enabling real-time object pose estimation using only a
grayscale camera. The approach achieves this by predicting
the three-dimensional pose of each object part through the
projection of multiple key points in two dimensions.

To address the issue of slow matching speed encountered
with template matching, especially when dealing with a large
number of templates, Konishi [18] introduced a novel monoc-
ular image 6D pose estimation method based on PCOF (Pose
Cluster and Outlier Filtering) and HPT (Hierarchical Pose
Tree). By efficiently clustering object poses and utilizing a
hierarchical pose tree, the method achieved faster pose esti-
mation even when dealing with a large number of templates.
The proposed approach represents a valuable contribution to
the field of monocular image 6D pose estimation, offering a
practical solution to overcome the challenges associated with
slow matching speed.

He Zaixing [19] and his colleagues utilized special fea-
ture points, specifically the endpoints of straight contours,
to accurately estimate the 6D pose based on geometric fea-
tures. The method begins by matching the target object image
with CAD templates using simple geometric features. It then
employs specifically positioned points for precise match-
ing. As a result, this method achieves high-precision pose
estimation while employing a smaller number of templates.
Additionally, the algorithm demonstrates excellent scalability
as it can be combined with various geometric features and key
points.

In recent years, the progress of artificial intelligence
technology has led to remarkable research achievements in
various fields, with deep learning playing a prominent role.
Within the domain of 6DOF pose estimation, many stud-
ies have focused on harnessing the power of deep learning.
Among the most direct approaches in these studies is the
construction of end-to-end CNN models that aim to regress
the 6D pose targets. Similarly, camera pose estimation, which
shares similarities with pose estimation, involves leveraging
CNN models to regress the camera pose. A pioneering work
in this area is PoseNet [20], which directly estimates the
camera pose using RGB images.

The objective of 6DOF pose estimation is to detect objects
and estimate the rigid transformation parameters, encom-
passing translation and rotation, from the object coordinate
system to the camera coordinate system. Algorithms such
as PoseCNN [21], ConvPoseCNN [22], and SilhoNet [23]
employ a separate prediction approach for estimating trans-
lation and rotation parameters, reducing the complexity of
estimation. To address the challenge of insufficient depth
information in RGB images, PoseCNN not only predicts the
mapping position of the object center in the image but also
incorporates an additional branch to estimate the depth of
the object center. This enhancement improves the accuracy
of the translation parameters. ConvPoseCNN improves upon
the rotation parameter prediction branch of PoseCNN by
utilizing dense (per-pixel) prediction. The adoption of dense
prediction has become a prevalent trend for handling partial
occlusion in target objects. SilhoNet extracts features from
rendered images and regions of interest (RoI), combining
them to construct two additional branches. These branches
facilitate object segmentation and mask prediction for the

136912 VOLUME 11, 2023



G. Wan et al.: Research on Robot Monocular Vision-Based 6DOF Object Positioning and Grasping Approach

FIGURE 1. Workflow diagram of the monocular 6DOF robot localization and grasping strategy.

complete object structure, thereby enabling regression of the
rotation parameters

III. PROPOSED METHOD
Virtual reality technology has the capability to generate a
3D model of the target workpiece using a virtual engine.
By employing random algorithms, this technology enables
the acquisition of randomly distributed images of the work-
piece within the camera’s field of view. This approach
effectively addresses the challenge of acquiring images of
small sample objects in visual systems used in industrial
applications. Additionally, the generation of adversarial net-
works aids in eliminating the stitching effect caused by
image splicing. This further enhances the detection effective-
ness and accuracy of the target detection network, creating
favorable conditions for achieving high-precision 6DOF pose
detection of the target workpiece.

A monocular 6DOF robot visual guidance grasping strat-
egy was developed, encompassing data augmentation and
target detection. The workflow diagram illustrating this strat-
egy is depicted in Figure 1.

