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ABSTRACT An innovative task allocation scheme for a multi-robotic system in a specific context is
introduced in this paper, where functionalities of the individual robots are considered, and a probabilistic
estimate of each robot specialization is computed. The problem is formulated based on the assumption that
each robotic agent is qualified for performing specialized functionalities, and the expected tasks distributed
in the surrounding environment enforce specific requirements. The task allocation algorithm evolves through
three stages to compute individual robot allocation probabilities. First, recognizing the features of the target
task is addressed by leveraging the output of a vision system in the sensing layer to drive the proposed
agent-task allocation scheme. Second, a matching strategy is formulated to match each robot’s unique
functionalities with the corresponding features of target tasks. The specialization of each agent is developed
in two approaches as a main part of the matching process: first, a binary association of the capabilities of each
agent, and second, based on the suitability of each agent to tackle the various tasks. Finally, the developed
robot-task-matching system is expanded to fully utilize the potential of the robot specializations, considering
the agents attendance level with the availability of services of each agent. The developed framework is
extensively validated through MATLAB simulations. To demonstrate the feasibility of the proposed system
for real-life applications, the developed framework is implemented on real robots. The results show that the
performance of the proposed allocation scheme is increased significantly when the suitability levels of the
agents’ specializations inform the task allocation process and agent attendance levels are activated.

INDEX TERMS Robot-task matching, heterogeneous robotic system, robots’ specialized functionalities,
probabilistic estimation of specialization.

I. INTRODUCTION
Recent advances in autonomous robotic systems are promis-
ing to shape future industries and services such as public
spaces surveillance operations [1], search and rescue applica-
tions [2], sample and data collection in large manufacturing
plants and dangerous places [3], maintenance operations
[4], logistic services [5], emergency first responders [6],
and military operations [7]. This research aims to evolve
the multi-robot team to function as a cooperative team of
specialized robotic agents based on formal consideration of
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each individual robot’s specialization. As a result, the indi-
vidual robots should be able to reliably perform a diversity of
tasks while focusing on specialization. This leads to efficient
distribution of the workload, where each task is to be fully or
partially primary by an individual or multiple agents among
the robotic team. This paper focuses on the formulation of the
individual robots’ specialization. Solutions are proposed for
a multi-agent system of specialized robots to be efficiently
assigned to allocate target tasks that impose specific require-
ments for their successful completion, a perspective that has
not yet been extensively addressed in the literature. This paper
is a substantially extended and reformulated version of [8]
in terms of both implementation details and experimental

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 145199

https://orcid.org/0000-0003-4052-5613
https://orcid.org/0000-0003-3103-9752
https://orcid.org/0000-0002-8887-4321


O. Al-Buraiki, P. Payeur: Task Allocation for Multi-Agent Specialized Systems

TABLE 1. Comparison of the proposed approach to three state-of-the-art task allocation methods.

validation. The contribution of this paper focuses on design-
ing a task allocation framework for a diverse group of robotic
agents based on their specializations, where the agents’ spe-
cific mechanical or instrumental traits are represented in two
ways: either a binary specialization definition, or a refined
version indicating their suitability for various tasks, which
outperforms the binary specialization by multiple times as
indicated by experimental results on test cases. The proposed
approach links the agents’ specialized functions to visually
detected features of target objects with confidence level. This
information is utilized in a novel task-agent probabilistic
matching scheme that calculates agents’ specialty-based task
allocation probability. Then, the framework is extended to
automatically assign qualified agents to the corresponding
tasks considering their availability state and attendance level.
The results indicate that the extended framework outper-
forms the original one and presents an effective coordina-
tion and adaptability on workspaces of varying sizes and
complexity.

The following section reviews the related approaches for
automated task-agent allocation. Section III outlines the pre-
sented framework in detail, while section IV addresses the
recognition process of the task characteristics that defines
the target object considered. The design aspects of the
task-agent speciality matching scheme as well as the qual-
ified responders’ coordination are introduced in Sections V
and VI respectively which represents the main contribution
of this paper. Section VII discusses the observations on
simulation experiments. Finally, the proposed framework is
implemented on real robots and the results are reported in
Section VIII.

II. RELATED STUDIES
Previous art in the field of task-agent allocation introduced
many solutions for the coordination of multi-robot systems
[9], [10]. An optimal sequence of task allocation that min-
imizes the time of the assignment process or reduces the
cost of energy consumption for a multi-robot system of

heterogeneous agents is developed in [11]. The stick-pulling
approach [12] is used in [13] to study the advantages of
specializationwhen two robotic agents are required to accom-
plish a joint task. This work is extended in [14] for any
number of robots, based on individual adjustments to the
agents. The robots are initialized to search for randomly dis-
tributed sticks in their vicinity. A task-partitioning strategy to
split the task of object retrieval between the source and a nest
into sub-tasks is introduced in [15] and [16]. A behavioural
specialization [17] in a multi-agent robotic team is introduced
as a result of interactions among the robotic agents and their
environment. Two constrained resources are considered in
[18], where a first set of robots can only feed from one
specific resource while another set feeds from the other
resource. Alternatively, an auction algorithm is proposed in
[19] that enables every robot to independently define a task
to be assigned to. The above-mentioned studies address the
task-robot assignment cost as a function of the distance that
the robot needs to travel to the target task, the time, or the
power that is required to accomplish a defined task. However,
these studies do not leverage the characteristics of the robotic
agents’ specialized capabilities.

Alternatively, a task-robot task allocation probabilistic
approach is introduced in [20] to divide the environment
containing targets into a network of cells. Then, the robots
that are available in each cell are assigned to the targets that
occupy the same cell. Another probabilistic framework that
defines object-action relevance is addressed in [21], but the
features of the objects are not estimated for a convenient
matching process. This model is utilized in [22] to compute a
series of behaviours and apply estimated inference to manage
the robot’s planning, grasping, and reasoning for the arrange-
ment of table-top items. In a different context, a probabilistic
threshold-based control approach is introduced in [23] to
derive the robots to perform a food-foraging process. How-
ever, the individuals can only perform two tasks of nesting
and searching, thereby limiting the scope of specialization
application.
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Recently, many works have addressed the task allocation
of multi-robot systems [24].The recent developments in the
field focus on combining the generalized formulations of
the task allocation problem and recent advances in swarm
intelligence [25], or on the task planning aspects, such as task
scheduling as a simultaneous process of task allocation, rather
than introducing a formal specialization definition based on
the individual agents’ functionalities within a heterogeneous
robotic team. A game-theory-based coalition framework is
also addressed in [26] to coordinate and form robotic teams
with different sensing capabilities to collaborate and accom-
plish tasks. The proposed approach does not address the
formal specializations of the individual robots as standardized
probabilistic scores based on the individual robots’ function-
alities (sensors, actuators, software, fuel, battery, availability,
attendance). As well, the proposed approach in [26] does not
address the assignments of the most qualified or all qualified
robots based on the application’s demand but rather on the
framework’s flexibility to accommodate medium, and wide
task spaces.

Based on existing literature, a significant technological
gap among potential solutions is identified, which is the
consideration of a formal specialization definition based
on the individual agents’ functionalities among a group of
robots. Table 1 outlines the primary distinctions between the
proposed approach and existing literature in the domain of
multi-agent robotic teams.

