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ABSTRACT The use of Unmanned Aerial Vehicles (UAVs) has become popular in recent years, especially
for their potential in various practical applications, but for their use to become a reality in this context,
it is necessary to study about it. One of the main problems involving UAVs, regardless of the application
to which it will be used, is path planning, which is crucial to ensure safety, economy, and effectiveness.
In this study we present a literature review on the path planning optimization problem and the methods
used to solve it. To this end, we seek to explore the existing papers in literature on this topic, identifying
mathematical models, analyzing characteristics of the objective function, types of obstacles, number of
UAVs considered, the nature of the solution adopted and deployments and integration in the Internet of
Drones (IoD). A comparative analysis of the works analyzed was presented in the form of tables for each
path planning technique considered. In addition, some advantages and safety of the methods were also
listed. We furthermore present a set of open research challenges, high-level insights, and future research
directions related to the UAV path planning problem in the context of IoD. This study contributes deeply
with the advancement of state of art regarding the path planning strategies on the Internet of Drones since
we provide a thorough analysis of characteristics of the mathematical models used in the UAV path planning
problem reviewing papers published in relevant journals and conferences in the last 4 years (2018 to 2022),
highlighting the advantages and disadvantages of each method as well as the possibilities of implementation
and integration with IoD.

INDEX TERMS Internet of Drones, IoD architecture, optimization, path planning techniques, unmanned
aerial vehicles (UAV).

I. INTRODUCTION
Drones, as known as UAVs, are the most usual way to refer
to an aircraft that does not carry a crew. Several terms are
used to refer to ‘‘drones’’. Besides UAV, themost common are
unmanned aircraft systems (UAS), remotely piloted vehicles
(RPVs)and remotely piloted aircraft (RPAs). In recent years,
we have observed the increasing popularity and use of
UAVs in different handy applications, such as delivery,
transportation, agriculture, monitoring, medical assistance,
image capturing, among others [1], [2], [3], [4], [5], [6],
[7], [8], [9]. In the past, UAVs were mainly used in military
applications where one or more drones were used for weather
monitoring, soldier recognition, search and rescue. These
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applications persist and as listed above, several others have
emerged, bringing new challenges and the need for more
research about them.

Currently, there are several studies related to delivery
applications with UAVs. Large and well-known companies
such as Amazon [10], Google, iFood [11], are investing in
research and possibilities to make their deliveries via drones.
However, for such implementation to be possible and feasible
in the future, it is necessary to organize and coordinate
the airspace and drones, since several implementations will
use it.

The IoD derives its name from IoT by putting ‘‘Drones’’
in place of ‘‘Things’’ [12]. Thus, IoD have similar properties
to IoT. Gharibi et al. [13] defined IoD as a layered network
control architecture that helps coordinate drones. To aid in
the organization of airspace, the IoD is composed of airways.
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The node responsible for coordinating the drones is the Zone
Service Provider (ZSP). In IoD, the ZSP is responsible for
controlling the airspace. IoD provides generic services for
various drone applications such as package delivery, traffic
surveillance, search and rescue, and more. A robust airspace
allocation architecture will be required, as using UAVs for
more routine activities, such as package delivery, will result in
thousands of daily flights in the same area. This will lead, for
example, to many conflicts between UAVs navigating similar
or intersecting routes [13].

In the context of IoD, and simply in applications involving
UAVs, different factors can be discussed, among them
safety, battery consumption, integration with other vehicular
networks, traffic control, path coverage, Path Planning. The
UAV Path Planning problem is widely studied, some works
in the literatures [14], [15], [16], [17], and [18] address
this problem in different contexts, factors, techniques, and
applications; however, there is still much to be studied
and explored regarding this problem in the IoD context.
Therefore, this work intends to search and explore the existing
knowledge about the UAV Path Planning problem, identify
gaps in the literature, characterize the identified studies as
to the characteristics of the objective function, types of
experiments, number of UAVs considered, and nature of the
solution. Opportunities for new research in the area are also
highlighted. It is worth noting that, given the number of
works that address the Path Planning problem in the context
of IoD, in this review we consider works that deal with the
UAV Path Planning problem in a general context. In the IoD
context there is still a lot of open research: collision and
interference, energy consumption, Path Planning considering
various information such as management, security among
others [19]. In this context, there are works that deal with
IoD but not with Path Planning. For example, in [20]
the authors propose a network architecture for IoD with
scalability for UAVs in an urban environment addressing Path
Planning issues, security, privacy, and network connectivity.
The paper does not discuss methods or implementations for
Path Planning, but proposes an architecture, framework, and
guidelines for implementing Path Planning systems. In [2],
the authors address possible applications involving UAVs in
future smart cities. In [21], an energy-efficient strategy to
avoid collisions with minimum energy required for drones
reach the destination safely in the contexto of IoD.

From these considerations, we note the need for a
comprehensive and informative study on the possibilities and
challenges of UAV Path Planning in the context of IoD.

A. ABBREVIATIONS AND ACRONYMS
The list of abbreviations and definitions used throughout the
paper are shown in Tables 1 and 2.

II. MOTIVATION AND ORGANIZATION
In recent years, studies related to UAVs have seen significant
growth, given their substantial potential for applications in

TABLE 1. List of abbreviations.
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TABLE 2. List of abbreviations. various fields. However, they also pose considerable chal-
lenges that must be addressed for practical implementation.
One extensively studied problem in this context is the Path
Planning problem.

The primary goal of this problem is to design a path from
a source point to a destination point, attempting to minimize
costs (which may involve various factors) while considering
critical constraints such as battery consumption, obstacle
avoidance, and safety.

Despite its seemingly simple concept, planning routes for
UAVs remains challenging in real-world scenarios. This is
due to the complex nature of airspace, where considerations
must be made for the presence of other UAVs and airplanes
simultaneously. Similar to ground route planning, airspace
planning faces restrictions and limitations.

Therefore, to facilitate the planning of deliveries via UAVs
across diverse sectors, it is essential to coordinate airspace,
taking into account communication, interconnection, and,
in essence, considering the architecture of the IoD. While
some works in the literature [22] address Path Planning (PP)
in the IoD context, there is still much to be studied concerning
real-world applications and the coordination of airspace as a
whole.

The UAV Path Planning problem has been extensively
studied across various applications and contexts, employing
diverse methods, simulations, and, in essence, considering
several aspects by the global research community.

Given the significance of this topic, the objective of
this paper is to provide a comprehensive review of recent
literature (from 2018 to 2022). The focus will be on papers
published in journals or event proceedings that address the
UAV Path Planning problem, specifically with regard to:

1) Objective function: what is considered in the objective
function, whether it comprises only a single objective
or is multi-objective.

2) Quantity of UAVs considered.
3) Environment, time domain (2D or 3D) and mode

(offline or online).
4) Types of obstacles.
5) Path Planning Techniques.
6) Possibility of deployment and integration in IoD.

Thus, the main contributions of this work are:
1) Comparative Analysis: providing a thorough compar-

ative analysis of methods employed for solving UAV
Path Planning. The considered methods encompass
classic, heuristic, meta-heuristic, machine learning,
mathematical models, and hybrid approaches.

2) Literature Review: presenting the fundamental char-
acteristics of the UAV Path Planning problem as
considered in over 200 recent works published between
2018 and 2022 in the literature.

3) Deployment and Integration in IoD: offering insights
into the possibilities of deploying and integrating UAV
Path Planning within the IoD. This includes a detailed
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discussion of the main challenges associated with this
integration and proposing potential avenues for future
research.

This study is organized as described below.
• Section III: Overview of Related Works - presentation
of relevant studies and literature related to the UAV Path
Planning problem.

• Section IV: Methodology - description of the method-
ology adopted to conduct and structure this literature
review.

• Section V: Characteristics, Definitions, and Challenges
of IoD - discussion of the main characteristics, defini-
tions, and challenges associated with the IoD.

• Section VI: UAV Path Planning - overview of UAV Path
Planning, including a summary of techniques and the
compilation of analyses presented in tabular form.

• Section VII: Mission Planning - presentation of an
overview of mission planning for UAVs.

• Section VIII: Implantation and Integration in
IoD - exploration of possibilities for the implementation
and integration of the studied Path Planning techniques
within the context of IoD.

• Section IX: Future Works - discussion of potential
directions for future research in the field.

• Section X: Conclusions - presentation of the conclusions
drawn from the findings and discussions presented
throughout the article.

III. RELATED WORKS
In recent years, some studies have investigated problems
involving drones in different contexts and applications.

This study differs from the works listed in the Table 3 in
terms of the content addressed contributing deeply with the
advancement of state of art regarding the UAV Path Planning
strategies on the IoD since we provide a thorough analysis
of characteristics of the mathematical models used in the
UAV Path Planning problem reviewing papers published in
relevant journals and conferences in the last 4 years (2018
to 2022), highlighting the advantages and disadvantages of
each method as well as the possibilities of implementation
and integration with IoD. Therefore, in addition to analyzing
the techniques used for Path Planning, we analyze and list
how they can be incorporated in the context of the IoD.

Table 3 summarizes the information regarding similar
work and the focus of this paper.