The 6DOF positioning and grasping strategy can be
divided into two main workflow components: dataset estab-
lishment and monocular 6DOF grasping pose calculation.
Dataset establishment further comprises two parts: image
augmentation using virtual reality technology and image
stitching combined with unsupervised learning image aug-
mentation. Virtual engines enable the direct creation and ren-
dering of workpiece models, generating virtual images of the
workpiece in diverse backgrounds and lighting conditions.
This approach significantly reduces the cost of obtaining
image samples for small sample objects in industrial set-
tings. Additionally, this article explores the combination of
image stitching algorithms and random generation algorithms
to obtain stitched images of multiple workpieces placed in

different positions and backgrounds. By utilizing an unsuper-
vised algorithm-based image generation model to eliminate
stitching artifacts, a pseudo ground truth map of the work-
pieces is obtained. This article leverages the aforementioned
methods to acquire workpiece images, along with images
collected by the camera, to form a workpiece sample dataset.
This dataset serves for model training and validation in the
subsequent robot pose grasping calculation process. In the
grasping pose calculation section, a single-stage keypoint
object detection algorithm is employed to detect multiple
keypoints on the workpiece’s surface in 2D images. Subse-
quently, the EPNP algorithm is utilized to calculate the 6DOF
pose of the workpiece relative to the camera. Finally, in con-
junction with the robot hand-eye calibration parameters, the
grasping pose of the workpiece relative to the robot base
coordinate system can be determined.

A. DATA GENERATION COMBINING VIRTUAL REALITY
AND GENERATIVE ADVERSARIAL NETWORKS(GANS) DATA
The initial step in enabling a robot to locate and grasp target
objects involves establishing a dataset. However, due to the
high cost associated with acquiring image data for industrial
objects, target detection for such objects often falls under the
category of small-sample object detection. Data augmenta-
tion techniques play a crucial role in enriching small-sample
data. In this paper, we propose a combination of virtual reality
technology and generative adversarial networks to achieve
data augmentation for industrial small-sample objects. The
main methods employed are as follows:

1) DATA AUGMENTATION FOR INDUSTRIAL SMALL-SAMPLE
OBJECTS BASED ON VIRTUAL REALITY TECHNOLOGY
Virtual reality technology is assuming an increasingly sig-
nificant role in the industrial field. The method proposed in
this paper involves the direct creation of small-sample images
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of target objects using a virtual engine. By leveraging the
rendering capabilities of the virtual engine, images of objects
captured under various backgrounds and lighting conditions
can be obtained.

Upon observing the image, it becomes evident that
employing a virtual engine enables the generation of virtual
images exhibiting diverse backgrounds, environments, and
quantities.

FIGURE 2. Artifact image created by a virtual engine.

2) DATA AUGMENTATION OF TRADITIONAL IMAGE
STITCHING AND GENERATIVE ADVERSARIAL NETWORKS
This paper employs image cropping, image stitching tech-
niques, and random allocation algorithms to generate uni-
formly distributed images of objects in various positions.
Enriching the image data mitigates the likelihood of deep
neural networks becoming trapped in local minima during
training.

Figure 3 depicts the process of data augmentation using
traditional image processing methods and generative adver-
sarial networks. Figure 3(a) showcases the object image of the
workpiece captured directly by amonocular camera. Through
image cropping, individual workpiece images are obtained,
as illustrated in Figure 3(b). By employing a combination
of random allocation algorithms and image stitching tech-
niques, the resulting image shown in Figure 3(c) is obtained.
Figure 3(d) represents the workpiece image generated by
applying the generative adversarial network to the image in
Figure 3(c). The integration of traditional image processing
methods and generative adversarial networks enables the
generation of randomly distributed images depicting differ-
ent quantities of target workpieces within the visual range
of the visual system. When compared to images generated
solely using virtual reality technology, the optimized images
produced by the generative adversarial networks exhibit a
higher degree of similarity to real images. This makes them
a valuable complement to virtual reality technology, offering
enhanced realism and serving as an important augmentation
technique.

FIGURE 3. Image data generated by traditional image processing
algorithms and generative adversarial networks.

B. DATA GENERATION BASED ON IMPROVED CYCLEGAN
Unsupervised learning methods are utilized in the proposed
image generation technique to achieve more accurate simula-
tion of target object images captured by cameras. This paper
employs an enhanced version of CycleGAN, a deep learning
model, to optimize the target object images generated using
traditional image processing methods.

CycleGAN (Cycle-Consistent Adversarial Networks) [24]
is a deep learning model specifically designed for image
translation tasks. It facilitates the transformation of images
from one domain to another without the need for paired
training data.

