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ABSTRACT The emergence of Software-Defined Networking (SDN) has revolutionised network
management, offering improved flexibility, programmability, and scalability through the introduction of
centralised controllers. Such a controller, e.g. an SDN controller, typically uses an OpenFlow discovery
protocol to establish andmaintain a global view of the topology in the underlying network. An accurate global
view of the network topology is essential for effective routing, load balancing, and deployment of mobility-
based applications. However, in a hybrid multi-controller SDN network, the OpenFlow discovery protocol
introduces repetitive operations, degrading effectiveness, efficiency, and scalability. This paper addresses this
issue by presenting a novel link discovery framework for establishing and maintaining topology information
in a hybrid multi-controller SDN network. The framework, named EESLD, uses an event-driven approach
utilising the Bidirectional Forwarding Detection (BFD) protocol to detect direct and indirect SDN links
in intra-domain and inter-domain networks. Additionally, EESLD uses the sFlow protocol to discover and
monitor legacy links and employs a distributed messaging system to maintain a consistent network view
across controllers. The EESLD framework has been implemented and evaluated on a Mininet emulator with
an RYU controller and sFlow server. Performance evaluation results show that the EESLD framework can
discover direct SDN links 10.3 times faster than OFDPv2, and indirect SDN links 12.9 times faster than
BDDP in a network with 85 switches. Evaluation results also indicate that the sFlow-based link discovery
outperforms the OSPF-based link discovery in legacy link discovery and removal times. These results show
that the EESLD framework is a more effective, efficient and scalable solution for dynamic and large-scale
hybrid multi-controller SDN networks.

INDEX TERMS Software-defined networking (SDN), topology discovery, link discovery protocols,
OpenFlow protocol, hybrid SDN, multi-controller SDN.

I. INTRODUCTION
In recent years, the fast evolution of mobility, cloud
computing, virtualisation, and multi-tenant networks has
presented increasing challenges in managing traditional
networks. In response to these challenges, Software-Defined
Networking (SDN) has emerged as a viable solution
for simplifying network management tasks and offering
flexibility in managing network resources. SDN separates
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the control and data planes of network devices, enabling
centralised network management and configuration. SDN
has been widely adopted in data centres, campus networks,
and wide area networks, providing significant benefits
such as improved network programmability, flexibility and
scalability. Notably, it has been adopted in Google’s private
backbone network called B4 [1] to interconnect their global
data centre networks.

The SDN conceptually centralises the control plane in an
entity known as the SDN controller. The controller com-
municates with and controls the devices within the network
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infrastructure, functioning as the central managing entity.
The controller maintains a complete view of the network
topology by periodically gathering topology information
from the switches in the network. This approach allows for
a comprehensive understanding of the underlying network
structure, encompassing hosts, switches, and the connections
between switches. Keeping this global view accurate and up-
to-date is essential to ensure optimal performance of various
core services and applications provided in the network, such
as routing, host migration tracking, load balancing, and
topology-based slicing. An SDN controller uses a topology
discovery mechanism to discover and maintain network
topologies.

The Link Discovery Service (LDS), a core service run
on an SDN controller, is vital to topology discovery.
It detects and tracks the presence of SDN links between
network devices. Currently, the OpenFlow Discovery Pro-
tocol (OFDP) [2] is the most widely used in the SDN
controllers for link discovery. OFDP uses the conventional
Link Layer Discovery Protocol (LLDP) but incorporates a
specific packet structure and adjusted operations to align
it with the SDN framework [3]. LLDP is designed to
discover one-hop SDN links between OpenFlow switches
but not indirect multi-hop SDN links. Therefore, Broadcast
Domain Discovery Protocol (BDDP) [4] was proposed to
discover indirect SDN links that span multiple hops and are
separated by legacy links within the same broadcast domain.
BDDP is supported in open-source SDN controllers such as
Floodlight [5] and OpenDayLight (ODL) [6]. However, the
link discovery protocols, such as LLDP and BDDP, have
several limitations when discovering links within dynamic
and large-scale hybrid multi-controller SDN networks.

The first limitation relates to the discovery of various links
within the network. It includes the inability to identify unicast
and broadcast legacy links, as well as inter-domain links
that connect different SDN domains, each managed by a
separate controller. If these links are not discovered, it limits
SDN controllers from having a comprehensive view of the
network. As a result, it is challenging for the SDN controller
to effectively manage and optimise the network’s routing
decisions. The second limitation is related to the repetitive
method of link discovery, where controllers periodically
query the status of each link. This process involves sending
LLDP/BDDP packets to all the active ports within the
network. As the network expands, the number of messages
exchanged for complete link discovery and maintenance
significantly increases. This high volume of traffic can
lead to the risk of network congestion and adds substantial
overhead to the controller’s workload. Also, in dynamic
environments like multi-tenant cloud data centres, where
network states change frequently, the periodic and relatively
long interval of link discovery (e.g., every 15 seconds with
floodlight controller) fails to provide an up-to-date view
of the network topology [3]. As a result, application-level
network services such as routing may operate using outdated
network configurations until they are updated again. There is,

therefore, a need to address the limitations of link discovery
protocols to achieve a more effective, efficient and scalable
solution for dynamic and large-scale hybrid multi-controller
SDN networks.

Works that have focused on addressing link discovery
limitations in dynamic and large-scale hybridmulti-controller
SDN networks can be categorised into two groups: SDN
link discovery solutions and legacy link discovery solutions.
SDN link discovery solutions aim to overcome the limitations
by enhancing the existing link discovery protocols in SDN
environments. For instance, the authors in [7] have proposed
a modification to the existing OFDP implementation called
OFDPv2. Their goal was to minimise the controller’s over-
head by reducing the number of Packet_Out messages sent
during the OFDP discovery process. Chang et al. [8] proposed
an approach that leverages LLDP-capable switches to transfer
LLDP frames amongst neighbouring switches and relay
any topology change to the controller. This approach offers
benefits such as reduced CPU utilisation and the required
number of packets for discovery. In addition, Rojas et al. [9]
proposed a Tree Exploration Discovery Protocol (TEDP) to
reduce the overhead of LLDP-based discovery. TEDP sends a
single probe frame to a randomly chosen switch, which floods
the network and explores the entire network simultaneously.
Another approach for SDN link discovery was proposed by
Ochoa-Aday et al. [10]. This approach divides the discovery
process into phases and distributes the discovery functions
among network nodes hierarchically. Hussain et al. [11]
proposed a novel frame format to discover inter-domain link
information in multi-controller SDN networks. Legacy link
discovery solutions, on the other hand, focus on addressing
the inability of existing link discovery protocols, such as
LLDP and BDDP, to discover legacy links within hybrid SDN
networks. One solution is using the Link State Advertisement
(LSA) in Open Shortest Path First (OSPF) routing protocol
to discover and maintain information about legacy links in
hybrid SDN networks [12]. The intermediate SDN switch
intercepts LSA messages from directly connected legacy
switches. It then forwards them as packet_in to the SDN
controller to build and update the topology information. Other
solutions involve intercepting ARP [13] and STP [14] packets
to facilitate the discovery of legacy links in the broadcast
domain of hybrid SDN networks. Kuliesius and Giedraitis
[15] use SNMP requests and trap messages via the SNMP
southbound plugin SNMP4SDN [16] to acquire topology and
device state information from legacy network devices. More
detailed discussions of related SDN and legacy link discovery
solutions are given in section V.

However, these prior works have limitations. First, current
link discovery solutions are specifically designed for either
SDN or conventional/legacy networks. In a hybrid SDN
network that integrates multi-controller SDN infrastruc-
tures, these solutions fail to afford an SDN controller a
holistic understanding of the complete network topology.
This limitation restricts the ability of the controllers to
effectively manage and optimise the network. The second
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open issue is how to reduce the time it takes to detect
topological changes. This detection time directly impacts
SDN controllers’ responsiveness to changes in network
topology, especially in hybrid SDN networks that include
legacy switches. Any changes in the network, such as adding
or removing devices, can lead to changes in network link
configurations and, therefore, the overall network topology.
To ensure effective network management and optimal
performance, it is crucial for SDN controllers to promptly
detect and adapt to these topological changes. Furthermore,
it is crucial for the link discovery solution to be designed
with scalability while addressing the mentioned issues. This
means that the solution should be able to handle larger
networks without sacrificing performance or introducing
significant overhead to the SDN controllers. Link discoveries
require regular operations, which can result in increased
communication and computational overhead for both SDN
controllers and switches. To minimise these overheads, it is
crucial to design efficient link discovery operations as the
network expands, the number of network switches and
links increases, or when there are more dynamic changes
in the network topology. Therefore, how to effectively
discover and maintain a comprehensive view of dynamic
and large-scale hybrid multi-controller SDN networks while
minimising overloads as much as possible, is still an open
research issue.

As part of our efforts to tackle this issue, this paper
describes the design and evaluation of EESLD, a novel
framework for effective, efficient and scalable link discovery
in hybrid multi-controller SDN networks. The novelty of the
EESLD framework lies in its ability to obtain and maintain a
comprehensive view of the network topology in dynamic and
large-scale hybridmulti-controller SDNnetworks. To achieve
this, EESLD employs four novel methods. First, the Event-
Driven SDN Link Discovery (EDSLD) method uses the Bidi-
rectional Forwarding Detection (BFD) protocol to discover
direct and indirect SDN links within intra-domain and inter-
domain networks. Second, the Priority-Based Link Status
Inspector (PILSI) method is used to monitor the SDN links
status by selectively polling a few critical switches, which
ensures coverage of all discovered SDN links. Additionally,
it prioritises switch updates based on their respective impor-
tance. Third, the sFlow-Based Legacy Topology Mapping
(FDLTM) method uses the sFlow protocol to discover
and monitor broadcast and unicast legacy links within the
network. Fourth, the Network-Wide Topology Consistency
(NWTC) method employs a distributed publish-subscribe
messaging system to synchronise and maintain a consistent
view of the network status across SDN controllers. This study
offers the following significant contributions:
• We propose an effective, efficient, and scalable link
discovery framework called EESLD. EESLD provides
a comprehensive view of the network topology in
dynamic and large-scale hybrid multi-controller SDN
networks. The EESLD framework incorporates sev-
eral novel methods to address the limitations of the

existing link discovery protocols, such as LLDP and
BDDP.

• We implemented the EESLD framework on the Mininet
emulator with the RYU controller and sFlow server.
In addition, we evaluated the performance of EESLD
over different network scales. The experimental results
were compared with those of the state-of-the-art
protocols.

The rest of the paper is organised as follows: Section II
overviews OpenFlow-based Software Defined Networks
(SDN), hybrid SDN, and the topology discovery mechanism.
Section III introduces the use case and motivation for our
research. Section IV presents the requirements specification.
Section V comprehensively analyses the existing solutions
and their limitations. Section VI introduces the high-level
ideas used to design the EESLD framework. Section VII
describes the assumptions about the network environment
and system operation. Section VIII provides a detailed
explanation of the EESLD architecture and its components.
Section IX presents the performance evaluation of the
EESLD framework. Section X presents the limitations
and future works of the EESLD framework. Finally, the
conclusions are drawn in section XI.

II. BACKGROUND
This section provides an overview of OpenFlow-based Soft-
ware Defined Networks (SDN), hybrid SDN and topology
discovery mechanisms in traditional and SDN networks.

A. SOFTWARE-DEFINED NETWORKING
Software-Defined Networking (SDN) is a programmable
framework that decouples the control plane from the data
plane, allowing one control plane tomanagemultiple devices.
In traditional networks, the control logic is distributed
across network devices, making it difficult to manage and
configure large-scale networks. SDN addresses this issue by
offering a centralised control plane that simplifies network
management via programmable interfaces. This centralised
control plane increases flexibility, scalability, and efficient
network configuration, making it a preferred choice for
modern network architectures.

As shown in Figure 1, the SDN architecture comprises
three main components: the application, control, and infras-
tructure layer [17], [18], [19], [20]. Each layer is responsible
for specific functions within the architecture. The application
layer provides services to end-users, the control layer
implements network policies and manages traffic flows,
and the infrastructure layer consists of network devices.
Moreover, the application and control layers communicate
via an unstandardised northbound API. The Representational
State Transfer (REST) protocol is the most commonly used
northbound interface [21]. The OpenFlow protocol is widely
used as the southbound API for communication between the
SDN controller and infrastructure devices [22].

Although SDN presents numerous advantages, its full
implementation in networks is often restricted by various
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FIGURE 1. General architecture of SDN layers.

factors, including the complexity of the deployment, organ-
isational constraints, and technical limitations. To address
these challenges, a hybrid approach that integrates SDN with
traditional networking could provide a more feasible and
progressive path for existing networks to transition towards
SDN.