IV. METHODOLOGY
For this study, we selected papers using the following
approach:

1) Database Searches: Conducted searches in the IEEE
and Science Direct databases using the keywords
‘‘UAV Path Planning problem.’’ Due to the large
number of papers listed, search refinements were
implemented. In the refinement process, we con-
sidered papers (journal articles or papers published
in event proceedings) from the period 2018-2022

containing keywords such as ‘‘UAV Path Planning
problem,’’ ‘‘mathematical modeling,’’ ‘‘optimization,’’
and ‘‘Internet of Drones (IoD).’’

2) Citation Analysis: Examined articles cited in the papers
identified during the database searches. After searching
the databases and downloading the papers, we analyzed
their references and included relevant papers that
addressed drone Path Planning problems, particularly
those considering optimization aspects.

After selecting the articles, the subsequent step involved
dedicated reading of the title, abstract, and keywords to verify
that the chosen articles indeed address the characteristics
under analysis. Subsequently, in Section VI, the works are
analyzed and compared in the form of tables, focusing on
the following aspects: objective function, number of UAVs,
environment, mode, obstacles, and method. Additionally,
tables are used to list some advantages and disadvantages of
each technique for UAV Path Planning.

It is essential to highlight that the UAV Path Planning
problem is addressed in the literature from two perspectives:
1. the Path Planning itself and, 2. the path coverage. Given the
substantial volume of papers on both perspectives, this work
specifically focuses on analyzing papers that address only the
UAV Path Planning problem. Works related to path coverage
were not considered in this study.

The primary distinction in the methodology employed
for this study, as opposed to similar reviews, lies in our
comprehensive consideration of Path Planning techniques.
We analyze these techniques in a broad sense, emphasizing
their potential integration into the context of the IoD. This
approach allows us to explore not only the intricacies of Path
Planning but also the broader implications and possibilities
that arise when considering the intersection of Path Planning
techniques with IoD.

V. INTERNET OF DRONES
The IoD is a network architecture designed specifically
to facilitate communication between drones and various
ground-based network entities [13], [27]. Encompassing the
envisioned Intelligent Transportation System (ITS) scenario,
this concept is tasked with addressing a range of require-
ments. These include the management of self-organized
aerial traffic flow, ensuring fair access to a shared wireless
communication channel, and implementing all levels of
security and privacy [53].

Gharibi et al. [13] devised a cross-layered network archi-
tecture for IoD management to address these requirements,
wherein drones are required to navigate along well-defined
airways. In a similar vein, Svaigen et al. [53] proposed an
IoD structure composed of airways that resemble terrestrial
roads. Intersections are formed by the convergence of two
or more airways, nodes are defined as reachable Points
of Interest through an alternating sequence of airways and
intersections, and ZSP serve as infrastructure components
akin to base stations. ZSPs provide navigation information
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TABLE 3. Overview of some similar surveys.

to drones through a fairness policy, adhering to governing
laws related to airways, intersections, and nodes to ensure a

safe and reliable flow of drone traffic. It’s noteworthy that
a ZSP must maintain independence from drone companies
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and, consequently, cannot access application contextual
information unless permitted by the drone. Figure 1 illustrates
an IoD environment based on these considerations.

FIGURE 1. IoD environment in an urban cenario. Source: Bine et al. [52].

The IoD presents a practical solution to address challenges
in Flying Ad-hoc Networks (FANET) and the Internet of
Things (IoT), capitalizing on the advantages offered by
UAVs. UAVs bring flexibility, maneuverability, efficient
mobile data dissemination, rapid deployment, and cost-
effectiveness to the IoD framework [26]. Within the IoD
architecture, UAVs function as networked objects capable of
communication among themselves, exchanging data, particu-
larly related to flight coordination capabilities. Additionally,
UAVs establish communication with a designated ground
infrastructure responsible for storing and processing data.
This infrastructure enables services and provides updated
information to remote users connected to dedicated applica-
tion servers [27].

The IoD has garnered significant attention in recent litera-
ture, attributed to the flexibility and adaptability of drone net-
works across diverse scenarios and applications. The appeal
of IoD lies in its capacity to enhance the performance of
various network architectures. UAVs, driven by technological
advancements and practical advantages such as highmobility,
real-timemonitoring, coordination capabilities (dependent on
system architectures and communication technologies), load
transport, and access to hard-to-reach locations, are becoming
increasingly popular. The broad range of functionalities
associated with UAVs opens up numerous applications
through IoD, including smart agriculture, goods delivery,
search and rescue, surveillance systems, and data and image
collection, as well as telecommunications [27], [54].
The relationship between IoT, IoD, and Urban Computing

(UC) is depicted in Figure 2. Figure 3 illustrates some IoD
applications in different environments. Consequently, the IoD
architecture, along with its functionalities and applications,
significantly contributes to and enhances scenarios related to
smart cities and UC [19], [54], [57].
Given the complexity of the IoD scenarios, several issues

necessitate thorough investigation. To explore potential solu-
tions involving the use of drones in the IoT, numerous survey

FIGURE 2. IoT, IoD and UC. Source: Bine et al [54].

studies have been published in the literatures [12], [13], [19],
[26], [27], [57], [58], [59], [60], and [61]. These surveys
aim to provide insights, analyze challenges, and present
advancements in IoD, contributing to the understanding and
development of effective solutions for diverse applications.

In the realm of the IoD, several crucial features demand
thorough investigation. These features include: connectiv-
ity and coverage, reliability, data processing and storage,
energy consumption and supply, cooperation and collabo-
ration real-time communication, effective cost, security and
privacy.

These aspects are fundamental to the successful devel-
opment and deployment of IoD applications, as highlighted
in the literature [19]. Understanding and addressing these
features are pivotal in overcoming challenges and ensuring
the effective functioning of drone networkswithin the broader
IoT context.

In the context of the IoD, there are still challenges to
overcome, particularly to ensure that practical applications
can fully benefit from the IoD framework, ultimately
contributing to the development of smart and connected cities
and enhancing the quality of life for the population. These
challenges include:

1) Regulation and coordination of airspace: ensuring safe
and smooth flights, especially for UAVs.

2) Efficient communication networks: guaranteeing effec-
tive connectivity among all the elements constituting
the IoD.

3) Data security and privacy: addressing concerns related
to the security and privacy of data for all parties
involved.

4) Security of application scenarios involving UAVs:
ensuring the security of various application scenarios
that involve the use of UAVs.

Furthermore, considering the IoD architecture, additional
challenges persist [19], [35], [60], [61], [62]: collision and
interference, drone control and management, security and
privacy, data rate and coverage, drone power consumption,
scalability, stability, communication networks.

Addressing these challenges is crucial for the successful
development and implementation of IoD, fostering its
potential to revolutionize various aspects of urban life and
infrastructure.
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FIGURE 3. Some IoD applications. Source: Bine et al [54].

Given the diverse characteristics, requirements, and appli-
cations encompassed by the IoD architecture, a key concern
in this context is Path Planning, briefly described in
the previous section. The challenges associated with Path
Planning in IoD primarily revolve around:

1) Obtaining safe, obstacle-free, and viable paths: ensur-
ing that paths generated are safe, devoid of obstacles,
and feasible for drone navigation.

2) Implementation of paths in IoD architecture: determin-
ing how to implement pathswithin the IoD architecture.
One potential approach involves the use of airways
organized in layers, as illustrated in Figure 4.

3) Selection of suitable Path Planning techniques for IoD:
identifying which among the existing techniques for
Path Planning are best suited for the IoD scenario.

Addressing these challenges is essential to enable efficient
and reliable Path Planning within the IoD framework,
contributing to the successful deployment of drone networks
in various applications and scenarios.

In view of the different characteristics, requirements and
applications that IoD architecture encompasses, one of the
key issues in this context is Path Planning, which was briefly
described in the previous section. The challenges of Path
Planning in IoD mainly involve: obtaining safe, obstacle-
free and viable paths, how to implement the paths in the
IoD architecture (one possibility is the of airways in layers,
as shown in the Figure 4) andwhich of the existing techniques
for Path Planning are better suited for the IoD scenario.

VI. UAV PATH PLANNING TECHNIQUES
Indeed, UAV Path Planning techniques can be catego-
rized into four main groups: optimization-based methods,
searching-based methods, sampling-based methods, and
learning-based methods.

Each category has its strengths and weaknesses, and the
choice ofmethod often depends on the specific characteristics
of the environment, the complexity of the Path Planning task,
and the available data. The optimal Path Planning technique
for a given scenario may vary based on the application
requirements and the constraints of the IoD architecture.

Absolutely, Path Planning for UAVs involves determining a
trajectory from a starting point to a target point while ensuring

that the path is collision-free. This is a critical aspect of
UAV navigation, ensuring the safe and efficient movement
of drones through their environment. Various Path Planning
techniques, as mentioned earlier, are employed to address
this challenge and generate collision-free paths for UAVs in
diverse scenarios and applications [30].

The UAV Path Planning problem is often formulated and
solved as an optimization problem, where the goal is to
design a path for the UAV that either minimizes costs or
maximizes the UAVs’ utility. While the specifics of the
Path Planning problem may vary based on the objective,
certain requirements remain crucial. These include factors
such as the path to be traversed by the UAV and the
energy consumption, which are integral considerations in
any application involving UAVs [38]. When delving into
the Path Planning problem, several key terms and concepts
emerge [30]:

1) Movement: considers factors such as turning angle,
path length, and the flight path of the UAV.

2) Trajectory: encompasses parameters like speed, time,
and the kinematics of UAV movement.