To maximize the benefits of teamwork within a heteroge-
neous robotic team composed of agents that possess such spe-
cialized capabilities, a probabilisticmechanism for task-agent
matching is proposed in this paper to encode and utilize the
robots’ specialization and achieve competent strategic task
assignment of the individual robots to allocate target tasks.
This paper puts forward noteworthy contributions extending
beyond the authors’ previous publications [27], [28], as the
original task allocation process is extended and developed
in three stages. First, a task features recognition stage was
conceptually introduced to utilize the output of a sensing
layer embedded in robotic agents for driving the proposed
task allocation scheme. This stage is discussed in Section IV.
Second, a matching scheme was developed to best match
each agent’s specialized capabilities with the corresponding
detected tasks. At this stage, a general binary definition of
agents’ specialization is defined to serve as the foundation for
task-agent association. Then, the framework is generalized
and further refined with a modulated definition of the agents’
specialization based on their mechanical and physical struc-
ture, as well as embedded resources. This stage is addressed
in Section V. Finally, the developed task-agent matching
scheme is expanded to fully utilize the potential of indi-
vidual robotic agents’ attendance level and their availability
in services to coordinate the qualified agents for allocating
the detected tasks. This coordination stage is presented in
Section VI. This paper studies closely the impact of diverse
specialization management strategies in operational condi-
tions through an extensive experimental validation.

III. PROPOSED FRAMEWORK
The developed framework builds upon a probabilistic task
allocation process for a team of heterogeneous robots to
match them to constrained tasks. The individuals of this team
are equipped with specialized functionalities. The tasks are
distributed in the surrounding environment, and their detec-
tion imposes specific allocation requirements. The solution
considers the individuals of the robotic team to have various
levels of functionality (i.e., physical construction, sensors,
actuators, communication and cognitive capabilities, or oper-
ational capacities). This constructs a robotic system offering
varying suitability levels of robot-task allocation responses
in terms of the robots specialized capabilities and the task
allocation requirements. To achieve this objective, two spaces
are developed to ensure suitable coordination between the
specialized robots and the corresponding tasks. A schematic
diagram of the proposed system is shown in Fig. 1. The
control space carries out the control sequences to drive the
robots to the positions of the detected task, such as dynamic
stabilization, navigation, team formation, and path tracking
control. The design aspects of the control space are addressed
by the authors in a prior work [32]. On the other hand, the
specialization space addresses the problem of matching the
detected task’s requirements with the specialized capabilities
of the available members of the robotic team. This represents
the main contribution of this article.

A robot-task probabilistic matching approach is developed
in the specialization space tomatch distinctive features identi-
fied on detected tasks with the robots’ embedded specialized
resources. The approach depends on an uncertain represen-
tation of detected features on target objects (task features)
[33], which defines a specific signature of the detected task to
be matched with the functionalities of the individual robots.
This paper addresses the framework design from three main
perspectives: 1) recognition of the target task; 2) robot-task
probabilistic matching; and 3) suitable responders’ coordi-
nation. The developed automatic task selection unit (ATSU),
as illustrated in Fig. 1, is responsible for the decision-making
process [36]. ATSU ensures the allocation of the most qual-
ified robot, or robots, to a corresponding detected task. The
latter takes the form of a target detected with a vision sensor.

IV. RECOGNITION OF TASK CHARACTERISTICS
To guide the task allocation process, observable features
perceived on target objects with robot-embedded vision sen-
sors are considered in defining the nature of a given task to
be fulfilled by agents belonging to the robotic system. The
characteristics of the expected target objects are split up into
classes. Each class of target objects is encoded as a vector of
N sample features, that is Xk = {xj:j = 1, 2, 3, · · · ,N , given
that xj∈R2 is a two-dimensional spatial feature. For the sake
of generality, in this formulation, the assumption made was
that xj is a Gaussian distributed random sample of a spatial
feature observed in 2D with mean µ and covariance σ 2. It is
also assumed that k = 1, 2, 3, . . . ,T , where T is the deter-
mined number of the target’s classes that may be detected
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over a defined tasks space, X = [Xk:k = 1, 2, 3, . . . ,T ],
and each group of features Xk is related to one specific
class, Cl :l = 1, 2, 3, . . . ,T . Samples from these classes are
considered available for training a deep learning-based target
detection stage. To map the suitable robotic agent/agents to
the equivalent target-task independently, each class Ck of the
target objects is linked with an action of a specific response
to be performed by the embedded specialized functionality
of a robotic agent. Therefore, a well-defined task space X
consists of N×T features to be performed by the available
specialized/heterogeneous functionalities of the robotic team.
A pre-trained deep learning network with a corresponding set
of T classes is used to retrieve any observed Xk based on the
visual observation of the target object [34]. The perception
system is generalized in this formulation. The target object
detection is computed by the Bayesian posterior probability:

P (Cl |Xk) =
p(Xk|Cl)P(Cl)

p(Xk)
(1)

FIGURE 1. The architecture of the proposed framework for
specialization-based robot-task allocation and control.

where theGaussian distribution of the featureXk in each class
Cl is described by a class-conditioned probability density
function p(Xk |Cl). P (Cl) is the prior probability of the class
Cl in the given training dataset, and p(Xk ) is given by:

p (Xk) =

T∑
l=1

p(Xk |Cl)P(Cl) (2)

given that all quantities of P (Cl |Xk), defined in Eq. (1),
are functions of the classes Cl except p(Xk ). As such, the
denominator in Eq. (1) can be considered a normalization
constant. Therefore, it can be substituted by 1

ξ
to integrate

the left-hand side to one. Thus, the posterior probability is
evaluated as:

P (Cl |Xk) = ξp (Xk |Cl)P (Cl) (3)

In practice, a deep learning network [20] is trained from
the sample image dataset of the classes Cl’s of features Xk ’s
representing various objects to perform target task-object

detection. The latter then provides an input to the proposed
task allocation framework as shown at the top of Fig. 1.

V. TASK-AGENT SPECIALTY MATCHING SCHEME
General concept: For a given match, a robot should respond
to a given task only when it offers a sufficient specialty-based
competencies probability in the presence of the detected
task requirements. The latter are inferred from the detected
features of the target task while robot competencies are pre-
defined by its physical characteristics. In addition, a given
robotic agent can also be qualified for different tasks but
with different levels of specialty-fitting probabilities. The
proposed task-robot matching scheme runs two functions:
1) to calculate the robot-task specialty-fitting level between
the robotic agents and the detected task; and 2) to dynamically
allocate the detected task to themost specialized and available
agent or agents.

A. INDIVIDUAL ROBOTS’ SPECIALIZATION ENCODING
A heterogeneous robotic team {Ri, i = 1, 2, 3, . . . . . . ,M}

encompasses M specialized robotic agents and supports T
different specialized roles or functionalities corresponding to
the number of target object classes that can be detected. In
this research, two different representations are considered to
encode specialized functionalities:

1) BINARY ENCODED TASK ALLOCATION (BETA)
The specialized roles or functionalities of each robot are
defined in a binary vector: Si: {sk , k = 1, 2, . . . ,T } where
Si∈R1×T . Every entry in Si is defined as:

sk

=

{
1 : Ri possesses a corresponding functionality.
0 : Ri does not possess a corresponding functionality.