B. HYBRID SDN
Hybrid SDN is a network architecture that merges centralised
and decentralised approaches to configure, control, and
manage network behaviour. Unlike traditional switches that
rely on distributed algorithms such as Interior Gateway
Protocol (IGP) for traffic routing management, an SDN
controller routes traffic based on a global perspective.
Combining these approaches gives rise to a hybrid SDN
architecture where some traffic follows the conventional
route while the SDN controller controls others. An example
can be found in Google’s B4 project [23], where they
integrated an SDN application with a routing protocol to
enable interaction between SDN switches and traditional
routing protocols like OSPF.

The survey by Amin et al. [24] identifies two primary
types of hybrid SDN deployments. These include integrating
SDN switches into legacy networks and utilising hybrid
switches supporting traditional networking functions and
SDN capabilities. The gradual transition from traditional
infrastructure to SDN is both cost-effective and technically
feasible, as highlighted in the study by Hong et al. [12].
Therefore, hybrid SDN has become a favoured transitional
solution for many organisations, merging the strengths
of both traditional networking and SDN technology in a
balanced compromise.

C. TOPOLOGY DISCOVERY SERVICE
Topology discovery is a critical component of network
administration and operation. The significance of topology

discovery is the ability to provide a comprehensive visual-
isation of the network’s structure for troubleshooting, load
balancing, identifying potential bottlenecks, and planning for
future growth. This section describes the topology discovery
process in both traditional and SDN networks.

1) TOPOLOGY DISCOVERY IN TRADITIONAL NETWORKS
Topology Discovery in the context of traditional networks
forms the basics of effective routing protocols and switching
techniques. The network typology discovery methods in
traditional networks can be classified into physical and
logical topology discovery [25]. The physical topology
discovery is discovering the physical connectivity among
entities in a network. The logical topology discovery, on the
other hand, aims to establish logical connections based on the
network components’ IP addresses.

In detail, physical topology discoveries are usually based
on MAC address tables collected from switches. The tech-
niques used for this purpose include SNMP, ARP, and STP
methods. The SNMP-based method queries every network
device individually and then pieces the complete topology
information together. The SNMP protocol enables communi-
cation between a manager and an agent on a managed device.
The agent accesses theManagement Information Base (MIB)
database through initiated GET or SET requests from the
manager. Moreover, agents can automatically send SNMP
traps to notify managers of events such as topology changes.
ARP-based method discovers network entities from the ARP
table of any switch or router in the network. ARP maps an
IP address to a physical (MAC) address on a local network.
Gratuitous ARP (GARP) serves as a specialised form of ARP
designed to keep devices on a local network informed about
any changes in IP-to-MAC address mappings. By sending
out a GARP frame, a network device announces its presence
within the network, typically triggered by device boot-up or
a change in the status of a specific link.

Moreover, the STP-based approach indirectly aids in
discovering the structure of a network by identifying its active
topology using information about existing links and their
statuses. Conventional network nodes within a connected
segment transmit STP messages through all available ports
except those directly connected to user-end devices. Every
STP message carries information, such as switch MAC
address and port ID, that can be utilised to build network
topology views.

Logical topology discoveries are used to construct a logical
view of the network topology from layer-3 information. This
can be achieved through the exchange of control messages,
such as the Link State Advertisement (LSA) in Open Shortest
Path First (OSPF) or BGP speaker announcements in Border
Gateway Protocol (BGP). The LSAmessages are sent by each
node in the network under specific conditions to maintain
an up-to-date and accurate view of the network topology
across all nodes. Using LSAs, OSPF ensures that routers in
the network have the latest information about the addresses
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FIGURE 2. The format of LLDP packets.

and connectivity of all interfaces in the network. BGP speaker
announcements, on the other hand, provide information about
routes between autonomous systems. The announcements are
only sent when there is a change in the routing table or
during the initial exchange of routes. This exchange of route
information helps BGP speakers update their routing tables
and ensure they have the most up-to-date information about
the network topology. Moreover, SNMP can query layer-3
devices to obtain detailed information, including data from
the device’s routing table, which lists all known network IP
addresses along with the corresponding next hop for each
network.

2) TOPOLOGY DISCOVERY IN SDN
Topology discovery is a process the SDN controller uses to
learn about the three main network entities: hosts, network
equipment (e.g., switches), and the interconnected links
between the switches. The SDN controller discovers the
actual location of the hosts within the network by utilising
the Host Tracking Service (HTS) [26]. OpenFlow switches
are discovered during the initial handshake process with
the controller. The links between switches are discovered
and tracked by a Link Discovery Service (LDS) [26]. LDS
can dynamically discover network links by leveraging the
OpenFlow Discovery Protocol (OFDP).

OFDP is considered a de facto protocol for link discovery
in current mainstream SDN controllers [3], [27]. The OFDP
adopts the layer 2 Link Layer Discovery Protocol (LLDP)
with a few modifications to the protocol operation for
compatibility with the SDN architecture. The SDN controller
intercepts LLDP packets and extracts topology information
to create an abstract network view. Figure 2 shows the format
of the LLDP packet, which is divided into the header and
payload. The header contains a destination address, source
address, and Ethernet type. The payload of the LLDP packet
consists of a different set of Type-length value (TLV) fields.
Some controllers maintain a distinct set of TLVs. The Chassis
ID, Port ID, and Time To Live (TTL) TLVs are used to store
the switch data path ID (dpid), port number, and timestamp,
respectively. The Optional TLVs store additional information
not required for the topology discovery process.

Figure 3 illustrates the discovery process of the unidirec-
tional link between the two OpenFlow switches (denoted by
S1 and S2). The discovery process can be divided into four
steps.
Step 1. The SDN controller, denoted as C0, initiates a request
to obtain information regarding the active ports of switch

FIGURE 3. Discovering a unidirectional link from S1 to S2 using OFDP.

S1. Afterwards, C0 encapsulates each LLDP packet within
a Packet-Out message for every active port identified in S1.
Finally, the controller sends these encapsulated packets to
switch S1.
Step 2. Once the Packet-Out message reaches switch S1,
it forwards the LLDP packet to port 1.
Step 3. When switch S2 receives the LLDP packet, it sends it
to controller C0 as a Packet-In message with the LLDP packet
encapsulated as payload.
Step 4. Controller C0 receives a Packet-In message with
metadata for the destination switch’s ID and port number.
Using the LLDP payload and metadata, the LDS can identify
a unidirectional link from switch S1 to switch S2.

Many SDN controllers can identify bidirectional links,
which involve executing the same process in a reverse
direction [28].

III. USE CASE AND MOTIVATION
We introduce a use case called Hybrid Multi-controller SDN
Network (HMSN) as an example of a dynamic and large-scale
data centre environment, as shown in Figure 4. The HMSN
possesses several distinct characteristics:
• Multi-controller: this refers to the use of multiple
controllers in the HMSN to manage and control the net-
work. Multi-controller SDN distributes the control plane
across multiple controllers, allowing for better scalabil-
ity and fault tolerance. Each controller is responsible
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FIGURE 4. HMSN use case.

for a subset of the network, and they communicate with
each other to ensure consistent network-wide policies.
As network size increases, a single centralised controller
may not be able to handle the increasing demand for
flow processing. Therefore, multi-controller SDN is a
promising solution for large-scale networks.

• Hybrid SDN Network: this involves the integration
of traditional networking devices with modern SDN
technology. This approach allows for a gradual transition
to SDN while maintaining compatibility with legacy
devices. The network is orchestrated through an SDN
controller, which manages a portion of the devices
while others continue to operate using conventional net-
working protocols. This combination protects existing
network infrastructure and promotes future innovation.

• Dynamic network: this refers to a constantly evolving
network that can have new switches or links added
or removed at any moment. In addition, the changes
to the topology occur frequently over a short period.
The dynamic nature of these networks allows for adapt-
ability to changing demands, potentially optimising
performance by reducing latency and ensuring efficient
resource allocation.

In such a use case, SDN controllers must be able to
construct an immediate and up-to-date view of the network
topology and status to act as centralised management systems
and effectively address forwarding requests from network

switches. The SDN controllers need to effectively discover
and maintain the status of different types of links in a hybrid
multi-controller SDN network, including inter and intra-
domain SDN links, as well as unicast and broadcast legacy
links. Moreover, to ensure optimal utilisation of network
resources and enable network administrators to make well-
informed decisions in real-time, SDN controllers need an
efficient discovery process that promptly updates the central
controller with minimal overhead. As the network grows,
both in terms of nodes and complexity, the topology discovery
mechanism must handle this growth without degradation in
performance. Therefore, it would be desirable to have an
effective, efficient and scalable network topology discovery
solution to provide topology discoveries in a dynamic and
large-scale hybrid multi-controller SDN environment.

IV. REQUIREMENT SPECIFICATIONS
Based on the HMSN use case, the following gives the
requirements for designing an Effective, Efficient and
Scalable Link Discovery (EESLD) framework.

A. FUNCTIONAL REQUIREMENTS
(FR1) Inter-domain and intra-domain SDN link discovery:
it should be able to discover links between any pair of SDN
switches within the same domain and between any pair of
SDN switches in different domains, such as those managed
by different SDN controllers.
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(FR2) Indirect SDN link discovery: it should be able
to discover indirect links between pairs of SDN switches
separated by legacy switches.

(FR3) Legacy link discovery: it should be able to discover
links between any pairs of legacy switches in both unicast and
broadcast networks.

(FR4) Link status change detection: it should be able to
detect link status changes for both direct and indirect links.

(FR5) Dynamic topology support: it should be adaptable
to dynamic topological changes.

B. EFFICIENCY REQUIREMENTS
(ER1) Low bandwidth consumption: the bandwidth con-
sumption introduced by the protocol should be as low as
possible.

(ER2) Quick response to topology changes: the learning
time required for an SDN controller to respond to any
topology change should be as short as possible.

V. EXISTING SOLUTIONS AND ANALYSIS
A large body of research has focused on improving the
efficiency of link discovery in pure SDN networks with a
single controller. However, limited works have addressed link
discovery’s effectiveness, efficiency, and scalability in hybrid
multi-controller SDN networks. A recent review study [29]
discussed the state-of-the-art solutions that provided efficient
and secured topology discovery solutions. In addition,
several surveys [3], [30], [31] discussed an overview of the
performance and scalability issues of the SDN-OpenFlow
topology discovery. Since the scope of this paper is to
investigate and evaluate the effectiveness, efficiency and
scalability of SDN and legacy link discovery for hybridmulti-
controller SDN networks, we categorise existing solutions
into two main groups: SDN link discovery solutions and
legacy link discovery solutions.

A. SDN LINK DISCOVERY SOLUTIONS
Depending on the approaches taken, existing solutions
to SDN link discoveries can largely be classified into
three groups: LLDP-based, tree exploration-based and
hierarchical-based approaches.

1) LLDP-BASED APPROACH
The methods with this approach focus on enhancing the
OpenFlow discovery protocol (OFDP) by exploiting the Link
Layer Discovery Protocol (LLDP) capabilities. By using
LLDP, researchers aim to reduce the overhead of discovery
traffic, improve the scalability and performance of SDN, and
make the discovery process more efficient.

Pakzad et al. [7] proposed a modification to the existing
implementation of OFDP, known as OFDPv2. Their objective
was tominimise the overhead of theOFDP discovery protocol
by reducing the number of Packet_Out messages sent by the
controller. Instead of individually sending an LLDP packet
for each active port on every switch, they introduced a
periodic transmission system where only one LLDP packet

is sent per switch. The switches are then directed to duplicate
this LLDP packet for each port and transmit it after modifying
the Ethernet header’s source MAC address - allowing
neighbouring egress switches to identify the source port
accurately. Consequently, this approach successfully reduces
SDN controller-imposed overhead regarding Packet_Out
messages.

Gebre-Amlak et al. [32] proposed a method in which
multiple frequencies are used to represent various zones
within the fixed tree network topology. The authors manually
classified the tree topology into three distinct zones -
core, aggregation, and edge zone. Since a failure in the
core zone has a more significant impact on the network
than a failure in the aggregation or edge zones, the core
zone receives more frequent discovery messages. However,
it is worth mentioning that this approach does not offer
an automated means of determining network relevance
and may not apply to other types of network topologies.
Alenezi et al. [33] proposed using multiple discovery timers
based on switch significance instead of a single timer for
the entire network. This approach utilises centrality models
to facilitate a method for identifying general significance.
The proposed method is adaptable and can be applied
to various network topologies, including tree, star, linear,
grid, and wireless networks, without requiring manual
configuration.

Additionally, Zhao et al. [34] introduced the Efficient and
Secure Link Discovery (ESLD) scheme, which categorises
the ports of an SDN switch into two types: ‘Switch’ and
‘Host’. The switch ports establish connections between SDN
switches, while the host ports connect to end users. ESLD
optimises efficiency by restricting LLDP packet transmission
to switch ports. Therefore, ESLD efficiency directly depends
on the number of switch ports in the SDN networks.
Another research work by Nehra et al. [35] proposed the
Secure and Lightweight Link Discovery Protocol (SLDP),
mainly developed to address various security threats. SLDP
uses a modified packet format for link discovery, reduc-
ing unnecessary features from the standard LLDP frame.
In addition, it classified ports into two categories: switch
and host ports. SLDP packets are exclusively sent to switch
ports. If the SDN controller receives an SLDP packet from
the host ports, it will be immediately dismissed to avoid
attacks.