Traditional image translation tasks typically necessitate
paired image data, where both the source and target domain
images are required for training. However, acquiring such
paired data poses challenges in real-world scenarios. Cycle-
GAN addresses this issue by leveraging adversarial networks
and introducing cycle-consistency loss.

The primary objective of CycleGAN is to learn map-
pings between two domains, enabling the transformation
of images from domain X to domain Y and vice versa.
It comprises two generator networks and two discriminator
networks. One generator is responsible for theX-to-Y domain
transformation, while the other generator handles the reverse
transformation.

CycleGAN’s key concept revolves around enforcing
cycle-consistency throughout the image translation process,
ensuring that the translated image can be mapped back to
the original domain. This is accomplished by incorporating
two cycle-consistency losses, which minimize the pixel-level
differences between the generated images and their corre-
sponding original images.

The CycleGAN model comprises two mapping functions:
G: X ->Y and F: Y ->X, along with corresponding adversar-
ial discriminators Dy and Dx. Dy encourages G to translate
X into images in the style of Y, and vice versa. To fur-
ther regularize the mappings, the network incorporates two
‘‘cycle consistency loss functions’’ that ensure the style of
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the transformed images can be reverted to their original state
after inverse transformations, as depicted in Figure 4.

FIGURE 4. Working principle of the cycleGAN network.

To enhance the clarity of generated images and reduce the
network’s training time, this paper introduces the attention
mechanism into the CycleGAN network and presents the
Self-Attention CycleGAN network, in conjunction with the
newly proposed contour loss function. The main enhance-
ments offered by the proposed network are outlined below:

1) INTRODUCING THE GRADIENT LOSS FUNCTION
The target workpiece image generated by traditional image
processing methods often displays pronounced grayscale dif-
ferences when compared to the background image. To effec-
tively mitigate these grayscale disparities in the target image
and enhance the clarity of the generated image, this paper
aims to introduce a gradient loss function into the generation
network.

Figure 5 illustrates the comparison between the orig-
inal image and the gradient image obtained from the
camera-captured image and the image stitched using tradi-
tional methods. The comparison reveals noticeable rectan-
gular boxes in the gradient image of the stitched image.
To tackle this issue, this paper introduces an image gradient
loss function, designed to address the grayscale disparities
between the workpiece and the background in the stitched
image while ensuring the clarity of the generated image. The
formula for the gradient loss function is as follows:

LossT = |Grad(X ) − Grad(Y )| × α (1)

In the equation, X denotes the input image, Y represents the
output image generated by the network, and represents the
weight coefficient of the LossT.
After improvement, the loss function of the network is:

Loss = Losscycle + LossT (2)

Among them, Losscycle is the loss function of the original
CycleGAN.

2) INTRODUCTION OF MULTI-CHANNEL FUSION
ATTENTION MECHANISM
The attention mechanism is a widely employed technique in
deep learning for enhancing feature extraction. It enables the
model to concentrate on specific parts of the input data that
are considered important while selectively disregarding irrel-
evant or less significant information. The primary objective of
the attention mechanism is to enhance the model’s capability

to capture relevant context or features by assigning varying
degrees of importance or weights to different parts of the
input.

FIGURE 5. Comparison of edge features between captured images and
stitched images.

The attention mechanism operates by computing attention
weights for each element or segment of the input. These
weights are typically determined through the interaction
between the input and the model’s learnable parameters. The
higher the attention weight assigned to a particular element,
the more attention or significance it receives during the
model’s processing.

Numerous studies have focused on attention mechanisms,
with self-attention, spatial attention, and channel attention
being commonly utilized in object detection. Experimen-
tal findings have demonstrated that attention modules can
enhance the training efficiency and detection accuracy of
networks [25]. The self-attention mechanism replaces tradi-
tional neighborhood computation by calculating correlations
between all positions in the image. These correlations are
then utilized as weights to represent the similarity between
other positions and the currently calculated position. GcNet
(Global-context Networks) represents a further develop-
ment of the self-attention mechanism. Additionally, CBAM
(Convolutional Block Attention Module) is a lightweight
convolutional attention module that combines channel atten-
tion, which is invariant to spatial dimensions and compresses
the channel dimension, with spatial attention, which is
invariant to channel dimensions and compresses the spatial
dimension. In reference [26], this paper proposes a hybrid
attentionmechanism that combines self-attention [27], spatial
attention, and channel attention. The hybrid attention mech-
anism is applied to the generation network of CycleGAN to
enhance the learning efficiency and generation performance
of the network. Figure 6 illustrates the integration of the
hybrid attention mechanism into the generation module of the
CycleGAN network.
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FIGURE 6. Schematic diagram of the cycleGAN generative network structure incorporating a hybrid attention mechanism.