3) Navigation: comprises elements of motion planning,
trajectory planning, collision avoidance, and location
determination.

Furthermore, according to [40], the UAV Path Planning
problem is characterized by several essential attributes:

1) Security: this aspect is concerned with ensuring the
safety of UAVs, particularly in environments where
tasks are performed in potentially threatening con-
ditions. Minimizing the probability of detection by
hostile radars and other UAVs is a key consideration.

2) Physical Viability: refers to the physical constraints
and limitations associated with the use of UAVs. This
includes considerations such as the maximum path
distance and the minimum path length.

3) Performance of the mission: relates to the ability
of a path to satisfy the specific requirements of a
given mission. Designing a path to complete a mission
involves meeting various requirements, including max-
imal turning angles, maximum climbing/diving angles,
and minimal flying heights.
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4) Real-time implementation: pertains to the efficiency of
the Path Planning algorithm, particularly in the context
of real-time implementation. The dynamic nature of
UAV flight environments necessitates computationally
efficient path-planning algorithms to respond promptly
to changing conditions.

These attributes collectively contribute to the complexity
of the UAV Path Planning problem, requiring a comprehen-
sive and adaptive approach to address the diverse challenges
posed by different mission scenarios.

Certainly, planning a path for UAVs involves consideration
of various crucial aspects, as highlighted in [23]: environment
(static, urban, uncertain, complex, wind fields, threat, etc),
dimensions (2D, 3D), obstacles (static, dynamic), mode
(offline, online), number of UAVs (single, multiple).

The UAV Path Planning problem is recognized as a
complex optimization problem and is generally classified as
NP-hard [23]. Regarding the mathematical model for UAV
Path Planning, it typically involves an objective function
aimed at cost minimization subject to certain constraints that
vary based on the specific application requirements.

The objective function may consider one or multiple
attributes, and in the latter case, it is referred to as a
multi-objective function. An example of a mathematical
formulation for UAV Path Planning using an exact approach
is provided in [22]. The authors consider a scenario with
a single UAV and multiple regions conforme (1). The
path to be traversed by the drone is represented as P =

pi,j|i ∈ [1,m], j ∈ [1,m], where each element pi,j is a boolean
variable indicating whether the UAV can fly from region i to
region j. This binary representation helps define the feasible
paths for the UAV in the optimization model.

min T =

m∑
i=1

m∑
j=1

pi,j

s.t.



∀i, j ∈ [1,m], if pi,j = 1,
√
(xi − xj)2 + (yi − yj)2 ≤ 1

∀i ∈ [1,m], if Bi = 1,
m∑
j=1

pi,j =

m∑
j=1

pj,i = 0

m∑
i=1

p0,i =

m∑
j=1

pj,m = 1

∀j ∈ [1,m], if
m∑
i=1

pi,j = 1,
m∑
k=1

pj,k = 1

pi,j ∈ {0, 1}

(1)

The first constraint em (1) guarantees that the UAV can
only fly over adjacent regions, restricting its movement to
neighboring areas. The second Constraint guarantees that
the UAV can only fly over adjacent regions, restricting its
movement to neighboring areas. The third constraint ensures
that the initial position and the target position are within
the defined flight path, aligning with the specified mission
requirements. The four constraint represents that the UAV

cannot stop during the flight path, emphasizing continuous
movement from the initial position to the target position.

These constraints collectively define the conditions that the
solution must satisfy to be considered a valid and feasible
path for the UAV. The inclusion of such constraints is
essential for addressing practical considerations and ensuring
the optimization problem aligns with real-world scenarios
and requirements.

Another example of mathematical formulation for the PP
proposed by Ren et al. [41]. The authors presents a multi-
objective Path Planning approach considering two objectives:
distance and safety. V is a set of points in space, denoted by
{v1, v2, · · · , vN }. E is a set of edges connecting two points
in V , denoted by {e1, e2, · · · , eM }. A path p is a sequence
of points {v1, v2, · · · vh} from the source point v1 to the
destination point vh. ci,j is the non-negative cost of the jth

objective assigned for the ith edge (i ∈ [1,M ]) and j ∈ [1,K ],
K is the number of objectives. K equals to 2 and ci,1 and
ci,2 are costs of the ith edge for distance and safety index
respectively. Let fj(p) be the total cost of all edges in path
p for the jth (j ∈ [1,K ]) objective. Then, f (p) is the objective
vector for path p: f (p) : {f1(p), f2(p), · · · , fK (p)}. In this case,
the authors mades a trade-off among all objectives and try to
obtain Pareto optimal solutions.

The multi-objective modeling proposed by Ren et al. [41]
is a way to solve the PP, but there are several others in the
literature that consider other objective functions, constructed
according to the problem to be solved. Given the complexity
and the different aspects that can be considered in the
PP, there are different works in the literature that consider
different attributes and characteristics, as well as different
solution methods for it [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51].

To satisfy the attributes, the key terms and the optimization
problem related to UAV Path Planning problem, there are
several traditionalmethods, such as RRT, PRM,APFmethods
and computational intelligencemethods. Thesemethods have
their strengths and drawbacks, and in the literature several
hybrid methods that combine one or more methods have
emerged with the aim of overcoming the disadvantages.

The UAV Path Planning within the context of the IoD
indeed presents significant challenges. The primary objective
is to devise effective flight paths for drones, allowing
them to reach their destinations while navigating through
obstacles andminimizing energy consumption.Moreover, the
coordination of multiple drones sharing the same airspace
adds complexity to the problem. The key characteristics of
the UAV Path Planning problem in the IoD context include:

1) 3D Space: the problem involves planning paths in
3D space, considering the altitude along with the
horizontal dimensions. This adds an extra layer of
complexity compared to 2D Path Planning.

2) Offline and online planning: the time domain cate-
gorization distinguishes between offline and online
planning. In the offline case, information about the
environment is known beforehand and used for path
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construction. In contrast, the online case involves
planning paths on the fly, utilizing real-time sensor
data.

3) Information Availability: offline planning requires
a priori knowledge of the environment, including the
locations of obstacles. Online planning, on the other
hand, relies on sensor data collected during the flight.

4) Multi-drone coordination: the IoD scenario involves
multiple drones sharing the same airspace. Coordinat-
ing their movements to avoid collisions and optimize
the use of airspace is a crucial aspect.

5) Obstacle avoidance: effectively avoiding obstacles is
a primary concern to ensure the safety and success of
drone missions.

The illustration in Figure 4 visualizes a scenario depicting
the complexity of UAVPath Planning in the IoD context. This
complexity highlights the need for advanced planning algo-
rithms, real-time decision-making capabilities, and efficient
coordination mechanisms.

FIGURE 4. UAV path planning in IoD. Adapted by Bine et al. [52].

In this section, we analyze the works regarding: objective
function; quantity of UAVs considered; environment, time of
domain (2D or 3D) and mode (offline or online); obstacles
and Path Planning methods. Furthermore, we discuss the
possibility of deployment and integration in IoD scenario.

The state-of-the-art researches are compared in tabular
form based on the parameters including objective function,
single or multiple UAVs, environment of UAV operations,
types of domain and mode. The advantages and limitations
of the Path Planning approaches are also presented in
tables.

In view of the vast existing literature onUAVPath Planning
techniques, it is clearly impossible to consider all the works
published in the period considered (2018 to 2022), so we
consider a representative and sufficient number of works to
provide relevant information on the topic addressed in this
article.

A. CLASSICAL METHODS
The classical methods for Path Planning problem includes
the sampling-based methods: cell decomposition, roadmaps,

potential field. Furthermore, the methods Rapid-exploring
Random Tree (RRT), Voronoi Diagram (VD), Visibility
Graph (VG), Dijkstra algorithm and Probabilistic Road Map
(PRM) are considered classical methods for the UAV Path
Planning.

1) CELL DECOMPOSITION
It consists of decomposing the free space of the drone into
simple regions called cells, so that a path between two
configurations in different cells can be easily generated.
An undirected graph representing the adjacency relation
between the cells is then constructed, and over this graph the
path search is performed [63]. The nodes of this graph are the
cells extracted from free space: two nodes are connected by
an edge if and only if two corresponding cells are adjacent.
Then, the result of the search is a sequence of cells called a
channel. Hence, a free path can then be computed from this
sequence.

This technique is categorized into two types: exact cell
decomposition and approximate cell decomposition. In exact
cell decomposition, the free space is divided into cells whose
union exactly matches the free space. In approximate cell
decomposition, cells have predetermined shapes, and their
union is strictly contained within the free space. Generally,
these methods are not exhaustive because, depending on the
chosen accuracy, they may not identify a path between two
configurations even if one exists. However, the accuracy of
these methods is typically adjustable. Figure 5 illustrates both
exact and approximate cell decomposition.

After cell division is performed, different methods can
be used in the case of UAV Path Planning: Probabilistic
Roadmap Method (PRM), Rapidly-exploring Random Tree
(RRT), A* algorithm [30].

FIGURE 5. Exact cell decomposition and approximate cell decomposition.
Source: Aggarwal and Kumar [30].