Engineering et al. [36] proposed OFDPx, an enhanced
version of OFDP that divides network links into multiple
paths and utilises one probe packet per path for link discovery.
This approach effectively reduces the probe packets required
for complete link discovery. The implementation of OFDPx
consists of the initial stage and the update stage. In the
initial stage, the network topology is discovered following
a procedure similar to standard OFDP. Subsequently, in the
update stage, the discovered network links are divided into
multiple paths, each detected using a single probe packet. The
objective behind OFDPx is to minimise message exchange
and optimise resource consumption.
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Another research study by Gu et al. [37] called Im-
OFDP aims to reduce the number of link discovery packets
in topology discovery. The Im-OFDP topology discovery
process is divided into initialising and updating stages. In the
initialisation stage, the controller discovers network links and
identifies supporting switches that cover all the discovered
links using a minimum vertex cover algorithm. Additionally,
predefined flow rules are installed on each supporting switch
to direct LLDP packets to assigned ports. In the update stage,
the controller sends a single LLDP packet to each supporting
switch. Then, each switch encapsulates and distributes the
LLDP packet to regulated ports. Instead of sending the
LLDP directly to the controller as a Packet_In, the switch
sends the LLDP packet back to the source switch. The
source switch then forwards the packet to the controller as
a Packet_In, establishing a bidirectional link between the
switches.

The SDN controller periodically initiates the OFDP pro-
cess to maintain an updated global topology view. However,
this can lead to redundant and unnecessary discovery traffic
being sent to the controller. To address this issue, researchers
[8], [13], [38], and [39] have proposed event-driven discovery
mechanisms that initiate network topology discovery only
when changes occur. In their study, Azzouni et al. [38]
propose a Secure and Efficient Topology Discovery Protocol
called sOFTDP as a novel and efficient alternative protocol to
the current OFDP. sOFTDP discovers the network topology
based on specific events instead of periodically sending
discovery packets. When it receives port-status messages,
sOTFDP sends an LLDP packet to the corresponding port to
learn newly added links. Additionally, it uses Bidirectional
ForwardingDetection statusmessages to promptly detect link
removal from the network topology.

Tarnaras et al. [13], [39] presented an event-based
generic topology discovery algorithm. The authors used
the Forwarding and Control Element Separation (ForCES)
framework to construct the network topology by directly
extracting LLDP messages from the switches. This method
actively notifies the controller of any changes in the physical
topology as they occur. Similarly, Chang et al. [8] proposed
an approach that leverages LLDP-capable switches to transfer
LLDP frames amongst neighbouring switches and relay any
topology change to the controller.

The research stated that using a periodic operation method
may generate excessive discovery traffic to the controller
without topology changes, leading to scalability issues
in large-scale networks. In addition, these works provide
marginal or no reduction in link learning times. This may
not be suitable for highly dynamic networks where links and
devices undergo frequent changes, as it could cause delays
in updating the topology information. On the other hand,
the research that adopted the event-driven operation method
for topology discovery often required switch modifications
to support specific event-triggering functionalities. These
modifications may not always be feasible to deploy due to
hardware or software limitations, or they may not be cost-

effective. Furthermore, the event-driven approach can lead to
delays if the triggering events are not processed promptly,
causing the network’s topology information to be outdated
or incorrect, which might affect application-level network
services, such as routing.

2) TREE EXPLORATION-BASED APPROACH
Tree exploration link discovery offers an alternative approach
to discovering SDN topology. It reduces traffic overhead by
using a single probe frame that originates from the controller
and floods the network. As this probe frame traverses the
network, it gathers topology information at each hop and
directly transmits it to the controller.

Rojas et al. [9] proposed a Tree Exploration Discovery
Protocol (TEDP) to reduce the overhead of the point-to-
point LLDP-based discovery process. TEDP achieves this by
sending a single probe frame to a randomly chosen Open-
Flow switch, which floods the network and simultaneously
explores the entire network. Furthermore, TEDP can establish
the shortest paths without introducing additional messages
during discovery. While this method reduces the number of
control plane packets for efficiency, the switches must be
able to install their own forwarding rules, which requires
modification of the switches for optimal performance.

Hussain et al. [40] propose a layer two link discovery
scheme with a novel frame format to discover the network
topology. The proposed scheme discovers the network
topology by sending a singular probe frame to any OpenFlow
switch. As the frame traverses through the network, each
OpenFlow switch that receives it forwards it to the controller,
subsequently updating the topology database. Hussain et al.
[11] extend the scheme to discover inter-domain link infor-
mation under a multi-controller environment’s jurisdiction.

Jia et al. [41] proposed a new topology discovery
protocol called Lightweight Automatic Discovery Protocol
(LADP) for OpenFlow-based SDN networks. LADP enables
the discovery of interconnected links between switches
without requiring modifications to the OpenFlow protocol or
switches. In LADP, the controller sends a single probe frame
to a randomly selected root switch to initiate the exploration
of the whole network. The root switch broadcasts the LADP
frame to neighbouring switches, which then relay it to their
neighbours while also forwarding it to the SDN controller.
By analysing all received LADP frames, the SDN controller
can obtain information about all interconnected links in the
network.

Moreover, Alvarez-Horcajo et al. [42] proposed the
Hybrid Domain Discovery Protocol (HDDP) to enhance
network topology discovery in a wire SDN network that
incorporates both SDN and non-SDN switches. HDDP
employs a flooding-based network exploration model to
discover non-SDN devices. Additionally, it introduces a
lightweight agent on top of switches that implements HDDP
and indirectly communicates topological information to the
SDN controller. Subsequently, the authors in [43] enhanced
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HDDP to facilitate topology discovery in various wireless
networks.

In dynamic network environments, the tree exploration
link discovery method may face difficulties adapting to
frequent topology changes. This can lead to outdated or
inaccurate information about the network structure and longer
times for learning new links, as it requires traversing the
entire network before detecting all modifications in topology.
Furthermore, this approach necessitates switches installing
memory-intensive rule groups or adjusting their forwarding
rules.

3) HIERARCHICAL-BASED APPROACH
Hierarchical distributed discovery offers an alternative
approach to exploring the topology of SDN networks.
This approach divides the discovery process into phases
and distributes the discovery functions among network
nodes hierarchically. Ochoa-Aday et al. [10], [44] proposed
an enhanced Topology Discovery Protocol (eTDP) that
hierarchically distributes the discovery functions among
network nodes. eTDP selects network nodes for aggregating
the topology information and sends it to the controller.
The selected nodes periodically send topology information
to maintain an accurate global network view in the SDN
controller. In detail, eTDP classified the SDN switches into
three types (leaf, v-leaf and core). Leaf switches have only
one adjacent switch, whilst those withmore adjacent switches
are called ‘v-leafs’. The remaining SDN switches in the
network are classified as the ‘core’. Core switches aggregate
topology information from neighbouring switches and send
it to the SDN controller. The authors in [45] incorporate
eTDP with failure recovery, which provides self-healing
capabilities in SDN. Each forwarding element has to support
the proposed algorithm through an agent. This follows a
hybrid non-standard approach to SDN, potentially imposing
additional workload on data plane devices. Furthermore,
the aggregating of discovery topology information can lead
to delay constraints. In networks that experience frequent
changes in topologies, keeping up with these alterations can
pose challenges, leading to outdated or inaccurate topology
information.

B. LEGACY LINK DISCOVERY SOLUTIONS
In hybrid SDN networks, legacy link discovery solutions
employ various approaches to provide the SDN con-
troller with an accurate and current topology view of
the legacy networks [46]. Based on these approaches,
existing solutions can be classified into three main cate-
gories: Routing Protocols-based Approach, Link andAddress
Resolution-based Approach, and Network Management-
based Approach.

1) ROUTING PROTOCOLS-BASED APPROACH
With this approach, network topology discovery is achieved
through the exchange of control messages, such as the

Link State Advertisement (LSA) in Open Shortest Path
First (OSPF) or BGP speaker announcements in Border
Gateway Protocol (BGP). These messages hold details about
the network’s link structure, which are then sent to the
SDN controller. The controller extracts the information
from these control messages to construct a complete
view of the network topology and to detect topology
changes.

The authors [12], [47], [48], [49], [50], [51], [52], [53],
[54], and [55] use OSPF-LSAs messages that are flooded
throughout the entire network to ensure all routers have
a consistent and updated view of the network topology.
These LSA messages are sent by each legacy switch under
specific conditions, such as when a link goes up or down.
The intermediate SDN switch intercepts LSA messages
and forwards them as Packet_In to the SDN controller.
Similarly, BGP speaker announcements provide information
about paths to reach different parts of the network. These
announcements are only sent when there is a change in
the routing table or during the initial exchange of routes.
Gämperli et al. [56] proposed a special BGP router, known
as the cluster BGP speaker, which facilitates communication
between external BGP routers and the SDN controller. Each
cluster BGP speaker is connected to an SDN switch, which
redirects BGP announcements to the SDN controller as
Packet_In. The controller uses these announcements to build
a map of the network topology.

A Routing Protocol-based approach offers advantages in
discovering network topology and identifying nodes from
various vendors. However, due to its slow convergence
time, this approach does not adequately support changes
to network topology. It can result in significant delays in
network change detection by the SDN controller. In addition,
it is applicable only for Layer 3 switches as it does not
provide visibility into physical links and switches present
at Layer 2.

2) LINK AND ADDRESS RESOLUTION-BASED APPROACH
This approach uses protocols like the Address Resolution
Protocol (ARP) and Spanning Tree Protocol (STP) for
network topology discovery in hybrid SDN networks. This
approach discovers network topology by exchanging control
messages at the link layer.

Tarnaras et al. [13] proposed using Gratuitous ARP
(GARP), a specialised form of ARP, to discover the legacy
links in a hybrid SDN environment. GARP is designed
to keep devices on a local network informed about any
changes in IP-to-MAC address mappings. By sending out
a GARP frame, a network device announces its presence
within the network, typically triggered by device boot-up or
a change in the state of a specific link. The SDN controller’s
detection of these GARP frames has proven highly effective
in discovering the network’s topology.

The STP protocol is crucial in identifying links and
handling link failures effectively. Within a connected
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TABLE 1. Comparative table of the existing solutions of link discovery in hybrid SDN.(✓: satisfy the requirement, ✳:partially satisfy the requirement,✗: not
satisfy the requirement).

component, every legacy node sends out STP messages
(BPDU) through its interfaces, excluding those connected
to hosts. These BPDUs contain valuable information that
the SDN controller can utilise to construct network topol-
ogy views. In their study, Markovitch and Schmid [14]
effectively use the Multiple STP (MSTP) protocol for
automatic detection and localisation of network failures in
the underlying physical network. Specifically, SDN switches
of each network domain receive network updates via MSTP
messages (BPDUs). These updates are then sent to the SDN
controller, which uses them to identify the failed link and
compute the impacted traffic.

The research works that use this approach are limited
to the local network or broadcast domain, restricting its
effectiveness in discovering network topology to a single
network segment. Additional techniques or protocols may be
necessary to address larger networks with multiple segments
or subnets. Moreover, the constant exchange of BPDU mes-
sages can result in higher overheads and potential scalability
issues. This can result in slower network topology updates
and increased network congestion. In rapidly changing
topologies, network convergence may not meet performance
expectations.

3) NETWORK MANAGEMENT-BASED APPROACH
This approach employs the Simple Network Management
Protocol (SNMP) to discover and build network topology
in unicast and broadcast legacy networks in a hybrid SDN
environment. This approach is especially suited for enterprise
networks containing SNMP-capable devices like switches
and routers. The SDN controller queries the SNMP agents
on each device within the network to obtain topology infor-
mation and create an accurate network view. Furthermore,
the SDN controller utilises SNMP traps to receive proactive
notifications from SNMP agents, allowing quick topology
discovery and updates.

Kuliesius and Giedraitis [15] developed a HybN-Topo
application to acquire topology and device state information
from legacy network devices. This application communicates
with the OpenDaylight (ODL) controller through the REST
API to access its internal topology database. In order to
collect data from legacy devices, the ODL controller uses
SNMP requests and traps messages via the SNMP south-
bound plugin SNMP4SDN [16]. For successful registration
with the controller, pre-configuration of legacy switches is
required, including specific details such as an SNMP IP
address and corresponding authentication credentials.
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Hussain et al. [11] proposed a novel Indirect Controller
to Legacy Forwarding (ICLF) scheme to discover SDN and
legacy links in hybrid SDN networks. The ICLF initiates a
single probe frame that traverses across the entire network.
When a legacy switch receives this frame, it sends it from
one switch to another until an SDN switch receives it.
Upon receipt, the SDN switch forwards the frame to the
controller, which uses the information to discover and update
the network topology database. ICLF use SNMP requests
and trap messages to gather information about the legacy
switches and events related to the port status through the
traps. Additionally, SNMP messages are used by ICLF for
monitoring the status of legacy network links.