(4)

sk = 1 indicates that the robot, Ri, holds the corresponding
functionality to tackle a task of a given class Cl ; and sk = 0
means that the robot, Ri, is not provided with the neces-
sary attribute required to perform a task of a class Cl . For
example, consider a firefighting scenario in which individual
agents within a heterogeneous robotic team are equipped
with diverse capabilities for combating fires in various set-
tings, including large residential complexes, skyscrapers,
small houses, and warehouses. The primary task classes
are residential complexes, skyscrapers, small houses, and
warehouses. In this case, the specialization vector of each
agent Ri is defined as Si: {sk , k = 1 :4} . The binary encoding
of the agents’ heterogeneous specializations is suitable for
assigning a qualified robot to a detected task, provided that
the robotic agent possesses a corresponding capability in
relation to the detected class associated with the target object,
regardless of the suitability level of the processed capability
concerning the detected target class. In the following section,
the definition of agents’ specialization is modeled in a non-
binary form, not only for assessing their capability possession
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but also to account for varying levels of sophistication in
their specialized capabilities. This differentiation is rooted
in the agents’ mechanical construction, embedded hardware,
and software, with the aim of capturing different levels of
suitability of the agents’ specialization for different tasks.

2) MODULATED ENCODED TASK ALLOCATION (META)
To provide additional flexibility in the task allocation pro-
cess, the binary definition of the agents’ specialty vector, Si,
introduced above, can alternatively be modulated in a non-
binary form. This modulated representation of the agents’
specialization is adopted when increased sophistication of the
task allocation scheme is either necessary or permitted by the
application. Human beings may be considered as an example,
given that individuals have many talents, but some are more
developed than others, and some are physically stronger or in
better shape than others. For example, if a group of people
enter a marathon, all of them may be able to complete the
marathon successfully. However, they would not finish at the
same time due to differences in training and physical condi-
tion. This example highlights that the purpose of modulating
specialized capabilities is to emulate the natural diversity and
robustness of individual agents’ skills at varying levels of
functional competence concerning specific objectives. There-
fore, reformulating specialization as a modulated encoding is
amore accurate representation of individual agents’ potential,
whereas a binary-only specialty vector falls short in capturing
the full range of their specialized capabilities. Let’s assume
that the entries of Si∈R1×T are modulated to take values over
the continuous range from 0 to 1, such that sk∈ [0 1], to rep-
resent the relative level of the agents’ specialized suitability
from the least efficient (0) to the most efficient (1), to tackle
a task of a class Cl recognized from the observed group of
features, Xk . The specialization encoding is then revisited as:

sk =


0 < sk ≤ 1 : Ri possesses a level of

corresponding functionality.
0 : Ri does not possess a

corresponding functionality.

(5)

B. PROBABILISTIC ESTIMATE FOR TASK-AGENT MATCH
The agent-task specialty fitting probability is determined for
an individual robotic agent of identity, i, in accordance with
the constraints raised by the detected classes on target objects
as per the discussion in Section IV. To compute each robot
speciality estimate, each robot offers a unique specialty fitting
level, ϕ̂Ri , considering its specialized capabilities, Si,. This
level is estimated as:

ϕ̂Ri = SiP̂T (6)

where ϕ̂Ri ∈ R1×1 is scalar. P̂T∈RT×1 represents the
probability transition vector of the detected classes on target
objects, that is an uncertain classification from the target
object recognition stage. This is formulated as a vector
of estimated posterior probabilities, Equation (3), which is

expressed as follows:

P̂T =

[
T∑
k=1

P (C1 |Xk)
T∑
k=1

P (C2 |Xk) · · ·

T∑
k=1

P (CT |Xk)

]T
(7)

To express the task-agent specialty matching in a proba-
bilistic form, the concepts of probability theory are adopted
[35]. In this formulation, the specialized capabilities (i.e., the
heterogeneous equipment that each robot possesses, such as
sensors, actuators, computation resources, and communica-
tion links) are encoded in its specialization vector, Si. The
overall outcome is estimated as an agent’s specialty fitting
level, ϕ̂Ri , defined in Eq. (6), which is a function of the
agent’s specialization vector, Si, and uncertain recognition of
target objects, P̂T . Finally, a corresponding specialty fitting
probabilistic score,Qi, over the range [01] is defined for each
individual robotic agent as their respective fitting probability
for a detected task or target. This probability is computed
by normalizing each agent specialty fitting level, ϕ̂Ri , by its
specialty collective score, ϕRi , that is computed when all of
the robot’s capabilities/specialized roles (Eqs. 4 and 5) are in
fit with all potential target classesCl :l = 1, 2, 3, . . . ,T . ϕRi is
defined in Eq. (9). Therefore, the specialty fitting probability
of each robot, Ri, can be calculated as follows:

Qi =
ϕ̂Ri

ϕRi
(8)

The maximum collective score, ϕRi , of a robot Ri is defined
as:

ϕRi = Sipmax (9)

and;

pmax = [p(X1|C1) p(X2|C2) · · · p (XT |CT )]T (10)

where p (Xk |Cl) is the class-conditional probability of Xk
in its predefined class. For more detailed information on
computing class-conditioned probabilities, interested readers
can refer to [35]. In practice, it is reasonable to consider ϕRi =∑T

k=1 sk , which is the sum of the encoded agent’s specialized
roles/capabilities as per Eqs (4 and 5). As a result, a diag-
onal swarm’s probabilistic matching matrix Q ∈ RM×M is
introduced, which formally accommodates the probabilistic
estimate of each robot’s specialization to respond to specific
task/target, defined as:

Q = diag[
ϕ̂R1

ϕR1
,
ϕ̂R2

ϕR2
, . . . ,

ϕ̂RM−1

ϕRM−1

,
ϕ̂RM

ϕRM
] (11)

VI. QUALIFIED RESPONDERS’ COORDINATION
Beyond reliably associating robotic agents to allocate
detected targets in the environment, it is also important to
support realistic scenarios in which an agent may not always
be available because of faulty conditions that prohibit the
robot from performing its duties. Alternatively, a robot may
be already involved in another task or be located far from the
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target position when called to service by the task allocator.
To tackle such situations, the proposed framework is refined
to formally consider the agents’ availability state ϑAv,
and attendance level ϑAtt along with their specialty fitting
probability Q.

A. AGENTS’ AVAILABILITY AND ATTENDANCE
The robotic agents’ availability, ϑAv, is an original attribute
of this framework that improves its reliability to achieve
the mission goals by replacing the allocations of qualified
but unavailable robotic agents with alternative available and
partially qualified robots.