C. INDUSTRIAL OBJECT KEY POINT DETECTION AND
6DOF POSE ESTIMATION BASED ON YOLOV7
This paper presents a method for determining the robot
grasping pose of target objects through the utilization of a
multi-keypoint with EPnP algorithm for 6DOF posemeasure-
ment. The proposed method leverages an enhanced version of
the YOLOv7 algorithm for keypoint detection on the surface
of the target object.

1) KEY POINT DETECTION ALGORITHM BASED ON YOLOV7
YOLOv7 represents a version of the YOLO series object
detection algorithm, designed to strike a balance between
model accuracy and inference performance. In a previous
study [27], the YOLO algorithm was successfully employed
for human pose estimation. In this paper, we extend this
approach to the detection of key points on the surface of
industrial objects.

Figure 8 illustrates the introduction of six branch detectors
in this paper for keypoint detection on the output head of
YOLOv7. During the detection of target objects, the proposed
method predicts multiple key points on the object’s surface.

In the YOLOv7 keypoint detection network, the GAM
and SimAM techniques are employed to enhance the origi-
nal network. Additionally, output headers for key points are
incorporated into the network.

Most attention mechanisms overlook the importance of
preserving both channel and spatial information in enhanc-
ing cross dimensional interactions. Paper [29] proposes a
global attention mechanism to improve the performance of
deep neural networks by reducing information diffusion and
amplifying global interaction representations. The original
author followed the sequential design of channel attention and
spatial attention in CBAM and redesigned the sub modules.
The overall structural design of GAM can be represented
as Formula 3, where Mc and Ms represent the channel and
spatial attention module, respectively, and ⊗ represent the
multiplication of corresponding elements. We will add the
GAM attention module to the two ELAN modules on the left
side of Neck to enhance feature extraction capabilities.

F2 = Mc(F1) ⊗ F1
F3 = Ms(F2) ⊗ F2 (3)

In response to the prevalent practice of generating
1-dimensional or 2-dimensional parameter weights from the
input, paper [30] presents an attention mechanism capa-
ble of directly generating 3-dimensional parameter weights
without the need for additional parameters. Figure 2(a)
illustrates channel attention, where each parameter corre-
sponds to a different channel. Figure 2(b) demonstrates
spatial attention, with each parameter corresponding to the
same position across all channels. Additionally, Figure 2(c)
depicts the SimAM attention principle. In contrast to a simple
one-dimensional or two-dimensional parameter structure, the
utilization of three-dimensional parameter weights considers
the refined features of different feature maps and different
elements within the same feature map. Unlike existing chan-
nel/spatial attention modules, this module does not require
additional parameters to derive 3D attention weights for fea-
ture maps. We have incorporated the SimAM parameterless
attention module into the four ELAN modules on the right
side of the Neck, resulting in a significant reduction in the
total number of network parameters.

Furthermore, the network’s output header is enriched with
keypoint information. Consequently, the network can simul-
taneously output both the information parameters of the target
detection box and the keypoint information.

The Intersection over Union (IoU) between predicted
boxes and ground truth boxes serves as a crucial evaluation
metric in object detection. YOLOv7 adopts the CIOU as its
loss function. In order to enhance the precision of keypoint
prediction on the object’s surface, this paper integrates the
Geometry Intersection over Union (GeIOU) into YOLOv7’s
loss function, aiming to further improve the accuracy of
keypoint detection within the network.

Based on Figure 10, the GeIOU method calculates the
minimum bounding polygon formed by the ground truth and
predicted key points, and subsequently computes the IOU
based on this polygon. The GeIOU is further enhanced by
employing the DIOU function. The corresponding formula is
presented below:

LGeIOU = 1 − IOU +
ρ2(A,B)

c2
(4)

IOU represents the intersection over the union of the
ground truth area and the predicted area of key points. ρ
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FIGURE 7. Schematic diagram of the YOLOv7 network structure.