In complex network infrastructures with multiple devices,
generating SNMP traps can overwhelm the SDN controller
resources and make it difficult to identify critical events.
SNMP traps are typically sent using User Datagram Protocol
(UDP), which is connectionless and does not guarantee
delivery. Consequently, lost traps may result in delays when
identifying and responding to critical events. Moreover, traps
often provide limited information about the event or issue that
triggered them. Additional SNMP requests may be necessary
to fully understand and resolve the issue, which can be time-
consuming and resource-intensive.

Table 1 compares link discovery solutions in hybrid
SDN networks based on the requirements described in
Section IV. As the table shows, none of the existing solutions
satisfy all requirements. The above-related work analysis
indicates that there is room for improvements regarding
the effectiveness, efficiency, and scalability of current SDN
and legacy topology discovery approaches. Addressing these
could enable more effective, efficient, and scalable link
discovery in large-scale and dynamic network environments.
This is due to the following observations.
• Firstly, existing link discovery solutions are either
designed for SDN networks or traditional/ legacy net-
works. When applied to a hybrid network consisting of
multiple controller SDN networks and legacy switches,
these solutions do not enable an SDN controller to have
a complete view of the topology in the entire network.

• The second open issue is how to shorten the time
taken to detect any topological changes (i.e. topology
change detection time ) in the network, thus increasing
SDN controllers’ responsiveness to network topology
changes in the presence of legacy switches. Adding
or removing devices in the network causes changes in
the network link configurations, thus network topology.
Such changes should be detected promptly by the SDN
controller. Any delay in detecting the changes may
have a negative impact on the network management and
performance. An efficient link discovery solution should
allow SDN controllers to detect any topological changes
in real time and to keep up-to-date topological data at
any time.

• The third open issue is that while addressing the two
issues mentioned above, the link discovery solution

should also be designed to be scalable. Link discoveries
require periodical operations. Each such operation
imposes communication and computational overheads
on SDN controllers and switches. Minimising these
overheads when designing the link discovery operations
as the network expands, the network switches increase,
or the network topology changes more dynamically.

VI. HIGH-LEVEL IDEAS
This section presents the work on overcoming the limitations
identified above by designing and evaluating an Effective,
Efficient and Scalable Link Discovery (EESLD) framework
that achieves link discoveries in an effective, efficient and
scalable manner. By ‘effective’, we mean that the framework
should be capable of discovering both direct and indirect
SDN links within intra-domain and inter-domain networks.
It should also be capable of discovering legacy links in unicast
and broadcast traditional networks. By ‘efficient’, we mean
the overhead introduced in network topology discoveries
should be as low as possible. By scalable, we mean any
measure that facilitates network topology discoveries should
work equally well in both small and large, as well as static
and dynamic networks. To this end, the following measures
or high-level ideas have been taken in the design of this
framework:
• We propose an approach combining three essential
components to obtain a comprehensive view of network
topology in a hybrid multi-controller SDN network.
Firstly, we use an existing link failure detection protocol
to efficiently discover direct and indirect SDN links
within intra-domain and inter-domain networks. Sec-
ondly, we use a statistical sampling technique to identify
legacy links within traditional unicast and broadcast
networks. Finally, integrating a distributed database
service allows for storing the global network topology
and facilitates a publish-subscribe messaging pattern.
This ensures a consistent and unified view of the entire
network topology among SDN controllers.

• We propose an integrated approach combining event-
driven and periodic topological discovery packet trans-
missions to enable adaptive and responsive link dis-
covery in dynamic network environments with fre-
quent topology changes. Specifically, the event-driven
approach is used for discovering network links and
detecting topology changes. In contrast, the periodic
approach ensures themaintenance of up-to-date network
status. This integrated strategy ensures a seamless and
efficient response to evolving network conditions.

• To further reduce the overhead cost introduced by the
periodic transmission link status packets and improve
the scalability of link discovery in large-scale networks,
we propose using a minimum number of switches
responsible for providing the link status of the entire
discovered SDN links in the networks. In addition,
we group switches into two groups, each with a different
importance level, L-Level and H-Level. The frequencies
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of link status packet transmissions differ for the switches
in different groups. The switches in the H-Level group
send link status packets at a higher frequency. This way,
the transmission and processing load imposed on the L-
Level switches can be reduced.

VII. ASSUMPTIONS
To guide the design and evaluation of the EESLD framework,
several assumptions about the network environment and
system operation were made. The assumptions are as follows:
• (A1) Assume that there is a logically centralised
controller, and the control and data planes are decoupled.

• (A2) Assumes an out-of-band control channel between
the SDN controllers and the data planes, which use
OpenFlow protocol as standard interfaces between the
planes.

• (A3) Assume that each switch is preconfigured with its
designated controller’s IP address and TCP port number.

• (A4) Assume the underlying network is a hybrid
SDN network comprising both OpenFlow and legacy
switches.

• (A5) Assume the underlying network features direct
SDN links between pairs of OpenFlow switches and
indirect SDN links between pairs of OpenFlow switches
separated by at least two legacy switches.

• (A6) Assume the underlying network includes tradi-
tional unicast and broadcast switches supporting sFlow
technology for traffic monitoring, with sFlow agents
preconfigured on these switches.

VIII. EESLD ARCHITECTURE
A. OVERVIEW
The EESLD framework aims to improve the effectiveness,
efficiency, and scalability of the link discovery service
in dynamic and large-scale hybrid multi-controller SDN
networks. The EESLD framework addresses the limita-
tions of existing link discovery protocols by employing
four novel methods, as follows. The Event-Driven SDN
Link Discovery (EDSLD) method uses the Bidirectional
Forwarding Detection (BFD) protocol to identify direct
and indirect SDN links in both intra-domain and inter-
domain networks. Additionally, the Priority-Based Link
Status Inspector (PILSI) method is utilised for selectively
polling critical switches to monitor the status of SDN
links, ensuring an up-to-date view of the SDN network.
It also prioritises switch updates based on their respective
importance. Furthermore, the sFlow-Based Legacy Topology
Mapping (FDLTM) method leverages the sFlow protocol
to discover and monitor broadcast and unicast legacy links
within the network. Finally, employing a distributed publish-
subscribe messaging system, the Network-Wide Topology
Consistency (NWTC) method facilitates synchronisation
across SDN controllers while maintaining a consistent view
of the network status.

The EESLD architecture comprises four major modules,
as shown in Figure 5. The modules are SDN Topology

Discovery and Maintaining, SDN Topology Status Moni-
toring, Legacy Topology Discovery and Maintaining, and
Global Topology Synchronisation. In the following sections,
we explain each module and its submodule.

B. SDN TOPOLOGY DISCOVERY AND MAINTAINING
MODULE
The SDN Topology Discovery and Maintaining (STDM)
module plays a crucial role in discovering direct and
indirect SDN links within the SDN network topology while
also ensuring the real-time detection of any changes or
modifications to the SDN topology. This module depends on
the Bidirectional Forwarding Detection (BFD) protocol for
discovering and monitoring SDN links. BFD protocol was
adopted in SDN from a concept used in legacy technologies
[58], and it is a simple hello protocol designed to detect link
failure in a network [59]. The BFD protocol establishes a
session on each link connecting pairs of routers or switches.
By applying the BFD protocol, the STDMmodule effectively
ensures accurate discovery and real-time monitoring of
the SDN network topology. The STDM module has four
submodules: active port BFD enabler, BFD packet handler,
link completion, and Port status handler. The details of each
submodule are discussed below.

The Active Port BFD Enabler (APBE) module activates
the BFD protocol on the active ports of the switches
discovered by the SDN controller. After the handshake
between the switch and the controller using a three-way
handshake (SYN, SYN/ACK, ACK), the controller sends
a ‘‘FEATURES_REQUEST’’ message to the switch. The
switch responds with a ‘‘FEATURES_REPLY’’ message
that outlines its capabilities, such as flow statistics, table
statistics, port statistics, group statistics, IP reassem-
bly, queue statistics, etc. Then, the controller sends
the ‘‘OFPT_MULTIPART_REQUEST’’ message with the
‘‘OFPMP_PORT_DESC’’ type to retrieve information about
all the active ports associated with an OpenFlow switch.
The switches reply with an ‘‘OFPT_MULTIPART_REPLY’’
message back to the controller. Themessage contains detailed
information about the physical active ports of the switch.
APBE module stores active port information in the Ports
Information Database. Subsequently, the APBE module
sends the BFD enable command for each active port on
the switch using the OVSDB library in the RYU controller.
To be more precise, it uses the ovs_vsctl.VSCtlCommand,
which enables the BFD protocol in the active interfaces by
manipulating the configuration database of Open vSwitch.
The BFD session is configured with a minimum transmission
interval equal to one millisecond and a minimum receive
interval equal to a hundred milliseconds, as shown in
Algorithm 1.

The BFD Packet Handler (BPH) module parses and
extracts link information from incoming BFD packets. Once
the BFD protocol has been activated on both ends of a specific
link, the switch with the most recently enabled port will send
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FIGURE 5. EESLD architecture.

FIGURE 6. Link discovery sequence.

the BFD packet to the controller. Let us look at an example
where we assume that we have an SDN controller (referred
to as C0) connected to two OpenFlow switches, S1 and S2.
These switches are interconnected, with port P1 on S1 linked
to port P2 on S2. The controller C0, as illustrated in Figure 6,
initiates a BFD session by first enabling it on port P1 of switch
S1. Switch S1 initiates a BFD session with switch S2 by
sending BFD control messages. Next, the controller enables
BFD on port P2 of switch S2. Switch S2 starts sending BFD
control messages to switch S1 in the process of creating a

BFD session. During the session setup, S2 transmits BFD
control messages to C0 as Packet_In messages. Typically,
only one message is sent per session. The Controller C0
receives a Packet_In message that includes the metadata for
the source Datapath ID and Port Number. Based on the
BFD header and metadata, the BPH model discovers and
constructs a link between switches S1 and S2, which is then
stored in the Local Topology Database. The discovered link
essentially consists of the Source Switch ID and Port Number,
which are the origin of the BFDmessage, and the Destination
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Algorithm 1 APBE Algorithm
1: Input: L (Multipart reply message (PORT_DESC))
2: Procedure: APBEnabler
3: Active_Ports_List ← L.ports
4: for each port in Active_Ports_List do
5: Port_Name← port.name.decode(‘‘utf-8’’)
6: Run_command(‘set_Interface’,Port_Name, ‘bfd=enable=true

bfd=min_tx=1 bfd=min_rx=100’)
7: Switch_Datapath← L.datapath
8: Switch_ID← L.datapath.id
9: Port_Number ← L.ports[port].port_no
10: Port_MAC ← L.ports[port].hw_addr
11: Add(Ports_Information_Database,[Switch_Datapath, Switch_ID,

Port_Number,Port_MAC, Port_Name])
12: Link_Completion_Algorithm(Switch_ID)

Switch ID and Port Number, which are identified from the
received Packet_In message. Simultaneously with the link
discovery, both switches implement a three-way handshake
(Down, Init, Up) for the BFD session set-up. The BFD control
messages are exchanged periodically to monitor the link
status.

The working procedure of the BPH module is described
in Algorithm 2. Apart from link information is derived
directly from the incoming BFD packet. And other details are
retrieved from the Ports Information Database. For instance,
the Source Switch ID, Source Port Number and Destination
Port MAC Address are extracted from the incoming BFD
packet. The remaining information, including the Desti-
nation Switch ID, Destination Port Number, Destination
Port Name, Source Port MAC Address, and Source Port
Name, is obtained from the Ports Information Database.
When the Source Port MAC Address is not found in the
Ports Information Database, it typically signifies that the
SDN controller has discovered the link before receiving
the ‘‘OFPT_MULTIPART_REPLY’’message. This situation,
known as a race condition, is expected during network
topology initialisation. In this case, the link is considered
incomplete and subsequently stored in the Uncompleted
Links Database. Another scenario where the Destination
Switch ID is not found in the Ports Information Database.
The discovered link is considered an inter-domain link
between a pair of OpenFlow switches, each controlled by
different SDN controllers. These links are stored in the
Local Topology Database with the Destination Switch ID
and Destination Port Name tagged as ExternalSwitch and
ExternalPort, respectively. In addition, the Destination Port
Number is assigned with the value zero. After each link
discovery, the BPH model will trigger EdgeGreedy and Cen-
trality submodules in the SDN Topology Status Monitoring
module.