2) ROADMAPS
This approach aims to simplify the representation of the
environment by transforming it into a graph that depicts
feasible paths. Once the roadmap is established, it serves
as a set of standardized paths. Consequently, trajectory
planning is streamlined to connecting the robot’s initial and
final positions to the roadmap and finding a path between
these two points. If a path exists, it is composed of three
subpaths: one connecting the initial position to a point on the
roadmap, another subpath within the roadmap, and finally,
a subpath leading from the last chosen point on the roadmap
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to the final position. Notably, this technique assumes a static
environment [30].

From this method, several variations have been proposed,
including the VG and VD.

3) VISIBILITY GRAPH
A VG is created by connecting line segments between
vertices of obstacles. Line segments that entirely reside
within the free space region are incorporated into the graph.
In trajectory planning, the starting and ending positions are
depicted as vertices, forming a connectivity graph. A search
algorithm is then employed to identify a free path within this
graph. Figure 6 illustrates the concept of a VG.

FIGURE 6. Visibility graph. Source: Costa and Tonidandel [31].

4) VORONOI DIAGRAM
VD are used for roadmaps [30]. Given a set X of n points in
the plane, determine for each point p of X what is the region
V (p) of the points in the plane that are closer to p than to
any other point in X . The regions determined by each point
form a restricted plane called the Voronoi Diagram. Figure 7
shows the VD applied to 18 points. Paths derived from the
VD are considered safe and reliable because obstacles are
significantly distant from all path edges [30].

FIGURE 7. Voronoi diagram. Source: Aggarwal and Kumar [30].

5) RAPID-EXPLORING RANDOM TREE
A RRT is a data structure and algorithm that is designed
for efficiently searching nonconvex high-dimensional spaces.
RRT is constructed incrementally in a way that quickly
reduces the expected distance of a randomly-chosen point
to the tree. RRT is particularly suited for Path Planning
problems that involve obstacles and differential constraints
(nonholonomic or kinodynamic) [64].

FIGURE 8. Rapid-exploring random tree. Source: Aggarwal and
Kumar [30].

Different authors have proposed improvements and hybrid
methods based on the RRT [46], [65], [66], [67], [68], [69],
[70], [71].

6) PROBABILISTIC ROADMAPS
PRM, an algorithm for UAV Path Planning, is credited to
Kavraki et al. [72], [73]. The fundamental concept of this
method involves generating random samples from the robot’s
configuration space, testing their obstacle-free status, and
connecting them based on proximity. Figure 9 illustrates the
PRM technique.

FIGURE 9. Probabilistic roadmaps. Source: Masehian and
Sedighizadeh [74].

There are various variants of PRM, ranging from simple
to sophisticated, that modify the sampling and connection
strategy to achieve improved performance.

7) POTENTIAL FIELD
The Potential Field method involves determining the trajec-
tory direction based on the resultant forces applied to the
robotic system at each navigation moment. An important
feature of this method is its applicability in dynamic
environments, as there is no need to create any data structure
beforehand.

In Path Planning, the robot is subjected to the action of a
certain potential, which is determined by the configuration
of the target and obstacles. The target is represented by a
charge of opposite sign to the proof charge and the obstacles,
by charges with signs equal to those of the proof charge. The
resultant potential is designed to generate repulsive forces
between the robot and obstacles, as well as an attractive force
between the robot and the target.
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Khatib [75] was the first to apply the artificial potential
field (APF) approach to Path Planning for mobile robots.
This approach is well-suited for real-time control of robots
due to its clear physical meaning and simple mathematical
description. Consequently, it has found widespread use
in Path Planning [76]. Figure 10 illustrates mobile robot
navigation using the APF approach.

FIGURE 10. APF approach. Source: Choset et al. [77].

8) DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm was proposed by Dijkstra in 1959 [78],
to obtain the shortest path in a directed graph with positive
edge weights. Despite being old, this algorithm is still widely
used in Path Planning problems and their variants, due to
its simplicity and possibility of being integrated with other
methods.

The Table 5 presents some advantages and disadvantages
of classical methods for the UAV Path Planning.

TABLE 5. Advantages and shortcomings in the classical methods for UAV
path planning.

In this section, we analyze some works that address
the problem of PP using classical methods. Most of the
listed works utilize more than one classical method and
take into account multiple obstacles. The distance factor

is considered the primary consideration in the majority of
these works. By employing variants and combinations of
classical methods, the authors propose solutions for various
applications within the realm of the Path Planning problem.

B. HEURISTIC AND META-HEURISTIC METHODS
Heuristic methods are exploratory algorithms designed to
solve problems. While there are no guarantees that the
solution found through them is optimal, they often provide a
good approximation to real-world problems and demonstrate
greater agility than exact methods when dealing with
problems of larger dimensions. In the context of solving the
UAV Path Planning problem, the literature features numerous
algorithms based on heuristics.

Meta-heuristic algorithms are extensively employed for
solving the UAV Path Planning problem. These algo-
rithms can be broadly categorized into two main groups:
single-based and population-based approaches [126]. The
population-based approaches are further subdivided into
Evolutionary-based techniques and Swarm Intelligence-
based techniques.

1) A* ALGORITHM
In UAV Path Planning problem, the A* algorithm is a popular
heuristic that was initially introduced by Hart et al. [106].
Numerous approaches utilizing the A* algorithm for UAV
Path pPlanning have been proposed, demonstrating promis-
ing results.

Zhang et al. [107] address UAV Path Planning in a
3D environment, taking into account kinematics principles,
the dynamic radar cross-section of stealth UAVs, and the
network radar system. The authors propose a modified A*
algorithm with the goal of achieving waypoint accuracy
and improving the algorithm’s search efficiency. In their
simulations and analysis, they employ various algorithms,
including the conventional A* algorithm, bidirectional mul-
tilayer A* algorithm, and modified A* algorithm, to address
the penetration path problem faced by UAVs under different
threat scenarios.

Li et al. [108] introduced a 3D space UAV Path planning
model. They put forward an improved A* algorithm based on
the R5DOS model, and they investigate the effectiveness and
progressiveness of this proposed method through simulation
experiments.

Mardani et al. [109] introduced two approaches based on
the A* algorithm to optimize Quality of Service (QoS) in
UAV Path planning. They aimed to optimize the path jointly
in terms of distance and the throughput experienced by the
drone.

Other works that use the A* algorithm or variants are
described in the Table 6.

2) GREEDY ALGORITHM
A greedy algorithm is an approach for solving a problem by
selecting the best option available at the moment. It does not
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concern itself with whether the current best result will lead to
the overall optimal solution.

Han et al. [110] investigated a UAV-assisted IoT data
collection system with the goal of minimizing energy
consumption by jointly optimizing the deployment and flight
trajectory of the UAV. They proposed a bilevel optimization
approach. In the upper-level approach, the authors introduced
an improved dandelion algorithm (IDA) to optimize the
number and locations of footholds for the UAV. In the lower-
level approach, they proposed an Iterated Greedy Algorithm
to plan the UAV’s flight trajectory using the results provided
by the upper-level optimization.

3) SINGLE-BASED APPROACHES
Du et al. [127] introduced a modified Tabu search algorithm
by integrating the Nawaz-Enscore-Ham (NEH) method into
Tabu Search for addressing the multiple UAVs Path Planning
problem. Simulation results demonstrated the superiority of
the proposed algorithm in terms of time efficiency compared
to other algorithms.

4) POPULATION BASED APPROACHES
Population-based approaches in the context of UAV Path
Planning involve maintaining and enhancing multiple can-
didate solutions. These methods often leverage population
characteristics to guide the search process. Examples of
population-based approaches include evolutionary computa-
tion, genetic algorithms, and particle swarm optimization.

Another category of metaheuristics is swarm intelligence
based which is a collective behavior of decentralized, self-
organized agents in a population or swarm and inclues ACO,
PSO and variants.

Regarding UAV Path Planning, Evolutionary based tech-
niques includes: DE algorithm, NSGA-II algorithm [128],
[129], HR-MAGA, SPEA [130], Multiagent Evolutionary
Algorithm [131].
Chawra and Gupta [132] proposed a Salp-Swam opti-

mization method for the selection of an optimal set of
load-balanced Cluster Heads (CHs) and used Differential
Evolution (DE) for multi-UAV Path Planning for data
collection in a cluster-basedWireless SensorNetwork. Exper-
imental results showed that the DE algorithm outperformed
GA and NSGA-II algorithms in terms of optimizing traveling
time and path length.

Dai et al. [133] proposed a novel approach based
on the integration of MILP into the GA for improving
UAV Path Planning in a complex environment. Simulation
results demonstrated the superiority of the proposed method
compared to ACO and GA in terms of cost efficiency and
energy optimization.

Xiao et al. [134] proposed a Neighborhood Based Genetic
Algorithm (NBGA) for multi-UAVs dynamic Path Planning
and UAV/UGV coordination. Simulations results showed that
NBGA provides an optimal path length compared to the
Center-Based Genetic Algorithm.

Huang and Fei [135] developed a Global Best Particle
Swarm Optimization (GBPSO) algorithm for solving the
fixed-wing UAV Path Planning problem. In comparison with
PSO, modified versions of PSO, and DE, GBPSO proved
to be more effective in terms of convergence speed, cost-
efficiency, execution time, and path length optimization in
simulations performed in a 3D complex environment with
7 obstacles and 18 obstacles.

Dewangan et al. [136] addressed the 3D multi-UAV Path
Planning problem using the GWO method. Simulations
in three different maps and comparisons with different
algorithms, such as Dijkstra, A*, D* (Deterministic), IBA,
BBO [137], PSO, GSO, WOA, and SCA [138], were
conducted. The GWOmethod was found to be more effective
than the other algorithms for the studied problem.