FIGURE 8. Schematic diagram of the YOLOv7 keypoint detection network structure.

FIGURE 9. SimAM principle.

denotes the Euclidean distance between the predicted A and
ground truth center coordinates B, while c represents the
diagonal distance of the minimum bounding box that encom-
passes them.

2) 6DOF POSE MEASUREMENT BASED ON EPNP
The EPnP algorithm, proposed by Lepetie and Moreno [10]
in 2009, is a highly accurate and efficient pose estimation

algorithm. This algorithm eliminates the need for iterative
solving, resulting in a time complexity of O(n). It exhibits
robustness and requires a minimal number of 3D-2D match-
ing point pairs, typically three pairs for coplanar cases or
four pairs for non-coplanar cases, to achieve precise pose
estimation. By leveraging the object’s pose and the hand-eye
relationship between the robot and the vision system, the
EPnP algorithm enables the calculation of the robot’s grasp-
ing pose.

VOLUME 11, 2023 136917



G. Wan et al.: Research on Robot Monocular Vision-Based 6DOF Object Positioning and Grasping Approach

FIGURE 10. GeIOU principle.

When an industrial robot grasps an object, we have:

UT 1
P =

UT 1
T ∗

TTP (5)

where UT 1
T is the grasping pose of the industrial robot. And

TTP is the pose of the object in the robot’s gripper coordinate
system.

When an industrial robot takes a picture of an object,
we have:

UTP =
UT 2

CT ×
CTTC ×

CTP (6)

where UT 2
CT is the robot’s pose at the time of capturing the

image by the vision system. CTTC has been obtained through
hand-eye calibration. CTP is the pose of the object relative to
the vision system, obtained directly from the vision system.
By using equations (5) and (6), we can solve for:

TTP = [UTT ]−1
×

UT 2
CT ×

CTTC ×
CTP (7)

Therefore, when an industrial robot takes pictures of
objects in different positions, we have:

UT nT =
UT nCT ×

CTTC ×
CT nP × [TTP]−1 (8)

CT nP and UT nCT are the coordinates of the object detected
by the vision system, and UT nT represents the grasping pose
of the target object in the robot’s coordinate system.

IV. VALIDATION EXPERIMENTS
A. EXPERIMENTAL ANALYSIS OF CREATING VIRTUAL
IMAGES WITH VIRTUAL ENGINE
The Blender virtual engine is utilized to generate 3D mod-
els of multiple artifacts, which are then placed in diverse
backgrounds. Subsequently, a virtual image of the same
dimensions as the one captured by a monocular camera is
generated. Figure 11 showcases various virtual images of
objects created using the virtual engine. The figure demon-
strates that these virtual images can effectively simulate
object images captured by the visual system under differ-
ent lighting conditions, materials, and background settings.
By incorporating these virtual images, the method proposed
in this paper aims to address the challenges associated with
acquiring a limited number of sample images of industrial
objects. These virtual images serve as a valuable supplement
to the image dataset.

B. EXPERIMENTAL ANALYSIS OF IMAGE STITCHING +

GENERATIVE ADVERSARIAL NETWORKS
Figure 12 illustrates a comparison among different genera-
tive adversarial networks (GANs) for image generation and
image stitching. The first row displays the original images
of the generated artifacts obtained through cropping. From
the figure, it is evident that there is a noticeable contrast in
grayscale values between the artifact region and the back-
ground image.

The second row presents the images directly generated
by the original CycleGAN. Upon comparing these images
with the ones in the first row, it can be observed that the pixel
differences between the artifact image and the background
image are not effectively eliminated in the images generated
by CycleGAN for the same dataset.

The third row showcases the images generated by Cycle-
GAN with the incorporation of SeNet attention modules.
Comparing these images with the ones generated by the
original CycleGAN, it can be concluded that the SeNet atten-
tion modules have limited improvement in the capabilities of
CycleGAN.

The fourth row displays the images of the generated arti-
facts using the proposed gradient loss function in this paper.
By comparing these images with the previous ones, it can
be observed that the integration of the gradient loss function
enhances the optimization effect of CycleGAN for the target
artifacts. This demonstrates the effectiveness of the proposed
gradient loss function. However, the generated images exhibit
the presence of artifact-like structures in regions where no
artifacts originally exist, and there is distortion in the restora-
tion of local details of the target artifacts.