The Link Completion (LC) module fills in the missing
information for links stored in the Uncompleted Links
Database. As previously explained by the BPHmodule, these
Uncompleted links are those with missing information that
has yet to be filled in. The LC module is triggered by the
APBE module when it receives a new list of the active
ports of a specific switch, as shown in Algorithm 1. The

Algorithm 2 BPH Algorithm
1: Input: M ( Incoming BFD packet )
2: Procedure: Link discovery
3: Src_Switch_ID← M.datapath.id
4: Src_Port_Number ← M.match[’in_port’]
5: Dst_Port_MAC ← M.ethernet.src
6: Eth_Dst_MAC_Address← M.ethernet.dst
7: if Eth_Dst_MAC_Address ̸=′ 00 : 23 : 20 : 00 : 00 : 01′ then
8: return
9: else
10: Dst_Switch_ID← Get Ports_Information_Database

[’Switch_ID’] where (Ports_Information_Database[’Port_MAC’]
== Dst_Port_MAC)

11: Dst_Port_Number ← Get Ports_Information_Database
[’Port_Number’] where (Ports_Information_Database[’Port_MAC’]
== Dst_Port_MAC)

12: Dst_Port_Name← Get Ports_Information_Database
[’Port_Name’] where (Ports_Information_Database[’Port_MAC’]
== Dst_Port_MAC)

13: Src_Port_MAC ← Get Ports_Information_Database
[’Port_MAC’] where (Ports_Information_Database[’Switch_ID’]
== Src_Switch_ID) and (Ports_Information_Database[’Port_Number’]
== Src_Port_Number)

14: Src_Port_Name← Get Ports_Information_Database
[’Port_Name’] where (Ports_Information_Database[’Switch_ID’]
== Src_Switch_ID) and (Ports_Information_Database[’Port_Number’]
== Src_Port_Number)

15: Link_ID = (Src_Switch_ID,Src_Port_Number,Dst_Switch_ID,
Dst_Port_Number)

16: if Src_Port_MAC is Null then
17: Add(Uncompleted_Links_Database, [Src_Switch_ID,

Src_Port_Number, Src_Port_MAC=0, Src_Port_Name=0,
Dst_Switch_ID, Dst_Port_Number, Dst_Port_MAC,
Dst_Port_Name, Link_ID])

18: else if Dst_Switch_ID is Null then
19: Add(Local_Topology_Database, [Src_Switch_ID,

Src_Port_Number, Src_Port_MAC, Src_Port_Name, Dst_Switch_ID
=‘ExternalSwitch’, Dst_Port_Number = 0, Dst_Port_MAC,
Dst_Port_Name = ‘ExternalPort’, Link_ID])

20: else
21: Add(Local_Topology_Database, [Src_Switch_ID,

Src_Port_Number, Src_Port_MAC, Src_Port_Name, Dst_Switch_ID,
Dst_Port_Number, Dst_Port_MAC, Dst_Port_Name, Link_ID])

22: New_Link ← [Src_Switch_ID, Dst_Switch_ID]
23: TopologyLinksList.append(New_Link)
24: Vertex = EdgeGreedy(TopologyLinksList)
25: Centrility(TopologyLinksList)

functionality of the LC module is detailed in Algorithm 3.
The LC module uses the Switch ID to identify any links
within the Uncompleted Links Database that share the same
Source Switch ID. It fetches the missing link details from
the Ports Information Database if such links are found. Once
all the link information has been completed, the LC module
stores this link in the Local Topology Database. After that,
it triggers the EdgeGreedy and Centrality submodules within
the SDN Topology Status Monitoring module for further
operation.

The Port Status Handler (PSH) module monitors topol-
ogy changes in the SDN network by intercepting and
extracting reasons for port modification from incoming
port status messages. In addition, it enables/disables the
BFD protocol from designated switch ports. The port status
‘‘OFPT_PORT_STATUS’’ message informs the controller of
any port status changes on the network. This can be due
to a port being added, modified, or removed. The message
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Algorithm 3 LC Algorithm
1: Input: Switch_ID
2: Procedure: Link Completion
3: if Switch_ID in Uncompleted_Links_Database

[’Src_Switch_ID’] then
4: Links← Get all links where Uncompleted_Links_Database

[’Src_Switch_ID’] = Switch_ID
5: for link in Links do
6: Src_Switch_ID← link[’Src_Switch_ID’].value
7: Src_Port_Number ← link[’Src_Port_Number’].value
8: Src_Port_MAC ← Get Ports_Information_Database

[’Port_MAC’] where (Ports_Information_Database[’Switch_ID’]
= Src_Switch_ID) and (Ports_Information_Database[’Port_Number’]
= Src_Port_Number)

9: Src_Port_Name← Get Ports_Information_Database
[’Port_Name’] where (Ports_Information_Database[’Switch_ID’] =
Src_Switch_ID) and (Ports_Information_Database[’Port_Number’] =
Src_Port_Number)

10: Dst_Switch_ID← link[’Dst_Switch_ID’].value
11: Dst_Port_Number ← link[’Dst_Port_Number’].value
12: Dst_Port_MAC ← link[’Dst_Port_MAC’].value
13: Dst_Port_Name← link[’Dst_Port_Name’].value
14: Link_ID← link[’Link_ID’].value
15: Add( Local_Topology_Database, [Src_Switch_ID,

Src_Port_Number, Src_Port_MAC, Src_Port_Name,Dst_Switch_ID,
Dst_Port_Number, Dst_Port_MAC,Dst_Port_Name, Link_ID])

16: New_Link ← [ Src_Switch_ID, Dst_Switch_ID ]
17: TopologyLinksList.append(New_Link)
18: Vertex ← EdgeGreedy(TopologyLinksList)
19: Centrility(TopologyLinksList)

contains information such as the reason for the change
(ADD, DELETE, MODIFY), the port number, the status of
the port (link down, blocked, live), and other configuration
data related to the port. When a link is removed, the
controller receives two distinct ‘‘OFPT_PORT_STATUS’’
messages. The initial message contains a port state descriptor
value of 0, indicating that the respective switch port has
undergone a modification. Subsequently, a second message
is received where the port state descriptor value is set
to 1, indicating that the link associated with that specific
port has been brought down. When a link between two
OpenFlow switches is established, the controller receives a
single ‘‘OFPT_PORT_STATUS’’ message from each switch.
This message carries a port state descriptor value set to 4,
indicating that the port is active and the physical link is
present. Based on our observations, whenever the BFD
session is enabled or disabled on a specific link, the controller
is notified via two messages from each corresponding switch;
each message carries a port state descriptor value of 0 and 4,
respectively.

The process of the PSH module is described in
Algorithm 4. The PSH module retrieves the ‘reason’ field
from port status messages. If the ‘reason’ value is ‘Modify’,
it obtains the port’s name from the message. Then, it uses
the Port Name to acquire the port status and timestamp
from the Port Status Timestamp Database. Furthermore, the
module logs the time of message reception. The port state
descriptor value of the message determines the following
actions:
• If the descriptor value is 4, the PHS module check
the port status. If the status is ‘‘1’’, the interface is

Algorithm 4 PSH Algorithm
1: Input: M (Port status message)
2: Procedure: Topology maintenance

Current_Time← time.time()
3: ifM.reason == Modify then
4: Port_Name← M.desc.name.decode(‘‘utf-8’’)
5: if Port_Name not in Port_Status_Timestamp_Database

[’Port’] then
6: break
7: Port_status← Port_Status_Timestamp_Database[’Status’]

where Port_Status_Timestamp_Database[’Port’] == Port_Name
8: Timestamp← Port_Status_Timestamp_Database[’Timestamp’]

where Port_Status_Timestamp_Database[’Port’] == Port_Name
9: ifM.desc.state == 4 then
10: if Port_status == 1 then
11: Run_command(‘set Interface’, Port_Name,

‘bfd=enable=true bfd=min_tx=1 bfd=min_rx=100’)
12: Switch_Datapath← M.datapath
13: Switch_ID← M.datapath.id
14: Port_Number ← M.desc.port_no
15: Port_MAC ← M.desc.hw_addr
16: Add(Ports_Information_Database, [Switch_Datapath,

Switch_ID, Port_number, Port_MAC,Port_Name])
17: else if Port_status == 0 and (Current_Time - Timestamp) > 2

then
18: Run_command(‘set Interface’,Port_Name,

‘bfd=enable=false’)
19: Time.sleep(0.02)
20: Run_command(‘set Interface’, Port_Name,

‘bfd=enable=true bfd=min_tx=1 bfd=min_rx=100’)
21: else ifM.desc.state == 0 then
22: if Port_status == 4 and (Current_Time -Timestamp) > 2 then
23: Port_MAC ← M.desc.hw_addr
24: Remove (Local_Topology_Database, Link[ Dst_Port_MAC

or Src_Port_MAC] == Port_MAC)
25: else ifM.desc.state == 1 then
26: Port_MAC ← M.desc.hw_addr
27: Remove (Local_Topology_Database, Link[Dst_Port_MAC

or Src_Port_MAC] == Port_MAC)
28: Add(Port_Status_Timestamp_Database, [Port=Port_Name,

Status=M.desc.state, Timestamp=Current_Time])

functional. BFD is then enabled on the interface, and its
information is stored in the Ports Information Database.
If the status is ‘‘0’’ and two or more seconds have
passed since the last timestamp, this signifies that the
BFD session has terminated because the indirect SDN
link port on the other end is disabled. Consequently,
the BFD on the interface is disabled, and it waits for
20 milliseconds, then re-enables the BFD on the same
interface.

• If the descriptor value is 0, the PHS module ver-
ifies if the port status is ‘‘4’’ and if more than
2 seconds have elapsed since the last timestamp.
If both conditions are met, the BFD session has ended.
This is due to the disconnection of the link between
two legacy switches, where each legacy switch is
connected to an OpenFlow switch, forming an indirect
SDN link.

• If the descriptor value is 1, the PHS module interprets
this as the interface being administratively turned off.
As a result, it removes the corresponding link from the
Local Topology Database.
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Whenever the PHSmodule intercepts port status messages,
it saves the Port Name, Status, and Timestamp of the switch
port in the Port Status Timestamp Database.

C. SDN TOPOLOGY STATUS MONITORING MODULE
The SDN Topology Status Monitoring (STSM) module
provides real-time updates on the status of the SDN links
within the network topology. It achieves this by periodically
polling a minimum number of switches that cover all the
discovered SDN links in the network. The STSM module
classifies the selected switches based on their importance
in order to determine the frequency of polling link status
updates from the switches. Therefore, it reduces the overhead
introduced by the periodic transmission of the link status
packets, and it improves the scalability of SDN link
discovery in large-scale networks. The STSMmodule has six
submodules: EdgeGreedy, Centrality, Zone Classifier, High
Count Timer, Low Count Timer, and Port Monitoring. The
following paragraphs provide detailed descriptions of each
submodule.

The EdgeGreedy (EG) module selects the minimum
number of switches covering all the discovered SDN links
in the network. It uses the EdgeGreedy algorithm [60],
a heuristic algorithm in network optimisation. This algorithm
addresses theMinimumVertex Cover problem, aiming to find
the smallest set of switches (vertices) so that every network
link (edge) connects to at least one of the selected switches.
The algorithm uses a list of discovered SDN links, each
comprising the Source Switch ID and Destination Switch
ID. The EG module is triggered whenever a link is added to
the Local Topology Database by either the BPH or the LC
modules.

The EdgeGreedy Algorithm operates in two phases. In the
first phase, the algorithm begins with an empty set called a
cover. As it examines every link in the network graph when it
encounters a link {vi, vj} that is not yet included in the cover,
it chooses the switch (vertex) from {vi, vj} with the higher
number of connections (degree). If both vi and vj have equal
degrees, the algorithm selects the first switch. At the end
of this phase, the algorithm has constructed a Vertex Cover
(VC). In the second phase, the algorithm calculates a value
called the ‘‘loss value’’ for each switch in the VC. This loss
value refers to the potential impact on the VC if the vertex
were to be removed. The algorithm then assesses each switch
in the VC. If it encounters a switch v with a zero loss value,
removing v will not affect the cover. Therefore, the algorithm
removes v from the VC and recalculates the loss values for
all the switches connected to v. The optimised VC represents
the minimum number of switches necessary to cover all the
links in the network.

The Centrality module measures switch significance for
various network topologies using the Centrality models.
In network theory, Centrality refers to measures that quantify
the importance of a particular switch (or vertices) within
a network [61]. There are various ways of calculating

Centrality; common Centrality measures include Degree
Centrality, Betweenness Centrality, Closeness Centrality, and
Eigenvector Centrality. However, the Centrality module uses
Degree and Betweenness Centrality to effectively assess each
switch’s significance. Degree Centrality is used to determine
the direct influence of a switch based on the number of
links or connections it has with other switches. The Degree
Centrality of each switch is calculated by simply dividing
the number of connections degree in each switch s by the
total number of switches N in the network, as illustrated in
Equation (1).

DegreeCentrality =
degree(s)
|N | − 1

(1)

On the other hand, Betweenness Centrality measures the
extent to which a switch acts as an intermediary for other
pairs of switches. It is defined as the number of shortest
paths between pairs of nodes that pass through the switch of
interest. The formula represented by Equation (2) calculates
how frequently a switch u∈S has been used as a link along the
shortest path between two other switches s,t∈ S, where θ (s, t)
denotes the total number of shortest paths between switches s
and t, and θ (s, t|u) refers to the number of those paths passing
through switch u.