Jain et al. [139] proposed a modified MVO algorithm for
3D UAV Path Planning while maintaining coordination for
target selection. Simulation results showed that the MVO
algorithm performed better in most cases for finding an
optimized path when compared to meta-heuristics GSO and
BBO.

Zhou et al. [140] proposed a bio-inspired Path Planning
algorithm for the 3D environment. The algorithm imitates the
basic mechanisms of plant growth, including phototropism,
negative geotropism and branching. When compared with
A*, RRT, and ACO, the proposed algorithm demonstrated
good Path Planning ability and reasonable parameter
configuration.

Binol et al. [141] applied a MHS algorithm for the
multi-UAV Path Planning problem. Experimental results
revealed that the MHS algorithm is more effective than
GA in terms of path cost, execution time, and convergence
rate.

5) OTHER HEURISTIC ALGORITHMS
Freitas et al. [111] proposed Lin-Kernighan heuristic (LKH)
algorithm for improving the UAV Path Planning in biological
pest control applications. Experimental results demonstrated
that the LKH algorithm outperforms ACO and GLS algo-
rithms in terms of path length optimization, cost-efficiency,
and execution time.

Yuan et al. [112] explored UAV Path Planning in a three-
dimensional map. They introduced an improved Lazy Theta*
algorithm, which includes neighbor node search, line-of-
sight algorithm, and heuristics weight adjustment. Simulation
results indicated that the enhanced Lazy Theta* algorithm
is suitable for UAV Path Planning in complex environments
with multiple constraints.

Rey et al. [113] introduced a modified Lazy Theta*
algorithm for 3D UAV Path Planning, aiming to derive a safe
and smooth path. The study includes comparisons with the
A* algorithm, considering the new cost component, and
the original Lazy Theta*, demonstrating the effectiveness of
the proposed algorithm.

Regarding heuristic/meta-heuristic methods, from a
comparative analysis of the works listed in the Table 6 we
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conclude that in this case the authors propose variants of
existing methods by analyzing their performance based on
some aspects of the Path Planning problem: complex and 3D
environments and length of the obtained path. Furthermore,
they provide a comparison with the classical method related
to the developed variant.

The Table 7 presents some advantages and disadvantages
of heuristic/ meta-heuristic methods for the UAV Path
Planning.

TABLE 7. Advantages and shortcomings in the heuristic methods for UAV
path planning.

C. MACHINE LEARNING METHODS
Machine learning, a subset of Artificial Intelligence, empow-
ers computers to respond without explicit programming.
Machine learning-based algorithms fall into three categories:
supervised learning, unsupervised learning, and reinforce-
ment learning. These categories further encompass various
algorithms, including clustering, classification, and linear
regression, all of which find applications in UAV Path
Planning [30].

Various machine learning-based methods were applied for
solving the UAV Path Planning problem as summarized in
Table 8.

1) ARTIFICIAL NEURAL NETWORK (ANN)
An ANN is a machine learning method that instructs
computers on processing data in a manner inspired by the
human brain. This network typically consists of three layers:

1) Input Layer: Processes the input elements.
2) Hidden Layer: Performs operations on the input data.
3) Output Layer: Provides response results and outputs.

This structure is illustrated in Figure 11.

FIGURE 11. Artificial neural networks. Source: Aggarwal and Kumar [30].

Yan et al. [163] introduced an enhanced approach called
the Dueling Double Deep Q-networks (D3QN) algorithm,
which is based on the deep Q-networks algorithm for UAV
Path Planning in dynamic environments. Simulations demon-
strated the superior performance of the D3QN algorithm
compared toDDQNandDQN in terms of stability, generating
safe paths, and avoiding threats.

Shiri et al. [164] introduced a neural network-based
Opportunistic Hamilton-Jacobi-Bellman (oHJB) approach to
address theUAVonline Path Planning problem. Experimental
results demonstrated that oHJB outperforms other neural
network-based algorithms in terms of path length, travel time,
and energy consumption.

2) SUPERVISED LEARNING
‘‘Supervised learning is a machine learning paradigm that
employs a training set to teach models to produce the
desired output. This training dataset consists of inputs paired
with correct outputs, enabling the model to learn iteratively.
The algorithm evaluates its accuracy using a loss function,
making adjustments until the error has been adequately
minimized [166].’’

Radmanesh et al. [167] proposed a method based on Partial
Differential Equation (PDE) to generate collision-free 3D
trajectories for multiple UAVs operating in a shared airspace.
Test results proved that the high-dimensional regression
technique performed well compared toMILP in terms of path
length and execution time.

Xie et al. [168] developed a RL algorithm based on
the heuristic function, called MARER Q-learning, for the
3D UAV Path Planning problem. Simulation results shows
that MARER Q-learning algorithm outperforms the ordinary
Q-learning algorithm in terms of path generation, computa-
tional cost, and convergence speed.

3) UNSUPERVISED LEARNING
Unsupervised learning, unlike supervised learning, utilizes
unlabeled data to discover patterns and solve clustering or
association problems. This approach is particularly valuable
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when subject matter experts are uncertain about common
properties within a dataset. Unsupervised learning includes
various clustering algorithms, such as Quality Threshold
(QT) clustering and k-means clustering, which are employed
in UAV Path Planning [169].

Tartaglione and Mariola [170] proposed an obstacle avoid-
ance strategy based on QT clustering for detect and searching
landmarks. They have also used the leader-follower technique
to solve the optimization and coordination problems of UAVs.

4) REINFORCEMENT LEARNING (RL)
In recents years, RL has been widely used to solve the UAV
Path Planning problem.

Cui and Wang [171] proposed a multi-layer Path Planning
algorithm based on RL technique. The proposed RL approach
consists of two layers of Q-learning, one is the lower layer
Q-learning and the other is the higher layer Q-learning. The
lower layer Q-learning aims at avoiding static obstacles and
leads the UAV approaching to the terminal position. The
higher layer Q-learning deals with the dynamic obstacles.
Simulation results in different scenarios proved the effective-
ness of multi-layer Q-learning algorithm.

Yang and Xiang [172] proposed an improved Q-learning
algorithm based on Greedy and Boltzmann approaches into
the Q-learning algorithm for solving the UAV Path Plan-
ning problem. Simulation results shows that the improved
Q-learning algorithm provides the shortest path and generates
minimum steps to reach the target compared to the original
Q-learning method.

Kulathunga [173] investigated the potentials of both RL-
based Path Planning and deterministic based Path Planning
and how can incorporate the best of both to develop a fast
and robust Path Planning approach in 3D environment. They
proposed a hybrid approach that combines Monticalo tree
search and RL-based approach to solve the same problem.

The works reviewed in the context of Machine Learning
methods predominantly address dynamic and 3D envi-
ronments, introducing variations to established classical
methods. The assessments of the solutions obtained from
these methods, including ANN, Supervised and Unsuper-
vised Learning, and Reinforcement Learning, primarily
focus on comparing path length, traveling time, and energy
consumption.

The Table 9 summarize the advantages and disadvantages
of the Machine Learning Methods.

D. MATHEMATICAL MODELS
In addition to the methods already reported, there are studies
in the literature that address UAV Path Planning from
the perspective of mathematical models. The approaches
includes Linear Programing, Non-Linear Programming, and
MILP. These methods often involve the utilization of solvers
to tackle the proposed models.

The work presented in [180] introduces a trajectory
planning method for cooperative Micro Aerial Vehicles

TABLE 9. Advantages and shortcomings in the machine learning methods
for UAV path planning.

(MAV) and UAV systems using convex optimization theory.
The authors establish a motion model for the system and
analyze the control process. The trajectory planning problem
for the UAV is considered, with the objective of minimizing
energy consumption and arrival time. The study simplifies the
system by focusing on one MAV and one UAV. The authors
employ the MOSEK solver for computer simulations and
compare its performancewith other solvers such as SEDUMI,
GUROBI, and SDTP3. The results indicate that MOSEK is
more suitable for the addressed problem.

In [181] they address the problem of trajectory optimiza-
tion of UAVs multi-rotor in a multiphase optimal control
framework with field area coverage and energy as two sep-
arate performance indices to be maximized and minimized,
respectively. The endurance of the LiPo battery imposes
severe constraints on the operational time of an electric
UAV during an agricultural mission, therefore, drone Path
Planning is critical to maximize the field area coverage and
minimize the operational field and minimize the operational
cost for image acquisition per flight. The authors present the
mathematical formulation for the optimal control problem
with several constraints through a Nonlinear Programming
model. Computer simulations considering one UAV were
performed throughMatlab using GPOPS-II, that is a software
applied for solving multiphase optimal control problems
using the Legendre-Gauss-Radau method. In addition, DJI
Phantom 4.0 with sensor is considered in simulating the
trajectories.

In [182] the multi-UAVs Path Planning problem is
approached from the perspective of optimization in terms
of flight angle constraint and sampling interval distribution
for radiation source location. The mathematical formula-
tion considers that the range of flight angle is inversely
proportional to the distance between the UAV and the
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radiation source. The changes of UAV altitude and flight
speed are not considered in this work, the model is not
affected by the range of flight altitude and maximum climb
angle, but the path is limited by the minimum radius
curve in addition to the cost function. That is, if the
flight radius exceeds the performance limit of the UAV at
this point, the path needs to be corrected. Computational
experiments were performed considering three UAVs. These
experiments were divided in two parts, one focusing on
the flight of flight and the other focusing on interval
sampling.