The availability vector ϑAv ∈ RM×1 is defined based on
the status of the robot’s being in service. At the moment of
robotic team deployment, an internal flag of the deployed
robots is turned to ‘‘available’’ to declare the viability state
of each given robot, while the same flag for robotic agents
that are not in service is turned to ‘‘withdrawn’’ to declare
the unavailability state. The robotic agents that are in the
‘‘withdrawn’’ state cannot be assigned for the task allocation.
However, the system automatically searches for an alternative
‘‘available’’ robotic agent with an appropriate specialty fitting
probability to fulfil the task allocation goal. In addition, when
an available agent is assigned to a given task, its availability
state is changed to ‘‘busy,’’ which indicates to the task alloca-
tor that the agent is temporarily unavailable. The availability
status vector of the swarmmembers, ϑAv ∈ RM×1, is defined
as:

ϑAvi =

{
1, Ri is ‘‘available′′

0, Ri is ‘‘withdrawn′′or ‘‘busy′′
(12)

In addition, a diagonal attendance matrix, ϑAtt ∈ RM×M,
is defined based on the distance, di, between the current
position of every robot and the position of the detected target.
The distance, di, is taken into consideration with the objective
to optimize the time response of the qualified individuals
among the swarm by privileging closer agents to address tasks
in their neighbourhood. Beyond the respective displacement,
the concept of attendance also considers the relative velocity
of the individual robotic agents, vi, and the velocity of the
detected target , vt . This proves essential when dealing with
moving target objects to ensure that the available agents are
sufficiently fast to reach the assigned targets. The respective
robots’ attendance levels are evaluated at the moment a target

object is detected. The role of the corresponding weights
defined as in Eq. (14), shown at the bottom of the page, is
to influence the robots’ specialty fitting level and to increase
the probability of assigning the closer agents. The attendance
matrix of the swarm is formed as:

ϑAtt =



ϑAtt1 0 · · · · · · · · · 0

0 ϑAtt2
...

...
. . .

...
...

. . .
...

... ϑAttM−1 0
0 · · · · · · · · · 0 ϑAttM


(13)

with, where di is the route length (Euclidean distance)
between the current location (xi, yi) of the robot Ri and the
location of the detected target object (xT , yT ) in their shared
2D plane. rtask is the radius of the designated task zone [36] of
influence which represents the maximum spread of candidate
target objects around a given robotic agent, and it is tuned
by the system’s designer. vi is the current linear velocity of
the robot Ri. vimax is the maximum pre-initialized limit of
the linear velocity of a robot Ri. vt is the linear velocity
of the detected target, defined positive when the target moves
in the same direction as the agent’s movement and negative
when the agent and target move in opposite directions. T̄, ϵ,

and ϒ are control variables that take binary values, 1 or 0,
to turn on or off the effect of the robots’ velocity and the
distance to the target location based on sensors outputs that
estimate relative distance and velocity of the robot and target
objects. The binary value of T̄ is defined based on the com-
parison between the estimated velocity of the target and the
maximum predefined velocity for each agent.When vt≥vimax ,
then T̄ equals 0 and the weight of the agent’s attendance term
in Eq. (13) is null. As a result, the target cannot be reached
as long as its velocity is higher than or equal to the agent’s
maximum velocity. The task allocator then automatically dis-
engages the corresponding agent. For the sake of validation,
the discussion in this paper is limited to cases of static targets
(i.e., ϵ = 0).

B. COORDINATION SCHEME
The overall proposed task-agent coordination scheme is syn-
thesized as a summation of two components: fixed specialty
fitting probabilities, Q, weighted by a ratio, ρ, and a varied

ϑAtt i =



T̄
(

ϵ
(

vi
vimax

)
+

(
rtask
di

)ϒ
)

2ϵ



ϒ = 1{di>rtask
ϒ = 0{di≤rtask
ϵ = 1{moving target AND vt is positive
ϵ = 0{static target OR vt is negative
T̄ = 1{vt<vimax
T̄ = 0{vt≥vimax

0, {Ri is ‘‘withdrawn′′ or ‘‘busy′′

(14)
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agents’ attendance level, ϑAtt , weighted by (1 − ρ). These
two components are further filtered by the agents’ availability
status, ϑAv.The overall task allocation scheme is defined as:

9 = (ρQ+ (1 − ρ)ϑAtt) ϑAv (15)

9 ∈ RM×1 returns the task allocation probabilistic fitting
levels for every available agent, or 0 for withdrawn or busy
robots, with respect to the latest detected task. The parameter
ρ ∈ [01] is defined by the system’s designer to distribute
the weight of the overall task allocation fitting probabilities
betweenQ andϑAtt based on the nature of the application. For
example, in applications where specialty matching between
the agents’ functionalities and corresponding targets is pre-
dominant over the time it takes for the swarm to respond,
such as in service robotics, then ρ can be set close to its
maximum (1). However, in applications such as emergency
response, where the agents’ attendance (proximity and veloc-
ity to shorten response time) is predominant, then ρ can be set
to lower values, according to the amount of specialization that
is still expected. As a result, a balance between specialization
and time efficiency can be achieved.

C. HUMAN STRATEGIC GUIDANCE
To provide the system with strategic guidance, a role is given
to a human supervisor in the control loop to influence the
behaviour of automated process when needed [37], [38], [39].
The framework preserves such an access on the operational
loop to initialize or to modify the system’s operational con-
ditions and provide a form of strategic guidance to the task
allocation process, as shown on the right side of Fig. 1. For
this purpose, a minimum fitting threshold (MFT) η is applied
as a protection measure that ensures a minimum matching
probability below which no robot can be assigned. The main
role of the human supervisor is designed to dynamically
control theMFT level. The human supervisor can have access
to adjust this parameter either before the deployment of the
robotic team or during operation. The MFT can be selected at
different levels between 0 and 1 based on the operating condi-
tions of the application or in association with the application’s
requirements. This way, human awareness of the situation can
be combined with the automated process by modifying this
parameter, and a level of trust in the task allocation process
can be influenced.

A desired objective of the proposed solution is to reduce
the cognitive load on the human supervisor. Pre-setting the
distribution ofMFT over two ranges can reduce the number of
times the human operator needs to intervene on the MFT set
point. Therefore, the desiredMFT, η, is defined as η∈ (01] but
is distributed over two predefined ranges forming a low spe-
cialty fitting level (LSFL) and a high fitting level (HSFL). The
lower range, LSFL, is defined with η∈ (0B] to drive the task
allocation process to meet the minimum specialized func-
tionalities of the available robots to allocate to the detected
tasks. On the other hand, in situations where a higher level of
trust in the task allocation process must be ensured to match
only the most capable robotic agents with the requirements of

the detected tasks, the human supervisor easily switches the
process to work in HSFL range, η ∈ (B1]. For applications
that involve a level of attendance, ϑAtt , in Eq. (15), to boost
the specialty fitting probability, Q, the low specialty fitting
level (LSFL) is conditioned to (1 − ρ) <η which leads to:{

LSFL: (1 − ρ) <η≤ B,

HSFL: B <η ≤ 1,
(16)

This formulation ensures that the level of the agents’ atten-
dance, ϑAtt , would only boost the specialty-based matching
probability, Q, but ϑAtt cannot initiate the task allocation
process without a required level of the agents’ specialty.
Therefore, 9, defined in Eq. (15), is further refined to only
consider the task allocation fitting probabilities of the avail-
able agents that achieve the desired MFT, which is redefined
as 9MFT ∈ RM×1:

9MFT = [9MFT1 ,9MFT2 , · · · ,9MFTM ]
T (17)

where,

9MFTi =

{
9i, |9i ≥ η:9i ∈ 9

0, |9 i < η:9i∈9
(18)

Accordingly, the qualified available agents are automatically
selected and allocated to the detected tasks considering the
human supervisor’s strategic guidance. The identification
index of the best-suited available agent above the MFT is
given by:

∅BEST RESPONDER INDEX = i|i∈max{9MFT } (19)

The use of the max operator is to extract either the iden-
tification index of a single agent with the highest fitting
probability, or alternatively a group of identification indexes
if multiple agents share the same fitting probability. In the
latter case, when more than one agent shares the highest
score, the max operator extracts their identification indexes
sequentially based on their order in the vector of Eq. (17).
Alternatively, when the goal is to allocate all of the qualified
agents to the detected task, an iterative loop runs inside the
vector of Eq. (17) to extract identification indexes of all the
agents that achieve the desired MFT.