BetweennessCentrality =
∑
s,t,uεS

θ (s, t|u)
θ(s, t)

(2)

Like the EG module, the Centrality module is initiated by
either the BPH r or the LC modules whenever a new link is
added to the Local Topology Database. The outputs of the
Centrality module are stored in the Centrality Database for
future use by the Zone Classifier module.

The Zone Classifier (ZC) module divides switches selected
by the EG module into two groups based on the result
of the Centrality module. Using a K-Means clustering
algorithm with two clusters (k = 2), the module assigns
each switch to a zone based on their importance, as shown
in Algorithm 5. This importance value is determined by
combining each switch’s Degree Centrality and Betweenness
Centrality values into a two-dimensional input for the
K-Means algorithm. Switches of greater importance are
assigned to the High Zone, while those of lesser importance
are designated as part of the Low Zone. The zone designation
is determined by comparing the total Centrality of the first
switch in each cluster. The cluster with the highest total
Centrality is considered theHigh Zone, while the other cluster
is designated the Low Zone. The switch IDs for each zone
are then stored in the High Zone Database and Low Zone
Database, respectively.

The system uses two timing modules to collect port
statistics from switches: the High Count Timer (HCT)
and the Low Count Timer (LCT). These modules send
an ‘‘OFPT_MULTIPART_REQUEST’’ message with a type
of ‘‘OFPMP_PORT_STATS’’ to request data, such as the
number of packets or bytes sent and received per port,
packet drops and error counts. The HCT module focuses
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Algorithm 5 ZC Algorithm
1: Input: Vertex (A list of selected switches)
2: Procedure: Zone classification
3: for switch in vertex do
4: Switch_ID← switch
5: DC ← Get Cenerility_Database[’Degree_centrality’] where

(Ports_Information_Database[’Switch_ID’] == Switch_ID)
6: BC ← Get Cenerility_Database[’Betweenness_centrality’]

where (Ports_Information_Database[’Switch_ID’] == Switch_ID)
7: Add(Cluster_Database, [Switch_ID, DC, BC])
8: Classification_Data← array(zip(Cluster_Database[’DC’],

Cluster_Database[’BC’]))
9: Cluster_Database[’Cluster’]← Kmeans(n_clusters=2).fit

(Classification_Data)
10: First_Cluster← Get Cluster_Database[’Switch_ID’] where

Cluster_Database[’Cluster’] == 0
11: Second_Cluster← Get Cluster_Database[’Switch_ID’] where

Cluster_Database[’Cluster’] == 1
12: FC_Total_Centrility← sum(Cenerility_Database[’Degree

_centrality’] == First_Cluster[0], Cenerility_Database
[’Betweenness_centrality’] == First_Cluster[0])

13: SC_Total_Centrility← sum(Cenerility_Database[’Degree
_centrality’] == Second_Cluster[0], Cenerility
_Database[’Betweenness_centrality’] == Second_Cluster[0])

14: if FC_Total_Centrility > SC_Total_Centrility then
15: Add(High_Zone_Database,First_Cluster)
16: Add(Low_Zone_Database, Second_Cluster)
17: else
18: Add(High_Zone_Database, Second_Cluster)
19: Add(Low_Zone_Database,First_Cluster)

on switches in the High Zone Database, sending requests
every five seconds. On the other hand, the LCTmodule sends
requests every ten seconds for switches located in the Low
Zone Database. This distinction in timing allows the system
to prioritise the monitoring and gathering of statistics from
switches in the High Zone, as they are considered to have a
higher level of importance and may, therefore, require more
frequent updates.

The Port Monitoring (PM) module intercepts incom-
ing port statistics packets and extracts relevant informa-
tion. When receiving a port statistics request from the
HCT or LCT module, switches will respond with an
‘‘OFPT_MULTIPART_REPLY’’ message of type
‘‘OFPMP_PORT_STATS’’, including the active port statis-
tics information such as the number of received and
transmitted packets. The PMmodule then parses and extracts
the packets received and transmitted on each port, as shown in
Algorithm 6. Then, it compares these values with the previous
records stored in the Port Statistics Database to detect
whether the link has stopped sending or receiving packets.
When the BFD session is established for the SDN link, the
ports involved in the link periodically exchange BFD control
messages. If one of the ports were to stop sending or receiving
packets, it would indicate a potential link failure. Therefore,
if the number of received or transmitted packets equals
the previous record stored in the Port Statistics Database,
a warning is sent indicating that the port corresponding to
this link is currently down. Consequently, the link associated
with this inactive port is removed from the Local Topology
Database.

Algorithm 6 PM Algorithm
1: Input: P (Port statistics reply)
2: Procedure: Monitors network ports statistics
3: Switch_ID← P.datapath.id
4: for port in P.body do
5: Port_ID← (Switch_ID, port.port_no)
6: if port.port_no > 1000 then
7: return
8: else if Port_ID in RemovedPortsList then
9: return
10: else if Port_ID in Port_Statistics_Database[’Port_ID’] then
11: Received_Packets← Port_Statistics_Database[

’Received_Packets’] where Port_Statistics_Database[’Port_ID’]
== Port_ID

12: Transmitted_Packets← Port_Statistics_Database[
’Transmitted_Packets’] where Port_Statistics_Database[’Port_ID’]
== Port_ID

13: if port.rx_packets == Received_Packets then
14: LogWarning(‘WARNING: No data received in Port ID

, Port_ID ’)
15: RemovedPortsList.append(Port_ID)
16: else if port.tx_packets == Transmitted_Packets then
17: LogWarning(‘WARNING: No data transmitted

in Port IDPort_ID’)
18: RemovedPortsList.append(Port_ID)
19: else
20: Update(Port_Statistics_Database, [(Received_Packets,

Transmitted_Packets) ∈ Port_ID])
21: else
22: Add(Port_Statistics_Database, [Port_ID, Received_Packets,

Transmitted_Packets])

D. LEGACY TOPOLOGY DISCOVERY AND MAINTAINING
MODULE
The Legacy Topology Discovery and Maintaining (LTDM)
module is designed to discover and monitor legacy links in
unicast and broadcast traditional networks while ensuring
that topology updates are transmitted to the Global Topology
Database. The LTDM module achieves this by leveraging
the sFlow [62] sampling technology to extract valuable
information from network traffic to build the network
topology. Additionally, the LTDM module monitors network
traffic and updates the Global Topology Database to maintain
a current network view. The LTDM module has two
submodules: the Topology Extractor and the Legacy Port
Status Handler module. The following paragraphs provide
detailed descriptions of each submodule.

The Topology Extractor (TE) module extracts and builds
legacy network topology from the sFlow-RT [63] collector.
In addition, it transmits network topology information to
the Global Topology Database. The sFlow-RT collector is
a software application running on a sFlow server, as shown
in Figure 5. It collects sFlow datagrams from all the sFlow
agents embedded in the legacy switches and routers in the
network. The sFlow datagrams provide detailed information
about network traffic and are periodically sent to the sFlow
collector for analysis. The TE module uses REST API
to retrieve the current network topology from the sFlow
collector.

The process of retrieving and building the legacy net-
work topology from the sFlow collector is shown in
Algorithm 7. After requesting network topology information
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Algorithm 7 TE Algorithm
1: Input: topology, ifname, ifadminstatus, ifoperstatus
2: Procedure: Legacy topology discovery
3: Response← request.get(‘http://localhost:8008/topology/json’)
4: Topology_Info← Response.json()
5: Topology_Links← Topology_Info[’links’]
6: Int_Value← 0
7: String_Value← ‘L1-’
8: for key in Topology_Links do
9: Link ← Topology_Links[key]
10: Int_Value← Int_Value+ 1
11: Unique_Key← String_Value+ Int_Value
12: Redis.set(Unique_Key,Link)
13: Node1← Link[‘Node1’]
14: Node2← Link[‘Node2’]
15: Port1← Link[‘Port1’]
16: Port2← Link[‘Port2’]
17: Add(Legacy_Links_Database,[Unique_Key, Node1,Node2,

Port1, Port2])
18: Ports_names← request.get(‘http://localhost:8008/table/ALL/

ifname/json’).json()
19: Ports_Admin_Status← request.get(‘http://localhost:8008

/table/ALL/ifadminstatus/json’).json()
20: Ports_Oper_Status← request.get(‘http://localhost:8008/table/

ALL/ifoperstatus/json’).json()
21: for port in len(Ports_names) do
22: Port_ID← Ports_names[port]
23: Port_Admin_Status← Ports_Admin_Status[port]
24: Port_Oper_Status← Ports_Oper_Status[port]
25: Add(Legacy_Ports_Status_Database, [Port_ID,Port_Admin_Status

,Port_Oper_Status])

using ‘‘/topology/json’’ URL, the TE module receives a
JSON representation of the current network topology. This
representation is based on the sFlow datagrams assembled by
the sFlow collector. The JSON object encompasses a list of
links between sFlow-enabled switches/routers, encapsulating
a current snapshot of the network’s connectivity. Each
legacy link is made up of four components: Node1 with its
corresponding ‘port1’, and Node2 with ‘port2’. Moreover,
every legacy link is assigned a unique identifier. For example,
‘‘L1-1’’, where ‘‘L’’ stands for a legacy domain, and ‘‘1’’
signifies the first domain. The second ‘‘1’’ denotes the first
discovered link within that domain. After that, the link details
are stored in the Legacy Links Database and then transmitted
to the Global Topology Database to be distributed to the
SDN controllers. Additionally, the TE module retrieves all
the connected ports’ administrative and operational statuses
from the sFlow collector. This information is then added to
the Legacy Ports Status Database for future analysis by the
Legacy Port Status Handler module.

The Legacy Port Status Handler (LPSH) module monitors
the legacy network topology to detect any changes; it
promptly updates the Global Topology Database to reflect
these alterations. By regularly monitoring the status of ports
in the legacy network, the LPSHmodule provides current and
up-to-date information about the network topology to both
Local and Global Topology Databases.

Algorithm 8 illustrates the operation of the LPSH mod-
ule. It periodically requests the status of the link ports
(administrative and operational) from the sFlow collector.
This data is stored in a temporary database known as the

Temp Legacy Ports Status Database. It then compares the
data with the previous records in the Legacy Ports Status
Database to identify any changes in the network topology.
Once changes are detected, it promptly updates the Legacy
Links Database and the Global Topology Database. For
example, if one of the port’s statuses is down, it will update
both databases to indicate that the corresponding link is no
longer functional. On the other hand, if one of the existing
ports’ statuses changes from down to up, or a new active
port is discovered, it will query the topology links from the
sFlow collector, and the links are then stored in the Temp
Legacy Links Database. After that, it compares them with the
links stored in the Legacy Links Database. The new links are
added to the Legacy Links and Global Topology Database
accordingly.

Algorithm 8 LPSH Algorithm
1: Input: topology, ifname, ifadminstatus, ifoperstatus
2: Procedure: Legacy topology maintenance
3: while True do
4: Ports_names← request.get(‘http://localhost:8008/table/ALL

/ifname/json’).json()
5: Ports_Admin_Status← request.get(‘http://localhost:8008/

table/ALL/ifadminstatus/json’).json()
6: Ports_Oper_Status← request.get(‘http://localhost:8008/

table/ALL/ifoperstatus/json’).json()
7: for port in len(Ports_names) do
8: Port_ID← Ports_names[port]
9: Port_Admin_Status← Ports_Admin_Status[port]
10: Port_Oper_Status← Ports_Oper_Status[port]
11: Add(Temp_Legacy_Ports_Status_Database,[Port_ID,

Port_Admin_Status, Port_Oper_Status])
12: Ports_update← compare(Legacy_Ports_Status_Database,

Temp_Legacy_Ports_Status_Database)
13: if not Ports_update.empty then
14: if Ports_update.iloc[0][‘Port_Admin_Status’] == ‘down’ or

Ports_update.iloc[0][‘Port_Oper_Status’] == ‘down’ then
15: Port_ID← Ports_update.iloc[0][‘Port_ID’]
16: Link_ID← Legacy_Links_Database[’Unique_Key’]

where Legacy_Links_Database[’Port1’] or Legacy_Links_Database[
’Port2’] == Port_ID

17: Redis.delete(Link_ID)
18: Remove(Legacy_Links_Database, [Link_ID])
19: else if Ports_update.iloc[0][‘Port_Admin_Status’] ==

‘up’ or Ports_update.iloc[0][‘Port_Oper_Status’] == ‘up’ then
20: Response← request.get(‘http://localhost:8008/

topology/json’)
21: Topology_Info← Response.json()
22: Topology_Links← Topology_Info[‘links’]
23: Int_Value← 0
24: String_Value← ‘L1-’
25: for key in Topology_Links do
26: Link ← Topology_Links[key]
27: Int_Value← Int_Value+ 1
28: Unique_Key← String_Value + Int_Value
29: Node1← Link[‘Node1’]
30: Node2← Link[‘Node2’]
31: Port1← Link[‘Port1’]
32: Port2← Link[‘Port2’]
33: Add(Temp_Legacy_Links_Database, [

Unique_Key, Node1, Node2, Port1, Port2])
34: New_Update← compare(Temp_Legacy_Links

_Database, Legacy_Links_Database).drop_duplicates()
35: Add(Legacy_Links_Database,New_Update)
36: Redis.set(New_Update)
37: Clear(Temp_Legacy_Links_Database)
38: Clear(Temp_Legacy_Ports_Status_Database)
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E. GLOBAL TOPOLOGY SYNCHRONISATION MODULE
The Global Topology Synchronisation (GTS) module is
critical for maintaining a consistent replica of the network-
wide state among SDN controllers. It acts as a bridge between
Local and Global Topology Databases and ensures that
they are synchronised. The GTS module uses the publish-
subscribe messaging pattern to disseminate network updates
to all the relevant controllers. Each controller can share its
local network state view with others, bypassing the delays
often associatedwith the request-reply pattern of client-server
communication. This enables rapid and synchronised updates
to ensure that all the controllers maintain the most current
information about the network’s topology. The GTS module
has two submodules: Local Topology Publisher and Global
Topology Subscriber.