Certainly, the works highlighted in this section demon-
strate the effectiveness of mathematical models in addressing
UAV Path Planning challenges. The use of optimization tech-
niques and solvers allows for rigorous problem formulation
and efficient solution finding. If you have specific questions
about any of thementionedworks or if you’d likemore details
on a particular aspect of mathematical modeling in UAV Path
Planning, feel free to ask.

E. HYBRID METHODS
From the previously reported methods, there is a class of
methods that arises from the combination of two or more
methods and is called ‘‘hybrid methods.’’

In the UAV Path Planning problem, several ways of
hybridization are possible, the most used are: combining
two classical methods, combining a classical approach with
heuristic, combining a classical method with meta-heuristic,
and combining two meta-heuristics.

Zhang et al. [183] proposed an improved algorithm
combining APF method and RRT-Connect algorithm for
solving UAV Path Planning problem in complex static
environment, in order to reduce the cost of the UAV
flight. Simulation results showed that proposed algorithm
outperforms the traditional RRT, RRT-Connect, and APF
algorithms in terms of optimal path length and execution
time.

Shen and Li [184] proposed an improved APF algorithm
based on the combination of APF and RRT algorithms for
solving the UAV Path Planning problem. The robustness of
proposed hybrid method was evaluated in a 2D environment
with 6 circular obstacles and it proved to be more effective
than the APF in terms of path length.

Naazare et al. [185] developed a hybrid approach based
on the VG algorithm and A* algorithm. Simulations were
performed in real area and in test environments with a real
UAV and results showed that the proposed algorithm provides
an optimal path.

Ge et al. [186] proposed an improved pigeon-inspired
optimization algorithm (PIOFOA) for solving the 3D UAV
Path Planning in a dynamic environment of oilfields.
A simplified oilfield environment model is built, which
contains many dynamic obstacles and is used to simulate
actual oilfield environments. The cost function is defined
to find optimal paths, which includes: total length, average
height, total time and total electricity consumption of the

route. Compared with some other methods, simulation
results show that the proposed PIOFOA method is more
effective.

Qu et al. [187] presented a novel hybrid algoritm
combining GWO and RL algorithm, named RLGWO, for
the UAV Path Planning problem. Simulations results were
performed in 3D environment considering 8 static obsta-
cles. Comparisions with various meta-heuristic algorithms
showed that RLGWO it is robust and effective in terms
of convergence time, path cost computation, and collision
avoidance.

Ghambari et al. [188] proposed a hybrid algorithm that
combines TLBO with GA algorithm for solving the UAV
Path Planning problem. The performance of proposed hybrid
algorithm was validated in both 2D and 3D areas with the
presence of obstacles randomly distributed. Comparisions
with original TLBO algorithm in terms of best path
generation, time efficiency, and collision avoidance were
performed and showed the robustness and superiority of
proposed algorithm.

Qu et al. [189] proposed a novel hybrid approach
combining GA, Dijkstra and APF methods for solving the
global optimal Path Planning problem to fixed-wing UAVs
in multi-threat environments. The performance of the hybrid
method was validated in both 2D and 3D environments using
20 obstacles. Simulation results showed the robustness of
the proposed hybrid algorithm by obtaining a short and safe
route.

Indeed, the application of hybrid methods, combining
classical methods with heuristics or other techniques, reflects
the versatility of these approaches in addressing the diverse
challenges posed by UAV Path Planning. These hybrid
methods often leverage the strengths of different approaches
to achieve improved performance in terms of efficiency,
optimality, and adaptability to specific scenarios.

F. ANALYSIS OF METHODS FOR UAV PATH PLANNING
PROBLEM
In order to analyze the state of the art of methods for
UAV Path Planning, we have described in the previous
sections the classical methods, heuristic methods, meta-
heuristic methods, machine learning methods, mathematical
models and hybrid methods.

G. REGARDING OBJECTIVE FUNCTION AND QUANTITY OF
UAVs CONSIDERED
As for the FO, analyzing the Tables 4, 6, 8 and10 the factors
that were considered in the works analyzed were (the distance
factor was the most considered): distance, energy/fuel
consumption, path cost, threat cost, task completion time,
maximumflight time cost, travel time, path safety cost, utility
of UAV, speed and angles, total time. Still in relation to the
FO,we havemono andmulti objectivemodels in the literature
analyzed, as well as works that consider more than one factor
in the objective function, but assign weights to such factors
so that the FO has only one objective.
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The number of UAVs considered is directly related to the
application developed in each paper, and in the literature
analyzed this number varies from 1 to 10 drones.

H. REGARDING ENVIRONMENT, MODE AND OBSTACLES
As for the environment, the two-dimensional (2D) was
considered by most of the works analyzed in this review.

Regarding the mode, most of the works analyzed con-
sider the offline mode, due to the nature of application
considered.

In UAV Path Planning problem, considering obstacles it
is necessary and the works analyzed consider, for the most
part, multiple obstacles. In addition, the works also consider
static and dynamic obstacles with different shapes in order to
simulate a real environment.

I. REGARDING PATH PLANNING TECHNIQUES
Regarding the classical methods, several approaches are
developed to solve the UAV Path Planning problem: RRT,
VD, APF, VG, PRM and Dijkstra. The Table 5 provided
the advantages and disadvantages of each approach and
we can conclude that the main advantage is the ease of
implementation of the analyzed methods regarding UAV Path
Planning, providing good solutions in terms of optimization,
speed to generate paths and effectiveness static environments
with simple obstacles.

The APF and RRT methods are widely used in UAV
Path Planning and different variants of both methods have
been proposed in the literature, to name a few works [100],
[101], [102], [201], [202], [203], [204], [205], [206]. The
RRT, on the other hand, manages to deal with the issue
of obstacles, but the path length is not considered, which
is one of the weak points of this method. To work around
this RRT problem, the Dijkstra method is used, as it
finds the shortest path between two nodes. VG and VD
are classical algorithms that can be used to solve real-
time UAV Path Planning problems, although VD does not
guarantee the optimality of the obtained paths and VG
it is ineffective in environments with complex obstacles’
shapes.

Regarding the heuristic methods, the Table 7 presents
the advantages and disadvantages of each approach and
then we make some considerations. Several heuristics have
been proposed to try to overcome the disadvantages of
the classic methods and obtain more effective solutions
for UAV Path Planning, with the A* heuristic being one
of the most used in this context. This heuristic obtains
optimal paths quickly in terms of convergence and robust-
ness, but it is not very efficient when the problem is
multiobjective and the environment is dynamic. Greedy
and LKH are two effective heuristics to solve UAV Path
Planning due to their simplicity and ease of implementation,
but their computational time is high. Finally, the Theta*
heuristic overcomes the drawbacks of the previous ones
and obtains the shortest path in acceptable computational

time, however it is not suitable for dynamic and complex
environments.

With regard to machine learning methods, there are also
several approaches used in the context of UAV Path Planning.
The Table 9 presents some advantages and weaknesses of
each approach. Neural networks is the oldest technique in
this category and therefore one of the first to be used to solve
UAV Path Planning, and can be used for multiobjective prob-
lems, dynamic environments, obstacles of complex shapes,
obtaining robust solutions quickly. However, it presents high
computational complexity and is characterized as a black
box, since it is not always possible to clearly understand
the step by step to obtain the solution. To overcome
these difficulties, supervised and unsupervised learning
techniques can be used and present good solutions with less
computational complexity. Furthermore, the reinforcement
learning-based technique has been widely used, as described
in Section VI-C, and is efficient for uncertain and dynamic
environments as well as for optimizing energy consumption
However, like the other techniques in this category, the
main weakness is the long processing time for real-time
problems.

The mathematical models are solved using some of the
techniques described above or even through solvers such
as CPLEX form IBM [165]. There are several different
ways to approach UAV Path Planning using mathematical
optimization. Different restrictions can be considered, as well
as different factors in the objective function that can have
only one objective or more than one (in this case the
problem is called multiobjective). Factors such as distance,
energy consumption, travel time are the most common to
be considered for UAV Path Planning. The MILP model
is one of the most used to model UAV Path Planning,
as it allows to consider integer or mixed variables and
constraints.

Regarding hybrid methods to solving the UAV Path
Planning, several approaches are developed and present
relevant improvements as they take advantage of the strengths
of the methods used in each combination and overcome the
limitations of each individual method precisely because they
combine more than one method. In order to take advantage
of each method, the hybridization of classic methods, for
example, uses the RRT that can handle obstacles better
than APF and VG, providing safer and collision-free paths.
Dijkstra’s algorithm is used in combination with other
classical for finding the shortest path. Although, the classic
methods need all the information from the environment to
plan the paths, which results in a long processing time. This
drawback is overcome by combining classical methods with
heuristics and different approaches have been proposed for
UAV Path Planning.