The fifth row represents the images generated by the
CycleGAN+CBMAmodule network. It can be observed that
after incorporating the CBMA network, the regression of
image details is relatively good. However, similar to the case
with the gradient loss function, there is a significant amount
of interference introduced with metal-like features.

The sixth row displays the images generated by the net-
work proposed in this paper. It can be seen that both the
degree of restoration of the target artifact’s details and the
introduction of impurities are optimized with the method
proposed in this paper.

Figure 13 offers a more intuitive demonstration of the
generated results based on the improved CycleGAN images.
The upper part of the figure displays the stitched images,
while the lower part shows the images generated by the pro-
posed method. From the figure, it is evident that the proposed
method effectively eliminates the background contours and
grayscale differences of the stitched artifacts. This results in
image quality that is similar to the original images captured
directly by the visual system. Consequently, we assert that the
proposed method achieves a commendable restoration effect
for industrial objects.

Peak Signal to Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) are commonly used metrics for evaluating image
quality and similarity. These metrics assess blurriness and
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FIGURE 11. Virtual images of the workpiece created at different positions and with different backgrounds by the virtual engine.

FIGURE 12. Comparison of cropped images generated by different generative adversarial networks.

similarity between two images using fixed formulas. In this
study, we compare the PSNR and SSIM values between
the original images captured by the visual system and the
images generated by the improved cycleGAN network. The
comparison results are presented in Table 1.

The PSNR metric typically ranges from 0 to 100, while
the SSIM metric ranges from 0 to 1. Higher values for

both metrics indicate better performance. By comparing the
PSNR and SSIM values, it is evident that the proposed
method achieves results that closely resemble the original
images. Analysis suggests that the original images, captured
by the visual system in an industrial environment, exhibit
pronounced noise due to factors such as the background and
ambient lighting. As a result, the PSNR values in Table 1 may
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FIGURE 13. Comparison of the effects before and after using generative
adversarial networks.

TABLE 1. Comparison of PSNR and SSIM parameters.

FIGURE 14. Detection result.

be relatively low in several scenarios. However, the PSNR
and SSIM values of the various methods closely match those
of the original images, indicating a high degree of similarity
between the images generated using the proposed image
generation method and the images captured by the visual
system. This validation further reinforces the rationale behind
the proposed method in this study.

C. KEY POINT DETECTION NETWORK EXPERIMENTAL
ANALYSIS
The computer configuration used for testing in this exper-
iment includes an Intel i7-10700 CPU and an NVIDIA
GeForce RTX 3060 GPU. A Haikang industrial camera with
a resolution of 1280×1024 is employed to capture real-world
images. The Blender engine is utilized to create 3D models

TABLE 2. Yolov7-improve experimental results.

FIGURE 15. Robot system platform.

of various artifacts.The dataset utilized in this experiment is
divided into a training set and a test set. Both sets comprise
three different shapes of metal objects. The training set for
each object consists of 1200 real images captured by a vision
system, as well as virtual object images. On the other hand,
the test set consists of 60 real images.

To evaluate keypoint detection, the primary focus is on
measuring the deviation between predicted key points and
real key points. The accuracy of keypoint detection is
determined by calculating the positional error between the
predicted and real key points. In this paper, the keypoint
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FIGURE 16. Measurement accuracy of the proposed method.

detection error σ is expressed as:

σ =

∑ m
i=0(

∑ n
j=0

√
(xj−x)2+(yj−j)2

n )

m
(9)

In the equation, xj and yj represent the coordinates of
the predicted points, while x and y represent the coordi-
nates of the true key points. By calculating the Euclidean
distance between the predicted points and the true points as√
(xj−x)2 + (yj−y)2, we obtain the error distance between

the predicted key points and the true key points. The n rep-
resents the number of key points in a single image, while m
represents the number of test images. The evaluation metric
in this study, denoted by σ , represents the average distance
error of all key points in the test images.

This study performs a comparative analysis utilizing real
images, virtual images, and mixed image datasets. The exper-
imental results are presented in Table 2.