VII. EXPERIMENTAL STUDY
Experiments are conducted to validate and evaluate the effi-
ciency of the proposed approach in simulations and on
physical robotic platforms (Section VIII). First, the proposed
system is tested in simulation trials and exemplified by
T = 14 classes of target objects that can be potentially
detected in an environment where a swarm consisting of
M = 20 specialized robotic agents operate. Tables 14 in
appendix provides a binary representation of competencies
(BETA) for each of the 20 agents considered based on the
agents’ embedded specialized functionalities, as defined in
section V-A.1. Conversely, Table 15 in appendix provides a
modulated representation of competencies (META) for each
of the 20 agents, as defined in sectionV-A.2. As an illustration
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of META specialty encoding, let’s consider that agent R1
is an aerial vehicle, which has a construction that provides
it with a functionality to fight fires on skyscrapers, defined
as TF1 in Tables 14 and 15. Its functionality level for this
type of task is modulated to 0.8 and defined in its specialty
vector, S1, in Table 15. However, the same agent has difficulty
fighting fires in large residential complexes, TF2 . This fact
can be encoded with a lower functionality level at 0.2 as
indicated in Table 15. On the other hand, robot R2 possesses
a functionality which allows it to efficiently act on task TF2
while having lower qualifications for task TF1 . Accordingly,
robot R2 competencies are modulated with a functionality
level equal to 0.3 and 0.7 respectively on the corresponding
tasks, TF1 and TF2 .
Based on these assumptions and the agents’ qualifications

defined in Tables 14 and 15, four test cases are analyzed
below. All cases consider a low specialty fitting level (LSFL)
for the task-robot matching process with an enforced MFT
level of η = 0.3.

A. CASE 1: FRAMEWORK VALIDATION WITH HIGH
CONFIDENCE IN TARGET OBJECTS DETECTION
This test case considers a high confidence level in the target
object detection, here estimated at 0.86, when all of the team
members are available for the task assignment. Agents’ atten-
dance, Eq. (13), is deactivated considering ρ = 1 in Eq. (15)
and the task allocation probability is computed by placing full
weight on the agents’ specialty-based qualification, Q, along
with the agents’ availability status, ϑAv, in Eq. (12). Fig. 2
illustrates that a target object of type TF1 is detected by a
flying robot (shown in red).

The resulting task allocation probabilities for the available
robots based on the binary encoding, Eq. (4) and Table 14,
are detailed in Table 2 (4th column from the left). Agents
R1,R2, and R3 present a specialty fitting score of 0.43 that
satisfies the MFT. In addition, agent R4 presents a lower level
of probabilistic fitting of 0.29, which is less than the set MFT
(0.3). As a result, this agent, R4, cannot be allocated to the
detected task, TF1 . Therefore, in the case that the system
should assign only one agent as the most specialized respon-
der to the detected target, the system, Eq. (19), automatically
assigns the first agent in the list among those that have a
highest probabilistic fitting level, which is R1, as depicted in
Fig. 2.

On the other hand, when the agents’ specializations are
modulated in a non-binary form, Eq. (5), as specified in
Table 15, the available robots present different levels of prob-
abilistic fitting with respect to the detected task (Table 2, 5th

column). In this case, agent R1 presents the highest specialty
fitting probability of 0.69, and agent R3 presents the second
highest value that satisfies the MFT with 0.52.

It is followed by agent R4 with a level of probabilistic
fitting equal to 0.34. All three agents satisfy the MFT and
are somewhat qualified for a task of type TF1 . However,
agents R2 presents a specialty fitting probability (0.26) lower
than the required MFT. As a result, R2 cannot be allocated

FIGURE 2. Detected target object TF1
and allocation to robot R1.

to the task (TF1 ). Therefore, in the case where the system
should assign only one most specialized responder to the
detected task, then the system, Eq. (19), automatically assigns
the agent with the highest probabilistic fitting, that is R1. In
contrast to the case with binary agents‘ functionality encod-
ing in which three agents were equally qualified to tackle
the detected task, with modulated functionality encoding, the
framework provides an increased selectivity on the robot that
is best competent to respond to a detected target task.

B. CASE 2: FRAMEWORK VALIDATION WITH AGENTS’
AVAILABILITY
When the most qualified agent or agents are ‘‘withdrawn’’ or
‘‘busy’’, the system must still accomplish the mission goals
by substituting the unavailable agents with alternative agents
that are currently available and offer adequate functionalities
for the task at hand. Considering the proposed availability
states, ϑAv, defined in Eq. (12), the task allocator, Eq. (17),
calculates the fitting probabilities of the ‘‘available’’ robots.
Fig. 3 illustrates another situation from the simulation where
a second target object of type TE2 is detected, while all team
members are available, as detailed in Table 3(A). In this test
case, the binary encoding is considered (Table 14). This time,
agents R11, R12, and R13 present equal fitting probabilities
(0.38), which is above the MFT. Therefore, the system auto-
matically assigns the first agent in the list, R11, to respond to
TE2 . However, as this agent R11 gets tasked with a mission
and becomes unavailable, as indicated in Table 3(B), the
system then assigns the next specialized and available agent,
R12, to assist the first agent, R11. This test case demon-
strates the framework’s response when agents’ availability
is considered along with their specialized binary functionali-
ties (Table 14). Alternatively, when modulated functionalities
encoding (Table 15) is considered, the system presents a
different response when the same target, TE2 , is detected and
all of the team members are initially available. This time,
the agents offer different levels of task allocation suitability
with respect to the detected task, as detailed in Table 3(A).
Agent R13 reveals as the most specialized robot with a fitting
probability of 0.62, followed by agent R12 (0.48).

However, agent R11 reaches a lower fitting level of 0.23,
which does not satisfy the MFT. As a result, the system
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TABLE 2. Specialty-based task allocation dynamics with respect to a task recognized with high confidence level.

FIGURE 3. Detected target object T E2
inside a red square and allocation

to the most specialized agent, R11.

automatically discards agent R11 and assigns agent R13 to
respond to the detected task TE2 . Once agent R13 is assigned
to allocate the task and becomes unavailable, as shown in
Table 3(B), the system pursues the task allocation with the
next qualified and available agent, which is R12. This test
case demonstrates the validity of the framework’s response
when agents’ availability consideration is combined with a
modulated encoding of the agents’ specialized functionalities
(Table 15). As such, whenever the most specialized agent is
not available, the system successfully assigns the next best
qualified agent to the detected task. This robust behaviour
is not achieved when the agents’ specialized functionalities
are encoded in a binary form, which confirms the value of
modulating the definition of robotic agents’ functionalities.