Given the above regarding the different techniques used in
the UAV Path Planning problem, analyzing their advantages
and disadvantages, we can conclude that they are all
important and that the choice depends on the application to
be carried out.
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1) TYPES OF DRONES, TYPES OF PATH PLANNING
TECHNIQUES AND UAVs APPLICATIONS
In the previous sections, we listed different UAV Path Plan-
ning techniques in the general context, analyzing attributes
related to the modeling of the problem: objective function,
environment, time of domain, mode, types of obstacles,
number of UAVs considered and nature of the solution
adopted, since Path Planning strategies are usually related to
some specific application.

In this section, we present an overview of the types of
applications for which Path Planning techniques can be used.
In addition, we analyze the types of drones that can be used
in different applications based on Path Planning techniques.

Elmeseiry et al. [207] presents an review about types of
drones and different classifications of UAVs were proposed.
The first classification refers to the size: ultra-small UAVs,
including MAVs and NAVs, small UAVs, mid, and large
UAVs. Classifications according to the range, endurance,
maximum altitude, weight and configuration-based were also
represented and discussed.

Still, according to the authors, in addition to those
classified in the review article, the U.S. Department of
Defense [208] categorized UAVs into five groups based
on the Maximum Take-Off Weight (MTOW), altitude, and
speed. The Group 1, are hand-launched and portable UAVs,
used in applications involving reconnaissance, surveillance
and target acquisition; Group 2 are medium-sized UAVs,
which are also suitable for reconnaissance, surveillance,
target acquisition navigation, photography and filming.
Group 3 are larger UAVs than those in Group 1 and
Group 2; Group 4 operates at the same altitude as Group
3 and they are larger than the previous groups. In this case,
they can be used in the long-awaited delivery of goods.
Finally, in the Group 5, are the largest UAVs that can be
used in applications wide-area surveillance and penetrating
attacks [207].
Shakhatreh et al. [209] presents an extensive bibliograph-

ical review on UAV civil applications and their challenges.
The authors presented valuable considerations on the fol-
lowing applications: real-timemonitoring, providing wireless
coverage, remote sensing, search and rescue, delivery of
goods, security and surveillance, precision agriculture, and
civil infrastructure inspection; relating themost suitable types
of drones as well as the challenges and trends of future
research for each application.

Ghamari et al. [210] presents a review of the current
applications of UAVs for civil and commercial purposes
focusing challenges and communication requirements asso-
ciated with UAV-based communication systems. A detailed
analysis of the main characteristics of UAVs is pro-
vided by the authors: payload size, flight mechanism,
flight altitude, coverage range, flight time and maximum
speed.

As for the applications with the use of UAVs and the
Path Planning techniques listed and analyzed in this work,
we can say in general that the hybrid methods and the most

recent and adaptable techniques: machine learning, artificial
intelligence, convolutional neural networks can be used and
adapted for the most common applications made with the use
of drones: precision agriculture, search and rescue operations,
surveillance, remote sensing, navigation, photography and
filming and delivery of goods.

The use of drones is growing every day due to scientific
and technological advances, making different applications
possible. Each application may require a specific type of
UAV to meet the stringent requirements imposed by federal
aviation regulations, the nature of the environment and the
required quality of service. Therefore, analyzing the most
suitable types of drones for each application and, in turn,
the related Path Planning techniques is increasingly necessary
and important, and in this section we present an overview of
this topic.

VII. UAV MISSION PLANNING
In this section, we delve into UAV mission planning, also
referred to as target allocation.We’ve compiled and compared
some works in this domain. Mission planning involves the
assignment of tasks to UAVs, taking into account the capacity
constraints of the UAVs and the environmental conditions of
the mission. Factors considered often relate to the specific
application, which can range from military applications to
pattern recognition and target search.

Wang et al. [211] provide an extensive review of UAV
mission planning, focusing on UAV Path Planning. The
authors discuss various works related to UAV mission
planning and also introduce a mathematical model and
algorithm for UAV task assignment. The paper includes an
analysis of algorithms specifically designed for UAV Path
Planning.

Yu et al. [212] focus on a military application within UAV
mission planning, specifically addressing the cooperative
mission planning of multiple heterogeneous UAVs in cross-
regional joint operations. The study takes into account
resource allocation and mission priorities. A multi-objective
optimization problem is formulated, aiming to minimize
the makespan while maximizing the expected value. The
authors propose an improved genetic algorithm to solve this
optimization problem.

Gao et al. [213] address the challenge of cooperative
mission assignment for heterogeneous UAVs, taking into
account multiple task types such as classification, attack,
and verification tasks. The authors propose a multi-objective
optimization model for the problem, considering mission
gains and UAV losses. Conditional probability theory is
employed to model the objective functions. The study utilizes
an improved multi-objective genetic algorithm to solve the
formulated optimization problem.

He et al. [214] tackled the challenge of quickly recognizing
target points in a complex environment usingmultiple drones.
The authors introduce a mission planning model with the
primary objective of maximizing reconnaissance benefit.
To address this problem, a task planning algorithm based
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on ant colony optimization is proposed to enhance the
performance of the artificial fish swarm algorithm.

Huttner and Friedrich [215] conducted a systematic
review of mission management user interfaces for UAVs.
Acknowledging the pivotal role of user interfaces in UAV
mission planning and control, the authors analyze 25 articles
published between 2017 and 2023.

Shi and Zhang [216] presented a multi-objective model for
UAV swarm mission planning, taking into account factors
such as range cost, damage cost, attack benefit, and various
constraints. To address this problem, the authors proposed
an adaptive genetic algorithm, introducing improvements
to the crossover and genetic operators for enhanced
performance.

Yu and Lee [217] addressed the challenge of surveillance
and monitoring in a designated area. They proposed a Multi-
UAV Cooperative Search Algorithm for path assignment,
enabling collaborative UAV searches that involve both search
and motion tasks. The proposed approach determines the
UAV routes, facilitating the swift coverage of themission area
by multiple UAVs within a limited time.

Li et al. [218] addressed the multi-UAV Path Planning
problem for target coverage tasks in dynamic environments.
They proposed an ACO-VP algorithm by introducing a
variable pheromone enhancement factor and a variable
pheromone evaporation coefficient into the ACO algorithm.
Furthermore, they adopted a greedy strategy to choose the
optimal number of UAVs and determine the target point
allocation scheme.

Song et al. [219] present a survey on the mission planning
problem for Multi-UAVs. The authors compare the charac-
teristics of mathematical programming methods, heuristic
algorithms, negotiation algorithms, and neural networks.

Zeng et al. [220] proposed a Bayes risk-based mission
planning method for UAV-based damage inspection by
minimizing the UAV path length and the associated structural
health monitoring costs through a multi-objective optimiza-
tion model. In the computational tests of the proposed
method, the authors consider a UAV equipped with LIDAR
to complete the task of damage inspection.

Zu et al. [221] address the Path Planning problem and
task assignment. They propose a method using the Hunter-
Prey Optimizer Algorithm (HPO) and a task allocation
mechanism, aiming to achieve collaborative Path Planning for
multiple UAVs in complex tasks.

Sun et al. [222] studied the mission planning framework
for the passive UAV synthetic aperture radar (SAR) system.
The solution methodology includes defining the framework
for the mission planning problem in the context of the
SAR system, considering mission specification, illuminator
selection, and Path Planning. The problem was modeled as
a single-objective optimization problem involving multiple
constraints.

The works listed in this section are basically divided into
applications related to the mission planning problem ([212],
[213], [214], [216], [217], [218], [220], [221], [222]) and

literature reviews including both mission planning and Path
Planning ([211], [215], [219]).

VIII. DEPLOYMENTS AND INTEGRATION IN IoD
The IoD is considered the future trend and has been a focal
point in recent literature due to its flexibility and adaptability
in diverse and complex scenarios, as well as its ability
to leverage other networks. Given the complexity of IoD,
various requirements are necessary for enabling applications
in this context, including aspects such as security, privacy,
scalability, communication protocols, and integration with
other networks [13], [27], [57].

The integration and communication of UAVs within
terrestrial and space environments are primary factors that
shape the architecture of the IoD. In this context, considerable
work is still needed to establish seamless connectivity among
various spaces through effective communication protocols.
Several factors, such as scalability, reliability, data rate, and
coverage, are identified as key considerations for future
research in works addressing IoD [13], [19], [27], [60].

IoD facilitates various applications, particularly in urban
settings, and stands as a pivotal concept for developing
smart cities. Figure 3 illustrates some applications in urban
scenarios. Irrespective of the specific application, drones are
required to navigate from one point to another, avoiding
collisions. This could involve tasks such as collecting
information, monitoring environments, pattern recognition,
image capture, or even delivering goods. Consequently, UAV
Path Planning emerges as a crucial research focus in the
context of IoD.

The UAV Path Planning within the IoD framework is a
highly intricate problem, influenced by various factors such
as energy consumption, path length, softness, cost, power,
and computational time. The challenges are exacerbated by
the dynamic and uncertain nature of environments, featuring
obstacles of diverse forms. Furthermore, IoD introduces
distinctive characteristics, including the management of self-
organized aerial traffic flow, ensuring fair access to shared
wireless communication channels, and addressing security
and privacy concerns at all levels [53]. These characteristics
pose fundamental challenges for maintaining the Quality
of Service (QoS) of drones, necessitating efficient Path
Planning, lightweight communication protocols, and robust
security and privacy measures.

Given the intricacies of UAVPath Planning and the specific
demands of an IoD scenario, a pivotal research question
at the heart of this work is the feasibility of implementing
and integrating the UAV Path Planning methods previously
described within the IoD framework. To the best of our
knowledge, this review represents the first attempt in the
literature to comprehensively address UAV Path Planning
techniques specifically within the context of IoD.