The Local Topology Publisher (LTP) module transmits
local topology updates to the Global Topology Database.
To ensure accuracy, any modifications made in the Local
Topology Database automatically trigger the LTP module.
Consequently, these updates are promptly reflected in the
Global Topology Database and later disseminated to sub-
scribed SDN controllers. Meanwhile, the Global Topology
Subscriber (GTS) module receives topology updates from
the Global Topology Database. By subscribing to specific
communication channels, it actively retrieves update mes-
sageswhenever changes occur in the network topology. These
updates provide details about additions or removals of links
within the network.

The GTS module starts by subscribing to one or multiple
channels in the Redis database. This is achieved using
the ‘‘psubscribe’’ method in Redis. Once subscribed, the
GTS module enters a listening state. It actively listens for
any messages being published to its subscribed channels.
The GTS module receives the message when a topology
information update is published to a subscribed channel.
The module then processes this information, updating its
local network topology to reflect these changes as shown in
Algorithm 9.

When a ‘‘set’’ notification event is detected, this refers to
the addition of a new link to the Global Topology Database.
The GTS model queries the link’s information from the
Global Topology Database using the link ID. The module
stores the link information in the Global Topology Instance
Database for legacy links. It assigns it a ‘‘G’’ type, indicating
a global link. For SDN links, the module first distinguishes
whether it is an intra-domain or inter-domain link. Intra-
domain links are directly stored in the Global Topology
Instance Database. For inter-domain links, the module fills
in any missing link information, such as Destination Switch
ID, Destination Port Number, and Destination Port Name,
obtained from the Ports Information Database. The links
are then saved to the Local Topology Database. When a
link is deleted from the Global Topology Database, a ‘‘del’’
notification event is triggered. The GTS model immediately
removes the link from theGlobal Topology InstanceDatabase
using the link ID. The GTS module continually monitors its

Algorithm 9 GTS Algorithm
1: Input: E (event message from Redis server)
2: Procedure: Global Topology Subscription
3: Event ← E[‘pattern’].decode(‘utf-8’)
4: Key← E[‘data’].decode(‘utf-8’)
5: if Event == ‘del’ then
6: Remove(Global_Topology_Instance_Database, link with

key == Key)
7: else if Event == ‘set’ then
8: New_link ← redis.get(Key).json()
9: if Key[0] == ‘L’ then
10: Link_Key← Key
11: Src_Switch_ID← New_link[‘node1’]
12: Src_Port_Number ← New_link[‘port1’].split(‘h’)[1]
13: Src_Port_MAC ← 0
14: Src_Port_Name← New_link[‘port1’]
15: Dst_Switch_ID← New_link[‘node2’]
16: Dst_Port_Number ← New_link[‘port2’].split(‘h’)[1]
17: Dst_Port_MAC ← 0
18: Dst_Port_Name← New_link[‘port2’]
19: Link_ID← Src_Switch_ID + ‘-’ + Src_Port_Number

+‘-’ + Dst_Switch_ID + ‘-’ + Dst_Port_Number
20: Link_type← ‘G’
21: Add(Global_Topology_Instance_Database, [Src_Switch_ID,

Src_Port_Number, Src_Port_MAC, Src_Port_Name, Dst_Switch_ID,
Dst_Port_Number, Dst_Port_MAC,Dst_Port_Name, Link_ID,
Link_type])

22: else if Key[0] == ‘C1’ then
23: if New_link[‘Dst_Switch_ID’] == 0 then
24: return
25: else
26: Dst_Port_MAC ← New_link[‘Dst_Port_MAC’]
27: Dst_Switch_ID← Get Local_Topology

‘_Database[Switch_ID’] where (Local_Topology_Database[
‘Port_MAC’] == Dst_Port_MAC)

28: if Dst_Switch_ID == 0 then
29: Remove(Local_Topology_Database,Link[

Dst_Port_MAC] == Dst_Port_MAC)
30: Add(Local_Topology_Database, [Src_Switch

_ID, Src_Port_Number, Src_Port_MAC, Src_Port_Name, Dst
_Switch_ID, Dst_Port_Number, Dst_Port_MAC, Dst_Port
_Name, Link_ID ∈New_link])

31: else if thenKey[0] == ‘C2’
32: if thenNew_link[‘Dst_Switch_ID’] == 0
33: Dst_Port_MAC ← New_link[‘Dst_Port_MAC’]
34: Dst_Switch_ID← Get Ports_Information

_Database[‘Switch_ID’] where (Ports_Information_Database[
‘Port_MAC’] == Dst_Port_MAC)

35: Dst_Port_Number ← Get Ports_Information_Database
[‘Port_Number’] where (Ports_Information_Database
[‘Port_MAC’] == Dst_Port_MAC)

36: Dst_Port_Name← Get Ports_Information
_Database[‘Port_Name’] where (Ports_Information_Database[
‘Port_MAC’] == Dst_Port_MAC)

37: Src_Switch_ID← New_link[‘Src_Switch_ID’]
38: Src_Port_Number ← New_link[‘Src_Port_Number’]
39: Src_Port_MAC ← New_link[‘Src_Port_MAC’]
40: Src_Port_Name← New_link[‘Src_Port_Name’]
41: Link_ID← Src_Switch_ID + ‘-’ + Src_Port_Number +

‘-’ + Dst_Switch_ID + ‘-’ + Dst_Port_Number
42: Add(Local_Topology_Database, [Src_Switch_ID,Src_Port_

Number, Src_Port_MAC, Src_Port_Name, Dst_Switch_ID, Dst_Port_
Number, Dst_Port_MAC,Dst_Port_Name, Link_ID])

43: Redis.set(Key,Local_Topology_Database[-1])
44: Link_type← ‘G’
45: Add(Global_Topology_Instance_Database, [{Src_

Switch_ID, Src_Port_Number, Src_Port_MAC, Src_Port
_Name, Dst_Switch_ID, Dst_Port_Number, Dst_Port_MAC,
Dst_Port_Name, Link_ID}∈New_link,Link_type])

subscribed channels to ensure that it maintains an accurate
and up-to-date view of the global network topology.
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TABLE 2. Experimental environment for EESLD.

IX. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the EESLD
framework. This evaluation aims to assess the efficiency
and scalability of the framework. The evaluation process
involves several key metrics. Section IX-A provides details
of the experimental configurations used in this study. Sub-
sequently, the network topology discovery and maintenance
performance are presented in Section IX-B. We then analyse
the overheads imposed on the controller and switches in
Section IX-C.

A. EXPERIMENTAL CONFIGURATIONS
The EESLD framework was evaluated using a simulation
environment. The emulated testbed used Mininet [64] to
simulate a realistic network with OpenFlow and legacy
switches. We used a VMware Workstation to create three
Virtual Machines (VMs) connected to the Local Area
Network (LAN). The first VM ran an SDN controller called
RYU [65]. Unlike other SDN controllers, such as Floodlight
and OpenDaylight, RYU has been developed as an open-
source and well-documented controller. The second VM ran
the sFlow server, which acted as a sFlow-rt collector [63]
with the event engine that processed the incoming sFlow
datagrams. The third VM ran an open-source distributed
database service (Redis) [66] for topological information
distribution. Additionally, we used Wireshark [67] to analyse
and capture the network traffic. Table 2 lists the details of the
experimental environment for the evaluation of the EESLD
framework’s performance.

B. TOPOLOGY DISCOVERY AND MAINTENANCE
This section evaluates the EESLD framework’s performance,
particularly its ability to discover and maintain the network
topology after the initial network structure has been estab-
lished on the SDN controller. The key performance metrics
examined included the times needed to: (1) discover direct
and indirect SDN links; (2) detect direct and indirect link
removals; (3) discover legacy links; and (4) detect the
removal of legacy links. These measurements are essential
for evaluating how efficiently and promptly the EESLD
framework can adapt to changes in network topology.

1) SDN LINK DISCOVERY AND REMOVAL
To evaluate the performance of the EESLD framework in
terms of SDN link discovery and removal, four network
topologies were used, as summarised in Table 3. Each topol-
ogy consisted of OpenFlow switches and legacy switches.

TABLE 3. Topologies and key parameters.

All of these switches were implemented using Open vSwitch
(OVS) [68]. The legacy switches were configured to operate
in standalone mode and were not connected to the controller.
For all the experiments, the controller and switches were
connected in out-band mode. Each experiment was repeated
20 times, and the results presented are the average values from
these iterations.

The SDN link discovery time is how long it takes the
SDN controller to discover an SDN link in the network
topology. The time delay is measured by calculating the time
elapsed between enabling link ports and adding the link to the
topology database. Figure 7 illustrates a comparative view of
the average direct SDN link discovery time for threemethods,
namely OFDP, OFDPv2, and EESLD, over four network
scales: 8, 20, 30, and 85 switches. The chart shows that
the EESLD method significantly outperforms both OFDP
and OFDPv2 in terms of network discovery time across all
network scales. For instance, in a network with 8 switches,
the EESLDmethod had an average discovery time of 76.1ms,
approximately 5.4 times faster than OFDPv2 (412.7 ms) and
around 5.7 times faster than OFDP (437.1 ms). In a network
of 85 switches, the average discovery time for EESLD was
284.8 ms, which is approximately 10.3 times faster than
OFDPv2 (2927.9ms) and almost 31.9 times faster thanOFDP
(9088 ms). The EESLD framework eliminates the need to
generate discovery packets by generating them locally on the
switch as soon as the link ports are activated. This avoids
the latency associated with constructing and transmitting
discovery packets to the network, as required by OFDP and
OFDPv2.

FIGURE 7. The average discovery time for direct SDN link.

Additionally, we evaluated the performance of EESLD
against the Broadcast Domain Discovery Protocol (BDDP)
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for discovering indirect SDN links. BDDP is a method
used to discover multi-hop SDN links in hybrid SDN
networks [4]. It is commonly supported in open-source
SDN controllers such as Floodlight [5] and OpenDayLight
(ODL) [6].We implemented and evaluated the BDDPmethod
in the Floodlight controller using two legacy switches to
connect a pair of OpenFlow switches in the topology. This
set-up created an indirect SDN link for our performance
comparison.

FIGURE 8. The average discovery time for indirect SDN link.

Figure 8 presents a comparative view of the average
indirect SDN link discovery times for BDDP and EESLD
over four network scales: 8, 20, 30, and 85 switches. The
chart shows that EESLD was faster than BDDP across
all network sizes. For a small network with 8 switches,
EESLD was significantly faster than BDDP at 77.7 ms and
961.6 ms, respectively. This trend continues as the network
size increases. At 20 switches, EESLD’s discovery time
was 95.4 ms compared to BDDP’s 1134.2 ms. For larger
networks of 30 and 85 switches, EESLD proved its efficiency
with discovery times of 172.3ms and 290.2ms, respectively,
compared to BDDP’s times of 2122.2 ms and 3749.9 ms.
The EESLD outperforms BDDP for discovering indirect
SDN links. The reason for this is that BFD packets have
a lightweight and optimised design for rapid link status
detection. Moreover, BFD packets are generated locally,
eliminating the delay caused by transmitting packets from the
controller to the switches.

The detection time for a failed link refers to the time it takes
for the SDN controller to detect and respond to the removal
of a link in the network topology. The detection time is
measured fromwhen the link is removed to the point at which
the controller detects the failure and updates the network
topology accordingly. We measured the average detection
time for direct and indirect SDN link failures.

Figure 9 displays the average detection time for direct link
failures across four network scales: 8, 20, 30, and 85 switches.
All methods demonstrated almost equivalent latency since
link failures were detected by PORTDOWNevents generated
from the switches. However, the EESLD exhibited slightly
faster detection times on larger network scales due to the
reduced controller overhead. Unlike OFDP, which requires

the controller to periodically send two discovery packets
for each discovered link, OFDPv2 sends just one discovery
packet per switch. The EESLD method allows for more
immediate processing of other packets, including those for
port status messages.