C. CASE 3: PERFORMANCE ANALYSIS UNDER VARIABLE
TASK RECOGNITION CONFIDENCE LEVELS
This test case presents comprehensive results for the
14 classes of tasks considered, while assuming that the
corresponding target objects would be detected via a deep
learning-based recognition stage with a high confidence level
in the range of 76-95%. To support this study, a metric to
quantitatively monitor the ‘‘agent/task relative robustness’’
of the task allocation process is defined. This measure builds
upon themodulated specialization level defined in Table 15 as
an indicator of the suitability of an agent to perform a task of
a specific nature, given the robot’s mechanical construction,
or onboard embedded hardware or software. This metric is
used for quantitative analysis to evaluate the performance of

the proposed formulations for the task allocators, BETA and
META. Its values are transposed directly from Table 15 to
Tables 4 to 7 in the 4th, 7th, 10th and 13th columns of each
Table, for every pair of agent/task that is formed. Based on
this metric, a colour-coded suitability indicator translates the
individual agents’ robustness with respect to each task in five
categories, those are: 1) The most specialized (green), 2) The
second most specialized (blue), 3) The third most specialized
(grey), and; 4) The least specialized (orange). In addition,
when the task allocation is dropped, the indicator takes the
red colour. The results shown in Table 4 correspond to the
binary encoding (BETA) of agents’ functionalities, defined
in Table 14.
Similarly, Table 5 presents the corresponding results when

modulated encoding (META) of the agents’ functionalities,
from Table 15, is used. Furthermore, in order to study the
influence of the confidence level from the target objects (task)
recognition stage on the proposed task allocation framework.

A complete set of simulations was also conducted with
the same candidate agents/tasks, but at a lower recogni-
tion confidence level, specifically in the range of 50-60%.
Tables 6 and 7 provide a detailed overview of these results.
As such, Tables 4, 5, 6, and 7 show four simulated task
allocation attempts in response to the detection of each one
of the 14 candidate tasks, and while considering either BETA
(Table 14) or META (Table 15) encoding of the robotic
agents’ functionalities. The results are analyzedwhile consid-
ering two types of response for the task allocation operation.
The first involves allocating only the most specialized and
available agent to a detected task, and the second involves
the successive allocation of all qualified agents in descending
order of specialization.

1) SINGLE MOST QUALIFIED RESPONDER ASSIGNMENT
In this simulation scenario, the first responder agent must
be the most competent and available robotic agent that
can respond to the detected task. In Tables 4 and 5, the
first responders are listed in the ‘‘first assignment’’ column.
Table 4 shows that the first responder in the case of BETA
can be selected among different categories of the agent/task
relative robustness indicator, as shown by different colours
(green, blue, or grey).

This means that in the case of BETA encoding, the pro-
posed task allocator selects a specialized robot to match
a detected task regardless the actual level of the agent’s
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TABLE 3. Specialty-based task allocation dynamics: A) when the most specialized agents are ‘‘available’’.

TABLE 4. Specialty-based task allocation using binary encoded task allocation (beta) with respect to all candidate tasks recognized with a high
confidence level (76-95%), and deactivated attendance, MFT (η=0.3).

TABLE 5. Specialty-based task allocation using modulated encoded task allocation (meta) with respect to all candidate tasks recognized with a high
confidence level (76-95%), and deactivated attendance, MFT (η=0.3).

robustness to tackle that task. This behaviour may result
in selecting a first responder agent which is not the most
suitable. On the other hand, in the case of META, Table 5
shows that the first responder is systematically selected as
the most robust specialized agent (green). With the modu-
lated encoding of functionalities, the proposed task allocator

is successful at systematically assigning the most qualified
agent from those that also exhibit the highest robustness level
to respond to a detected task. In comparison, the performance
of BETA in Table 3 is substantially lower. The most qual-
ified and robust responder is selected seven times (green)
out of 14.
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The responder selection in these seven cases depends on
the order in which the agents’ probabilistic fitting level is
stored in the vector defined in Eq. (17). This interpretation
indicates that with BETA, the system can success to assign
a specialized agent, but it cannot guarantee that it will be
the most robust one. While this may not be entirely desir-
able, the binary functionalities encoding supported by BETA
clearly favors ‘‘allocating a resource’’ over ‘‘allocating the
best resource’’ which may prove helpful in circumstances
when presence predominates over competence. The response
of BETA task allocator is closer to that of classical task
allocation frameworks where the specialty of agents is not
emphasizedwhile the number of agents, or the response speed
represent higher priorities. Conversely, META encoded task
allocator introduces a different and innovative perspective to
the task allocation problem, where the agents’ best resources
are prioritized, as demonstrated in Table 6. As a possible
severe consequence of BETA, Table 6 exemplifies the case
when a lower confidence level is achieved on target recogni-
tion (50-60%). BETA fails to respond to all of the detected
targets expect in one trial out of the 14 simulated cases.
Conversely, Table 7 demonstrates that META still offers a
robust performance to allocate the most qualified and robust
agents to the detected tasks, succeeding in 11 cases (green)
out of the 14 trials.

2) ALL QUALIFIED RESPONDERS ASSIGNMENT
In many applications, such as emergency first responders,
a substantial number of agents may be required to manage
the situation. Therefore, all qualified agents available within
the specific area of a reported incident should be engaged in
responding and task allocation. The proposed specialty-based
task allocator is designed to accommodate such situations by
assigning asmany of the available qualified agents as possible
who meet the minimum MFT requirement. Considering the
simulations described above, in which agent allocation occurs
successively after identifying the first responder agent, as dis-
cussed in the previous section.

3) COMPARISON
Table 8 consolidates the results from Tables 4, 5, 6, and 7
to provide a comparison between the BETA and META
task allocation schemes. The findings of these experiments
demonstrate that the BETA task allocator, using binary
specialty encoding, prioritizes the allocation of responders
with specialized resources when a high confidence level is
achieved in target/task detection, rather than considering their
speciality-based qualification level or relative robustness.
This preference is evident in Table 8, last row, column 2,
where 37 successful task allocation processes have been
achieved. However, it also highlights a significant susceptibil-
ity to failure in agent-task allocation when a lower confidence
level is reached in target/task recognition. Table 8, last row,
column 4, shows that only one successful task allocation
process has been achieved under such conditions, leading to
the task allocator encountering uncertainty and struggling to

make decisions. On the other hand, the META task allocator,
modulating the suitability levels of the agent’s specializa-
tions, demonstrates greater robustness in dealing with low
detection confidence levels and task detection ambiguity,
resulting in high-performance allocation for such scenarios.
This preference is clear in Table 8, last row, column 5, where
16 successful task allocation processes have been achieved
compared to the single case accomplished by BETA under the
same task detection conditions. Figure 4 provides graphical
illustrations of the distinctions between BETA and META,
in terms of the number of successfully allocated specialized
agents to tasks detected with both high and low confidence
levels, as META reports significant increase in performance
compared to BETA especially in difficult cases with low
confidence in the target/task detection.

FIGURE 4. Performance comparison between BETA and META.

D. CASE 4: FRAMEWORK VALIDATION WITH AGENTS’
ATTENDANCE
In emergency situations, multi-robot coordination plays a
prominent role to drive the agents to the locations affected by
an incident. For example, let’s assume that a heterogeneous
firefighting team is distributed over a large-scale city and
operates from different fire stations. In total, the team consists
of dozens of heterogeneous vehicles, among which some are
ground vehicles equipped with different types of equipment,
some are aerial vehicles, and others are ambulance vehicles.
Initially, they are all distributed over a wide area.