Analyzing the existing methods for UAV Path Planning,
which were described in detail through the analysis of several
works in the literature published between 2018 and 2022,
as well as the advantages and disadvantages of each method,
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we can point out that UAV Path Planning in IoD has the
characteristics fundamental: 3D and dynamic environment,
obstacles of different shapes, uncertain information, real-
time planning, well-established communication between all
layers that make up the IoD, prevention of collisions and
attacks, security and privacy requirements. This is why
UAV Path Planning in IoD is still a challenge and requires
development of tools, tests in realistic scenarios, integration
with other networks, definition of the air environment and
implementation of rules about it.

In this work, the existing methods for UAV Path Plan-
ning were classified into: classic, heuristic, meta-heuristic,
machine learning, mathematical models and hybrid methods.
Based on the analyzes and considerations described through-
out this work, the IoD requirements and characteristics
of UAV Path Planning, we list some possibilities for
implementing methods to solve it in an IoD scenario. Let’s
see.

• Hybridizing meta-heuristics with more classical
approaches as well as meta-heuristics with machine
learning algorithms for optimizing the UAV Path
Planning in IoD.

• Apply the latest machine learning and meta-heuristic
techniques to solving multi UAV Path Planning in IoD.

• Incorporate uncertainties and quality of service to
UAV Path Planning in IoD and formulate mathematical
models adding restrictions related to communication
protocols, security and privacy information as well
as considering the multiobjective problem taking into
account energy consumption, distance traveled, time,
and information of the environment.

• For the integration and implementation of the Path
Planning problem in IoD, we can say that the hybrid
methods are the most suitable, precisely because they
combine more than one technique and take advantage of
their advantages, trying to overcome their weaknesses.

In the face of this intricate and still visionary scenario,
numerous challenges and areas for development emerge. The
multifaceted characteristics and diverse requirements make
it exceedingly challenging for a single work to encapsulate
the entirety of this landscape. Consequently, existing works in
the literature delineate the intricacies of the scenario, delving
into considerations about UAV Path Planning within the IoD
environment - a pivotal trend shaping the future.

IX. DISCUSSION AND FUTURE WORK
Although they have many papers addressing the drone Path
Planning problem especially in recent years, there are still
several open research questions on the topic. In this section,
we list some directions for future work regarding the UAV
Path Planning problem.

• Path Planning in three-dimensional environments
and time domain: different applications, such as
delivery, monitoring, data collection require the use
of drones, but the environment of such applications,

in general, is complex and full of uncertain factors,
so studies and optimization methods are needed for the
Path Planning of UAVs in real time in three-dimensional
space. And, despite the great potential of Path Planning
in 3D environment, the difficulties are much greater and
the problem is much more complex than Path Planning
in 2D environment, and it is necessary to consider
kinematic, geometric, physical and temporal constraints,
flight risk levels, airspace restrictions, for example.
Currently, Path Planning algorithms in 3D environment
for UAVs are urgently needed, especially in complex
environments such as urban areas caves, and forests.

• Mathematical models for the Path Planning problem
of UAVs: the need to consider multi-objective optimiza-
tion is one of the main factors that were not addressed in
the models found in the analyzed works. Several works
considered more than one factor in the FO, but attributed
weights to these factors making the FO with a single
objective. By considering the multiobjective FO, pareto
optimal solutions can be obtained taking all factors
into consideration, and this makes the mathematical
modeling of the UAV Path Planning problem more
realistic. It is also necessary to consider the constraints
that have already been addressed in the previous item.

• Experiments: regarding the experiments, all the ana-
lyzed works perform some kind of computational
simulation and some of them perform real simulations,
usually before the computational simulation. However,
these real simulations were UAV in the sense of
data collection, prototype tests to be used later in
the computational simulations and this is due to the
complexity of real simulations as well as the rules for
the use of drones, among other factors. But for the use
of UAVs to be possible in the most different applications
it is necessary to work with real experiments. Another
characteristic with respect to the experiments is the
number of UAVs considered. Obviously, the complexity
of considering several UAVs is immense, but this is a
necessary future work so that the use of UAVs especially
in urban centers becomes a reality.

• Optimization techniques: in the analyzed literature as
well as in older works, several optimization techniques
are used, modified to create new techniques, there
is also the combination of more than one technique
or method to obtain feasible and good solutions
to the UAV Path Planning problem. Regarding the
analyzed works, we can list: Heuristic methods, GA,
SA, Evolutionary algorithms, ACO, Neural networks,
Hybrid algorithms, Deep Learning, Exact methods,
Dijkstra’s algorithm, A∗ algorithm, I-GWO, Ex-GWO
algorithm, Memetic algorithm, metaheuristics, ABC,
Greedy algorithm, Machine Learning, YOLO, GRASP,
HR-MAGA, SPEA, among others. Although we have
practically listed methods that cover all the major groups
of optimization techniques, future research combining
different methods, such as artificial intelligencemethods
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with heuristic methods, fuzzy inference methods, and
variants of more widely used methods, such as heuris-
tics, is still possible. This need is due to the complexity
of the problem of the UAV Path Planning in real
environments, and the different constraints that can be
considered.

• Integration of different segments: The integration
and communication of UAVs with terrestrial and space
environments is a primary factor and involves the
architecture of the IoD. In this sense, there is still a lot
of work to be done in order to make the different spaces
connected to each other via communication protocols.
For this different factors need to be considered: scalabil-
ity, reliability, data rate, and coverage. These factors are
listed as future research in works addressing IoD [13],
[19], [27], [60].

• Security and privacy: security and privacy are crucial
factors in the UAV Path Planning problem. Security
is related to the possible attacks on the UAVs, threat
areas that need to be diverted by the UAVs during the
aerial path to be traveled, operability of the UAV (power
consumption is an essential factor to be considered for
the UAV to fly safely). In the context of IoD, security
and privacy is considered at different layers: application
layer, transport layer, and physical layer [19]. In addi-
tion, information privacy also needs to be addressed in
future work, given the UAV’s connectivity to ground
and air space, large amounts of data need to be stored
securely [53], [199], [200]. Therefore, these two factors
are relevant and in need of future research involving
them. Also with regard to security, it is important that the
path to be followed by the UAV is safe, so the security
factor addresses several aspects in the problem of UAV
Path Planning problem.

• IoD and smart cities: smart cities are connected
cities made up of smart things that can collaborate
intelligently and automatically to improve quality of
life, save lives, and sustain resources. Recently, the
advent of UAV technology has played a vital role
in improving many real-time applications of smart
cities [54]. In this context, there is still much to be done,
research involving UAVs and smart cities becomes more
and more necessary, the integration of IoD with smart
cities will make possible much desired applications such
as delivery through UAVs. For this, it is necessary
to have policies to encourage the use of drones by
promoting the economy of the sector, together with the
development of technologies such as DAA (Detect and
Avoid) and UTM (UAS Traffic Management), which
are necessary steps to increase the operational scope of
UAVs and make IoD applicable in order to make smart
cities possible.

X. CONCLUSION
The UAVPath Planning is a fundamental problem in the areas
of robotics and automation, smart cities and IoD, and has been

studied by several researchers around the world, especially in
recent years.

In this work, we approach the UAV Path Planning
problem, the methods to solve it, the aspects considered in
more than 200 works of the literature published between
2018 and 2022 aiming to trace directions of the implantation
and integration with the IoD. Furthermore, we present an
overview of the IoD scenario based on existing works in the
literature as well as on the mission planning problem.

Although widely studied, the Path Planning problem is
fundamental and necessary in different applications involving
drones and the technique to be used to obtain good results for
this depends strongly on the nature of the application to be
carried out.

We analyze classical, heuristic, meta-heuristic, machine
learning, mathematical models and hybrid methods, provid-
ing a comparative analysis, presenting the advantages and
disadvantages of each one, as well as summarizing in tables
some aspects of UAV Path Planning: quantity of drones,
objective function, environment and obstacles.

The analysis presented throughout this paper is useful in
identifying the main research results on UAV Path Planning,
and is leveraged in this paper to highlight trends and open
questions. Below, we list some of them:

1) Three-dimensional Path Planning in the context of
IoD considering the energy consumption and safety of
drones.

2) Multi-objective mathematical modeling of UAV Path
Planning.

3) Route planning in smart cities considering the IoD.
4) Development of tools that contribute to the advance-

ment of real applications in IoD.

The main challenges in this context are:

1) Airspace regulation so that it is possible to develop real
applications with drones, such as the delivery of goods.

2) The UAVPath Planning in IoD on real time considering
energy-efficient and safety.

3) Integration between drones and other means of trans-
port, such as trucks, buses, in order to generate practical
and safe applications in the context of IoD, contributing
to making cities smart.

4) Development of tools and methodologies from real
experiments that consider several drones.

Finally, it is worth highlighting that this work took
into account a considerable number of recent papers and
the analyzes and conclusions were based on them with
the aim of providing an overview, research questions and
challenges of the Path Planning problem in the context of IoD
in terms of optimization.

This work contributes to leverage the state of the art
of UAV Path Planning in IoD, in addition to highlighting
challenges and some possibilities for future work in this
complex scenario involving IoD and UAV Path Planning.
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