FIGURE 9. The average detection time for failed direct SDN link.

Additionally, during our analysis of the detection time for
indirect link failures shown in Figure 10, we observed that
the Floodlight controller could not detect indirect SDN link
failures. The detection time is measured from the occurrence
of a legacy link failure between the two legacy switches
connecting the OpenFlow switches to the moment at which
the SDN controller acknowledges it. The average detection
time for indirect link failures tends to be longer than for
direct link failures for two reasons. Firstly, the link discovery
packet traverses more than one hop to reach the destination
switch. Secondly, the BFD minimum receive interval is set
to 100 milliseconds, which means that if the BFD session
does not receive any packets within this time frame, it will
be considered a link failure, and the switch notifies the SDN
controller.

FIGURE 10. The average detection time for failed indirect SDN link.

Overall, the results for SDN link discovery and removal
indicate the superior efficiency of the EESLD in terms of
discovery time for direct and indirect SDN links, regardless
of the network scale. This efficiency gain becomes more
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pronounced as the network size increases, making EESLD
suitable for dynamic and large-scale network environments.

2) LEGACY LINK DISCOVERY AND REMOVAL
We evaluated the average discovery and removal time
for legacy links in the hybrid SDN network. All of the
legacy switches operated in standalone mode and were pre-
configured with sFlow agents to monitor and send sFlow
packets to the sFlow collector. We evaluated three different
intervals (1, 5, and 10 seconds) for sending sFlow packets to
the sFlow collector. These results were compared with the
most common existing approach to legacy link discovery:
using OSPF-based link state advertisements for discovering
and monitoring the legacy links.

FIGURE 11. The average discovery time for new legacy link.

Figure 11 shows the average discovery time for legacy
links using three legacy network topologies of 8, 20,
and 40 switches. The 1-second interval achieves around
0.6 seconds for all network scales. However, for 5 and 10-
second intervals, there is a slight increase in the average
discovery time as the network scale increases. For example,
with the 5-second interval, the average discovery time varies
from 2.2 s for 8 switches to 3 s for 40 switches, while, with
the 10-second interval, the average discovery time varies from
5.4 s for 8 switches to 6 s for 40 switches. Reducing the
interval time for sending sFlow packets can lead to faster
link discovery times, but, it may also increase the system’s
resource usage and network load.

On the other hand, Figure 12 shows the average removal
time for legacy links. We can see that the average removal
time for all network scales with a 1-second interval is
around 0.6 s. This is equivalent to the average discovery
time for a new link. Nevertheless, with longer intervals
of 5 and 10 seconds, the average removal time increases
slightly as the network scale increases. For example, with
a 5-second interval, the average removal time varies from
1.9 s for 8 switches to 2.8 s for 40 switches. Also, with
a 10-second interval, the average removal time varies from
5.1 s for 8 switches to 5.3 s for 40 switches. This indicates
that the discovery of legacy links takes slightly longer

FIGURE 12. Average detection time for EESLD framework legacy link
removal.

than the removal process, but the difference in time is
minimal.

We compared legacy links’ discovery and removal times
using OSPF. This approach achieved network topology dis-
covery by exchanging the link state advertisement messages.
When the OpenFlow switch receives these advertisements,
it forwards them to the SDN controller, which updates its
internal database andmaintains an accurate network topology
view. We used hop counts of 2, 9, and 18 to represent the
number of intermediate devices a packet must traverse to
reach the closest OpenFlow switch. The network topology
was simulated using the Graphical Network Simulator
(GNS3) [69].

FIGURE 13. Average detection time for OSPF-based legacy link removal.

The results shown in Figure 13 indicate the average
discovery and removal times for legacy links at different
hop counts. The convergence time for adding a link is
approximately 5.4 seconds across all the tested hop counts
as the minimum link state packet is sent every 5 seconds
[70]. Moreover, it takes roughly 35 seconds for the network
to recover from a link failure. This timeframe is determined
by the router’s ‘‘dead interval’’ setting, which is 40 seconds,
allowing for a 30 to 40 second period for routers to detect
a failure [70], [71]. As the number of hops increases, the
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FIGURE 14. Controller CPU usage.

average time it takes to discover and remove legacy links
increases slightly. Higher hop counts result in longer traversal
times for control messages to reach the SDN controller,
leading to increased discovery and removal times for legacy
links.

The evaluation indicates that sFlow-based link discovery
in the EESLD framework outperforms OSPF-based link-
state advertisements for more rapid discovery and removal
times for legacy links. This highlights the effectiveness and
efficiency of the sFlow approach, making it a more suitable
solution for discovering and monitoring legacy links in a
hybrid SDN network.

C. RESOURCE CONSUMPTION
This section examines the resource consumption of the
EESLD framework for SDN link discovery in hybrid SDN
networks. To assess resource consumption, we considered
factors such as message overhead, CPU utilisation, memory
usage of the SDN controller, and CPU utilisation of switches.
We employed the ‘‘top’’ command in the Linux shell to
measure CPU and memory usage. The ‘‘top’’ command
is a tool used to monitor processes and system status in
Linux systems by providing real-time statistics on processes’
performance.

1) THE MESSAGE OVERHEAD OF THE CONTROLLER
The message overhead of the controller refers to the network
traffic generated and received (Packet-Out and Packet-In
messages) by the controller to discover and monitor the
network’s SDN links. In our evaluation, we used four network
topologies: Linear, Tree, Mesh, and Hybrid (star and ring),
as shown in Table 4. We recorded the number of Packet-Out

TABLE 4. Topologies and key parameters.

TABLE 5. The number of messages for discovery and maintaining
topologies.

messages generated and Packet-In messages received by the
controller over 60 seconds, starting from network initiation.

Table 5 compares the message overheads of the EESLD,
OFDP and OFDPv2. The message overhead of the EESLD
is significantly lower than that of OFDP and OFDPv2 for all
network topologies.

The EESLD framework employs a single Packet-In
message for each link discovery. It optimises the process by
minimising the number of switches required to monitor link
statuses. OFDP employs a consistent pattern of generating
one Packet-Out message and receiving one Packet-In mes-
sage for each switch port during every time interval. This
results in a message overhead equal to twice the number
of active inter-switch links in the network. An improvement
in OFDPv2, reduces the number of Packet-Out messages
required to maintain the network topology to equal the
number of switches present in the network. However, despite
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FIGURE 15. Switch CPU usage.

this improvement, the number of Packet-In messages remains
unchanged.

2) CONTROLLER CPU USAGE
To analyse the CPU utilisation of the SDN controller,
we measured the percentage of CPU usage of the EESLD
after topology construction. We used three network scales,
20, 30, and 85 switches. As shown in Figure 14, the average
CPU usage of OFDP is higher for all the network scales than
the OFDPv2 and EESLD because of the additional active
ports. At 20 switches, OFDP exhibits an average CPU usage
of 2.55%. As the network scale increases to 30 switches, the
average CPU usage rises to 5.66%, and then to 9.50%, when
the network scale increases to 85 switches. With OFDPv2,
the average CPU usage is 1.23% for 20 switches, 1.94%
for 30 switches, and 7.51% for 85 switches. By eliminating
the number of Packet-Out messages, the OFDPv2 method
achieves a significant reduction in CPU usage compared to
OFDP. For the EESLD method, the average CPU usage is
2.27% for 20 switches, 3.57% for 30 switches, and 7.70%
for 85 switches. Although the average CPU usage of EESLD
is slightly higher than OFDPv2 for 85 switches, the gap
reduces as the number of switches increases, indicating
that EESLD is likely to outperform OFDPv2 in larger tree
networks.

3) CONTROLLER MEMORY USAGE
To evaluate the memory usage of the SDN controller,
we measured the amount of memory allocated to storing the
network topology information after topology construction.
We compared the memory usages of the EESLD, OFDPv2,

and OFDP for three different network scales: 20, 30, and
85 switches.

FIGURE 16. Memory usage.

As shown in Figure 16, the result reveals that the memory
usages of OFDP and OFDPv2 were almost equal across all
the network scales. This indicates that the implementation
of OFDPv2 does not significantly reduce memory usage
compared to OFDP. The memory usage of the EESLD is
higher than that of OFDPv2 for all the network scales
examined. Therefore, the EESLD may require more memory
resources to store the network topology information. To over-
come this constraint of EESLD, further investigation into
optimisation techniques and memory management strategies
can be considered as future work.

4) SWITCH CPU USAGE
In the final experiment, the CPU usage of switches was mea-
sured and compared for three network scales: 20 switches,
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30 switches, and 85 switches. Wemeasured the CPU usage of
the Open vSwitch process to illustrate the aggregate overhead
of all switches in a topology.

As shown in Figure 15, the results demonstrate that the
EESLD exhibits higher CPU overhead on switches than
OFDP and OFDPv2 due to the additional computational
tasks involved in SDN link discovery and maintenance. For
instance, in the EESLD, Open vSwitches run BFD sessions
on each discovered SDN link, and some switches are required
to handle port statistics requests from the SDN controller.
In contrast, Open vSwitches in OFDP and OFDPv2 only need
to broadcast the LLDP packet to all the ports, resulting in less
strain on the switches’ processing capabilities. However, the
difference in switch CPU usage between EESLD and OFDP
is relatively small for tree networks. This suggests that the
EESLD may perform better in tree networks with a more
significant number of switches.

X. LIMITATIONS AND FUTURE WORK
This section discusses EESLD framework limitations and
highlights potential areas for future research.

The EESLD framework may be unable to discover indirect
SDN links between OpenFlow switches separated by legacy
routers lacking support for the sFlow protocol. The EESLD
uses single-hop BFD, which is used primarily for directly
connected routers or switches that are on the same network
segment. This limitation restricts the system’s capacity to
fully comprehend the network topology in such scenarios.
To address this limitation, future work could incorporate
multi-hop BFD, which monitors links that span network
segments and are not directly connected.

The EESLD framework potentially requires more memory
resources for discovering and storing network topology
information. This is due to the additional computational tasks
involved in SDN link discovery and maintenance in the
EESLD compared to state-of-the-art protocols like OFDPv2.
However, with recent advancements in hardware capabilities,
such as increasing memory capacity, this limitation may
become less of a concern. In addition, future work could
explore optimisation techniques to reduce the memory
requirements of the EESLD without compromising its
performance.

This study has demonstrated the significant efficacy of
the EESLD framework in wired network environments.
However, further investigation and improvement can be pur-
sued by examining the potential benefits of utilising P4 pro-
grammable data planes. Integrating P4 programmable data
planes into the EESLD approach would allow researchers to
explore enhanced efficiency and flexibility in link discovery
within SDN networks.

In addition, a further limitation of the EESLD framework
is its design for wired networks, which may not directly
apply to wireless networks. The link characteristics and
dynamics differ significantly between wireless environments
and wired networks [72]. This can result in challenges with
accurately discovering and maintaining the network topology

using the EESLD framework in wireless networks. As future
research, it would be valuable to explore the development
of link discovery mechanisms specifically designed for
Software Defined Wireless Sensor Networks (SDWSN),
considering the unique characteristics and challenges that
SDWSN environments pose.

XI. CONCLUSION
This paper has discussed the topic of link discovery in
hybrid multi-controller SDN networks. We have used the
Hybrid Multi-controller SDN Network (HMSN) architecture
as a case study to highlight the limitations of existing link
discovery methods in dynamic and large-scale hybrid multi-
controller SDN networks. Based on our analysis of existing
link discovery solutions and their limitations, we have
proposed an Effective, Efficient and Scalable Link Discovery
(EESLD) framework. The EESLD effectively discovers
direct and indirect SDN links within intra-domain and
inter-domain networks. Also, EESLD selects the minimum
number of switches necessary to cover all the discovered
SDN links to monitor and maintain an accurate SDN link
topology. EESLD classifies these selected switches based
on their importance in order to determine the frequency
with which these updates should be sent. EESLD uses
the sFlow protocol to discover and monitor broadcast
and unicast legacy links within the network. Additionally,
EESLD employs the publish-subscribe messaging pattern to
relay topology changes to all the relevant controllers. This
approach enables controllers to promptly share their local
network topology view, ensuring timely and synchronised
updates and keeping all the controllers updated with the latest
network topology information. The effectiveness, efficiency,
and scalability of EESLD in HMSN were evaluated through
simulations. The results demonstrate that EESLD effectively
discovers and maintains the network topology with minimal
overhead and latency. Compared to state-of-the-art protocols,
EESLD exhibits superior scalability by reducing unnecessary
discovery packets and minimising the load on the SDN
controller and switch-controller communication channels for
different topologies. In conclusion, the EESLD framework
offers an effective, efficient, and scalable solution for link
discovery in dynamic and large-scale hybrid multi-controller
SDN networks.
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