The proposed framework is designed to be responsive to
operational conditions involving such wide-range workspace
applications. To achieve this purpose, the agents’ attendance,
ϑAtt , Eq. (13), is activated in Eq. (15) with ρ < 1 to optimize
the time response of the selected agents to reach the task
location where a specific level of services is requested, while
continuing to allocate tasks with the specialty-based match-
ing, Q, being dependent on the condition that (1 − ρ) <η.

The purpose of this simulation scenario is to test the adapt-
ability of the proposed approach when the most qualified
agent or agents are initially located far away from the target
position. While other qualified agents may be closer to the
target, the latter might be less competent. In these cases, the
system must adapt to control the situation until the arrival
of the best suited agents to mitigate injuries and damages.
Given that META provides a higher level of efficiency in
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TABLE 6. Specialty-based task allocation using binary encoded task allocation (beta) with respect to all candidate tasks recognized with a low confidence
level (50-60%), and deactivated attendance, MFT (η=0.3).

TABLE 7. Specialty-based task allocation using modulated encoded task allocation (meta) with respect to all candidate tasks recognized with a low
confidence level (50-60%), and deactivated attendance, MFT (η=0.3).

comparison with BETA, as demonstrated in previous test
cases, simulation in this scenario is conducted with the mod-
ulated encoding of agents’ functionalities only.

Assumptions are made to mimic the properties of a real-
istic first responder system in the simulated trials. First, the
average velocity of all ground vehicle agents is assumed to
be 50 km/hour. For robots that have higher velocity as one
of their specialized attribute, such as aerial vehicles, this
attribute is weighted in the corresponding robots’ modulated
specialty encoding vector (Table 15). The Euclidean distance
represents the travelling distance that separates the robot from
the target’s location. In addition, a static target is considered
for the robots’ attendance state, Eq. (14), that results in ϵ = 0
and vt<vmax . The latter leads to T̄ = 1.
Fig. 5 illustrates a similar situation to the one that has been

considered in the test case 1 above (shown in Fig. 2), where
a task of type TF1 is detected with a confidence level equal to
0.86, while all of the team members are available. However,
the scale of the problem is expanded with the agents and tasks
being distributed over a wider area to test the scaling problem
of interest in this case. The system, in test case 1 above,

processes the agents’ probabilistic fitting levels based on
Eqs. (17) and (19) to respond to the detected task. The match-
ing probabilities of the specialized available team members
shown in Table 8 are computed with deactivated attendance,
ϑAtt , that is with ρ = 1 for comparison purposes. Agents
R1, R3, and R4 present fitting probabilities above the MFT.
According to Table 8, the distances separating the agents R1,
R3, and R4 from the target location are 78 km, 23.9 km, and
25.6 km respectively. Although agent R2 is located closer to
the target location (14.1 km away), this agent is not minimally
qualified to respond to the current task because it does not
achieve the MFT (set to 0.3). Similar to test case 3 above, two
types of response for the task allocation process are analyzed
here, one involving only the most specialized and available
agent, the other involving all qualified agents.

1) SINGLE MOST QUALIFIED RESPONDER ASSIGNMENT
When only the most qualified agent is considered, that is
agent R1 which is located 78 km away from the target loca-
tion, it would require approximately 94 minutes to arrive at
the scene with the set average speed. This can represent a
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TABLE 8. Successful task allocation possibilities/task when all qualified
agents must be allocated to the detected task.

weakness of the task allocation framework for wide-range
workspace applications. However, when agents’ attendance,
ϑAtt , is activated in Eq. (15) with ρ < 1, then the system gen-
erates a different response, as shown in Fig. 5. It then assigns
a closer agent, R3, as a first responder to TF1 , as detailed in
Table 9. Being initially closer to the task, agent R3 can reach
the scene within 29 minutes while still providing a relatively
high level of competency (60% agent/task robustness versus
80% for R1). This example demonstrates the purpose and
benefit of giving consideration to attendance in the proposed
task allocation framework.

2) ALL QUALIFIED RESPONDERS ASSIGNMENT
If more than one agent are to be assigned on a task, Table 9
indicates that the qualified responders are R1, R3, and R4.
Without attendance, the closest responders, R3 and R4, can
reach the task location within 29 and 31 minutes respectively.
The possibility to assign agent R2 is dropped. On the other
hand, when the agents’ attendance is activated, the system
exhibits a different response and automatically preserves
agent R2 as a candidate given that it is located closer to the
task and can intervene faster, in spite of possessing substan-
tially lower qualifications. Agent R2 can reach the task much
faster than the other more specialized agents, that is within
17 minutes, as indicated in Table 10. As a result, the system
capacity is increased from three to four qualified respon-
ders and the time of first arrival is substantially reduced.
This example demonstrates the flexibility embedded in the
proposed framework to balance the need for specialized func-
tionalities with the benefits of efficient proactive response
of the task allocator in complex scenarios. Table 11 sum-
marizes the observations regarding the influence of agents’
attendance as part of the task allocation process. For appli-
cations that prioritize the allocation of only one qualified

agent to a given task, agents attendance improves the system’s
response by selecting an alternative agent that can response
faster while not significantly degrading competency. On the
other hand, for applications that require the intervention of
all qualified agents in the shortest possible time, agents’
attendance increases the capacity of the system by preserving
agents in close proximity and extending the overall number of
agents that can respond. The framework then automatically
articulates a blend of fast and competent responders. As a
result, the consideration of agents’ attendance extends and
strengthens the application of the proposed specialty-based
task allocation framework to swarms of robots distributed
over wide workspaces.

FIGURE 5. Task T F1
allocated to a closer robot R3 over a wide range

workspace, with activated attendance in Eq. (15).

VIII. EXPERIMENTS ON PHYSICAL ROBOTS
To validate the feasibility of the proposed approach for
its real-life applications, experiments are conducted on real
robotic platforms.

A. EXPERIMENTAL SETUP
To accomplish this, a multi-agent robotic system was
deployed using two different physical platforms: the Turtle-
Bot3 (Burger) and another TurtleBot3 (Waffle Pi) [40], [41].
To conduct this test case and considering the availability of

robotic agents, the proposed framework is examined in this
section by introducing a third virtual robotic agent named
‘‘Milkshake’’ which is assumed to be unavailable (‘‘with-
drawn’’ state). The experimental configuration utilizes a
laptop equipped with a central processing unit (CPU) running
the Linux (Ubuntu) operating system. This laptop also runs
a ROS navigation stack to facilitate communication between
the system components, the later consists of: 1) ATSU, which
runs on the CPU as a high-level primary node, managing
interaction among the nodes and handles the proposed task
allocation process to compute the agents fitting levels based
on detected target objects. 2) The low-level sensors and actu-
ators of the robotic agents, each equipped with a Raspberry
Pi microcomputer board. The Raspberry Pi connects to the
OpenCR via wired communication and maintains a wireless
link with the central controller. The OpenCR is the agent’s
local microcontroller, executing commands that are received

VOLUME 11, 2023 145211



O. Al-Buraiki, P. Payeur: Task Allocation for Multi-Agent Specialized Systems

TABLE 9. Specialty-based task allocation with a deactivated attendance, ρ = 1 in Eq. 15. MFT (η=0.3), vi = 50km/hr .