Based on the comparative analysis of the experimen-
tal results, several key observations can be made. Firstly,
the detection error is highest for real images, followed by
real+virtual images, and lowest for virtual images in all
three scenarios. This can be attributed to the fact that vir-
tual images, being generated by a virtual engine, exhibit
consistent object sizes, leading to improved detection per-
formance.Furthermore, the detection error for real images
is higher compared to real+virtual images. This can be
attributed to the augmentation of the dataset with virtual
images, which allows the detection model to better learn
the geometric features of the objects. As a result, the

model demonstrates improved monitoring performance when
trained on the augmented dataset.

In terms of the detection algorithm, the improved Yolov7
algorithm outperforms the other comparative algorithms in
terms of keypoint detection error. This suggests that the
proposed method in this study is effective in enhancing the
detection performance of objects. To provide a more com-
prehensive analysis, it would be helpful to have additional
details such as the specific values or metrics reported in
the experimental results and the corresponding figures in
Figure 14.

D. ROBOT GRASPING POSE EXPERIMENTAL ANALYSIS
To further validate the pose measurement accuracy of the
proposed algorithm, this paper utilizes an industrial robot
grasping platform. The purpose is to assess the algorithm’s
performance in accurately measuring the pose of objects. The
robot grasping platform used in the experiment is depicted in
Figure 15.

The robot grasping platform in this study utilizes an MZ07
type 6-joint industrial robot manufactured byNachi Robotics.
This robot has a payload capacity of 7 kg and a repeat posi-
tioning accuracy of±0.03 mm, ensuring precise and accurate
movements. To facilitate image acquisition, an MV-CA013-
20GC camera is mounted on the robot’s end flange. This
camera is responsible for capturing images of the objects
for further analysis and pose measurement. The parameters
for robot hand eye calibration in the camera are shown in
Tables 3 and 4
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TABLE 3. The parameters of monocular vision.

TABLE 4. Hand-eye calibration parameters.

During the testing process, the workpiece remains in a
fixed position while the robot is moved to various poses to
capture images of the workpiece. The goal is to calculate the
pose of the workpiece in the robot’s base coordinate system.
Ideally, regardless of the robot’s pose during image capture,
the calculated pose of the workpiece in the robot’s base
coordinate system should remain the same. However, due
to assembly, visual system, and robot errors, the measured
values obtained by the system may not be identical. In this
paper, the pose measurement accuracy of the visual system is
analyzed based on these errors.

Figure 16 presents the results of the robot system’s 25mea-
surements of a fixed-position workpiece. From the figure,
it can be observed that the system’s measurement errors for
the X-axis direction of the workpiece are within ±7 mm,
±4 mm for the Y-axis direction, ±2.5 mm for the Z-axis
direction, ±1.5◦ for the rotation axis A in the X-axis direc-
tion, and ±0.5◦ for the rotation axis C in the Z-axis direction.
Considering the measurement field of view of the camera at
166 × 136 mm, the measurement accuracy of the system is
calculated to be 4.21% in the X-axis direction and 2.94% in
the Y-axis direction. Additionally, based on calibration, it is
determined that the camera height is 377.72 mm, and the
measurement error percentage is 0.39%. The experimental
results demonstrate that the proposed method in this paper
maintains a high detection accuracy while ensuring system
robustness.

V. CONCLUSION
This paper introduces a novel method for 6DOF pose mea-
surement of robots based on monocular vision. The proposed
method leverages image generation techniques and combines
generative adversarial networks with attention mechanisms
to achieve data augmentation for industrial objects. This
approach provides a new solution for augmenting data of
industrial small-sample objects, which is beneficial when
training pose measurement models.

The method employs an improved keypoint detection net-
work that enables accurate 6DOF pose measurement of the

target workpiece. It achieves robust measurement by detect-
ing multiple key points on the surface of the object. This
strategy has significant implications for expanding the appli-
cation range of 6DOF robot systems in the industrial field,
reducing visual measurement costs, and enhancing the intel-
ligence of robot systems.

The experimental results demonstrate that the proposed
method exhibits high detection accuracy and robustness.
Moving forward, the authors plan to explore methods specif-
ically designed for complex environments to further enhance
the accuracy of 6DOF pose detection in monocular vision
systems for target workpieces.
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