TABLE 10. Specialty-based task allocation with activated attendance, ρ = 1 − (η−0.1) in Eq. (15), MFT (η=0.3) vi = 50km/hr .

TABLE 11. System performance in presence of agents attendance.

from the central controller (ATSU) through the Raspberry
Pi to drive the robots low-level servo motors. It also gathers
pose data from the odometer sensors and directly connects to
the ATSU through the Raspberry Pi. 3) The communication
link is established via a shared Wi-Fi network broadcast
by a smartphone device. ROS network enables informa-
tion and command exchange between the robotic agent’s
local controller (the OpenCR) and the central controller
(ATSU), as well as the target object detection unit. Program-
ming of the OpenCR microcontroller is performed using the
Arduino IDE.

B. TARGET TASK DETECTION
The experiments are conducted taking into account three
tasks represented as target objects placed within the
workspace. Each object is a cylindrical shape with a spe-
cific combination of two vertically adjacent color features:
red-green, red-blue, and green-blue, respectively. Each color
combination represents a specific class of a task associated
with one of the specialized robotic agents, while the other
robotic agents can provide varying levels of qualification to
respond to the same target object. Considering the nature of
the tasks in these experiments, the corresponding robots spe-
cialization vectors, denoted as Si, are formulated in a specific
format that supports both binary and modulated functionality

TABLE 12. Robotic agents’ specialization coding for experiments with
real robots.

encoding, as defined in Table 12. In these experiments, a color
sensor, specifically the E-con Systems’ See3CAM_130 USB
3.1 camera [39], is employed to detect the features on a
target object. The recognition stage utilizes an 8-bit Hue-
Saturation-Value (HSV) color space representation, which
is employed to classify the target objects into specific tasks
falling under the defined three categories. Based on the obser-
vations from the experiments, each colour can be detected
within a range of ±5 units around its hue value. To make use
of these uncertain color detection results, the following for-
mula is derived to calculate the confidence level for task class
recognition:

PCl =
10 − [actual hue−|detected hue|]

10
(20)

To facilitate integration with the task allocation stage, the
output of the task features classification stage, as per

145212 VOLUME 11, 2023



O. Al-Buraiki, P. Payeur: Task Allocation for Multi-Agent Specialized Systems

TABLE 13. Specialized physical agents’ matching probabilities with respect to a target of class red-green.

TABLE 14. Formulation of M = 20 robotic agents with binary encoded specialization functionalities to serve on 14 tasks with different requirements
illustrated in the context of a robotic team coordination.

Equation (7), is reformulated as follows:

P̂T =
[
PC1 ,PC2 ,PC3

]T (21)

where Cl :l = 1 : 3 denote the used colour features that are
red, blue, and green respectively. PC1∼PC3 is the recognition
confidence level on a target object associated with each class
of tasks identified by a pair of colours.

C. DISCUSSION
In the conducted test cases with real robots, as depicted in
Fig. 6a, the multi-agent system comprises two physically
available robotic platforms: the Burger robot on the right and
the Waffle-Pi robot on the left, along with a virtual ‘‘with-
drawn’’ agent named Milkshake. For clarity, each available
robotic agent is equipped with a top-mounted colored tag that
corresponds to the target/task category (class) to which the
agent is best qualified to be assigned. Upon initialization, the
team navigates the workspace and scans for target objects
using their embedded cameras. Fig. 6 depicts the team’s mis-
sion at various stages of the task allocation process, starting
from the initiation and progressing to task completion.

A target object associated with a task in the red-green
category is detected. It is best matching with the function-
alities of the Burger robot (on the right) based on the agents’
specialization encoding defined in Table 12.

The task allocation process computes the agent’s matching
probability using Eqs. (19) and considering ρ = 1 in Eq. (15).
Agents’ attendance is deactivated given that the experiments
are performed in an indoor lab environment over a limited
operational workspace area. This configuration places the
entire computational load of determining the overall task
allocation probability on the agents’ specialty-based qualifi-
cation, denoted as Q. The experiment focuses on evaluating
the task allocation operation based on the fundamental com-
ponent of the proposed framework, which is the alignment
between the agents’ specialized capabilities and the task’s
specific constraints.

Table 13 presents the complete results for this test case,
including the individual agents’ availability status, and the
task-agent matching probabilities. The results from real
experiments demonstrate that the proposed framework per-
forms as expected when transposed onto an implementation
with a group of specialized physical robotic agents.
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TABLE 15. Formulation of M = 20 robotic agents with modulated encoding of different levels of specialization functionalities to serve on 14 tasks with
different requirements illustrated in the context of a robotic team coordination.

FIGURE 6. Specialized agents search for a target, reach it, and complete
the task.

IX. CONCLUSION
This paper addresses the design aspects of a task allocation
framework for a swarm of heterogeneous robotic agents in

terms of the agents’ specialization. The specialized func-
tionalities of individual robotic agents, such as specific
mechanical or instrumentation characteristics embedded on
heterogeneous robotic agents, are modeled in two forms.
First, a binary definition of agents’ specialization (BETA) is
introduced as basis for robot-task matching process. Then,
a modulated definition (META) of the agents’ specialization
is proposed as a refined representation of suitability level of
the robotic agents’ qualifications to perform different tasks,
which increases the task allocation possibilities especially
when the targets are detected with low confidence. The
reported case in Table 8 indicates that META outperforms
BETA by 16 times. The specialized functionalities of indi-
vidual robotic agents are matched to corresponding classes
of visually detected features that support recognition of target
objects with a quantified confidence level. The latter is used
to tune a novel task-agent probabilistic matching scheme
which computes the overall specialty-based task allocation
probability of the individual agents. The framework then
automatically assigns the qualified agents to corresponding
tasks. Considering the agents’ availability state and atten-
dance level increases the system capacity by 25% as indi-
cated in the tested cases, while they significantly reduce
the task allocation time as indicated in Table 11, which can
effectively deal with workspaces of various sizes. Simula-
tion experiments demonstrate that the proposed approach is
efficient, flexible and reliable for properly assigning spe-
cialized agents to corresponding tasks. Experiments with
physical ground robots also confirm the viability of the
proposed framework for a variety of autonomous robotic
applications.

The test results indicate a significant increase in the perfor-
mance of the proposed approach when the suitability levels of
the agent’s specializations are adopted for the task allocation
process. However, during the design and implementation of
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the proposed framework, several constraints have been con-
sidered, including a simulated sensing layer, offline object
detection input, as well as a well-structured laboratory test-
ing environment. Alternatively, it will be a very interesting
future direction to integrate the proposed framework with
an advanced sensing layer for online measurements of task
characteristics. Furthermore, it is important to study com-
plex tasks in a complex environment, aligning the proposed
framework to its greatest extent with real-life applications.
Additionally, the human operator contributes to the system’s
situational understanding through intervention in the MFT
set point. However, challenges arise with larger numbers of
robots and increasing task requests, which can pose potential
difficulties for the operator. Therefore, there is an opportunity
to enhance system reasoning to reduce human cognitive load
and accommodate a growing number of autonomous robots.
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