
Received 27 October 2023, accepted 28 November 2023, date of publication 4 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339385

Throughput of the Queue With
Probabilistic Rejections
ANDRZEJ CHYDZINSKI
Department of Computer Networks and Systems, Silesian University of Technology, 44-100 Gliwice, Poland

e-mail: andrzej.chydzinski@polsl.pl

ABSTRACT The queueing system with probabilistic job rejections based on the system occupancy has
applications in engineering and logistics. It is also a natural extension of the most basic and commonly used
FIFO queue with tail drop. In this paper, we analyze the throughput of such a system – a fundamental
characteristic from a practical point of view. Specifically, we derive a formula for the number of jobs
that the system processes in a time interval of arbitrary length (transient analysis), as well as a formula
for the stationary throughput, i.e., the overall percentage of jobs passing successfully through the system.
What is important, a general interarrival distribution is used in derivations, which enables modeling of a
great variety of arrival streams. Theoretical results are accompanied by numeric calculations, in which the
time-dependent and stationary throughput is calculated for different rejection probabilities, system loads,
interarrival distributions, and initial system states.

INDEX TERMS Queueing system, probabilistic rejections, throughput, transient analysis, stationary
analysis, computer networking.

I. INTRODUCTION
In many queueing systems used in engineering and logistics,
the waiting room for the queue has limited capacity. This
is especially true for all computer and electronic devices,
where the limited waiting room (buffer) is a consequence of a
limited physical memory for jobs or data packets waiting for
processing.

In the great majority of such queueing systems, the waiting
room is organized in the tail-drop manner. Namely, the queue
can build up until the waiting room is fully occupied. When
this takes place, any new incoming job is rejected-it cannot
join the queue and exits the system unprocessed.

This natural and widely adopted policy comes with several
drawbacks. Foremost, it allows no control of the performance
of the system-the rejections happen in an uncontrolled
manner. As a consequence, the waiting room may have a
tendency to be nearly full most of the time, resulting in
prolonged waiting times for jobs. Moreover, the rejections
may usually happen consecutively, which may lead to long
sequences of unserved jobs [1].
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The tail-drop policy is particularly detrimental in computer
networking, where all the mentioned negative phenomena
have been observed in queues of packets at routers/switches.
Furthermore, some other subtle negative effects occur in
networking due to the tail-drop algorithm, including the
synchronization of periods of TCP flows passing through
the router and highly unequal bandwidth assignment between
different flows [2], [3], [4].

All the aforementioned negative phenomena can be
circumvented by generalizing the tail-drop approach. Loosely
speaking, jobs/packets ought to be rejected rather gradually,
when the queue is building up. To acquire that, jobs can be
rejected probabilistically, with the probability increasing as
the number of jobs in the system grows. The fundamental
role in this approach is occupied by function d(i), which
relates the job rejection probability to the current system
occupancy, i. By manipulating d(i), we can control nearly all
queuing characteristics, including the number of rejected and
processed jobs, the system occupancy, and its response time.

In networking literature, many forms of function d(i) were
postulated and tested in discrete-event simulations. These
include the linear function [5], negative exponential [6],
quadratic [7], cubic [8], [9] and composed from different
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functions (linear, cubic, logarithmic, beta) on different
intervals [10], [11], [12], [13].

Furthermore, the rejection mechanism based of function
d(i) was recently realized in a prototype of a networking
device and examined extensively in an actual, operating
network [14]. During these tests, lasting over a moth,
a large number of measurements of various performance
characteristics were collected [14]. The results imply clearly
that the d(i) mechanism is very beneficial in TCP/IP
networking, if compared with the FIFO queueing, commonly
used now.

Mathematical insight in the performance of the d(i)
mechanism is the natural continuation of the study on the
mechanism.

In this paper, the throughput of such mechanism is
studied. Obviously, throughput is a fundamental performance
characteristic in terms of practicality – it represents the
number of jobs/packets that the mechanism can process in
a given time.

The most important contribution of the paper consists of
three formulae for the throughput and throughput-related
characteristics of the system, specifically:

- a formula for the number of jobs that the system
completes in a time interval of length t (transient case),

- a formula for the intensity of the output process at time
t (transient case),

- a formula for the stationary throughput, i.e., the ratio of
jobs that successfully traverse the system over a long
period.

All these formulae are generic with respect to both function
d(i) and the job interarrival distribution, G(t). The fact that
both d(i) and G(t) can have arbitrary forms in the considered
model is essential for its applicability. As already mentioned,
several different forms of d(i) have been suggested in the
literature. The formulae proven here can be applied to all of
them. This will be demonstrated in the examples. Similarly,
the interarrival distribution may vary significantly in different
queuing systems. It is known that some parameters of this
distribution (e.g., the variance) may profoundly influence the
performance of the system. Once again, the formulae proven
here can be used for an arbitrary G(t).
From the theoretical perspective, the approach founded

upon function d(i) is a generalized tail-drop approach.
Specifically, if d(i) = 0 for i < K and d(i) = 1 for i ≥ K ,
then we have, in fact, tail dropping with a waiting room of
capacity K . However, all the previously noted benefits occur
when d(i) does not have such a trivial form.

Mathematical results are illustrated here with numeric
calculations. Specifically, the throughput of the system is
calculated for various functions d(i), system loads, initial
system occupancies, and the standard deviations of the
interarrival distribution. Using these results, we can study the
influence of each of these factors on the throughput.

Finally, it can be pointed out that computer and networking
systems are not the only possible applications of the queue

with rejections based on the system occupancy. Some other
applications include call centers and everyday life queues
[15], and vehicular traffic [16].

The article continues with the following organization.
In Section II, prior research on related subjects is reviewed.
In Section III, the queueing model with the d(i) mechanism
is described, along with necessary notations used in the
remaining sections. Then, in Section IV, the actual analysis of
the system throughput is conducted. The key outcome of this
section is Theorem 1 on the number of jobs that the system
completes in a time interval of length t . Building upon this
theorem, the intensity of the output process at time t is derived
in formula (23), and the stationary throughput is presented in
formula (25). In Section V, results of numeric calculations
are shown and discussed. These results encompass both
stationary and transient throughput, obtained for numerous
parameterizations of the system. Finally, in Section VI, some
closing comments and a proposal for future work are offered.

II. PRIOR RESEARCH
Based on the author’s knowledge, the results shown here are
new.

To begin with, older studies on the d(i) mechanism are
based rather on simulations than the mathematical modelling,
like herein. This, in particular, concerns the already refer-
enced studies [6], [7], [8], [9], [10], [11], [12], [13].

Over time, more articles exploiting mathematical models
of the system were published, e.g. [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], and [25]. The essential
difference between these models and the model considered
herein is that the arrival stream is Poisson or Markovian
in all articles [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], and [25]. Herein, we model the arrivals using the
general renewal stream, in which the interarrival distribution
can have an arbitrary form. This, obviously, creates broad
modelling capabilities. For instance, we can easily model
particular variance, skewness and kurtosis of the interarrival
distribution.

So far, there have been only three studies, in which the
arrival stream is also of the general renewal type [26], [27],
[28]. However, none of the papers [26], [27], and [28] deal
with the throughput of the system, which is the fundamental
performance characteristic, especially from the engineering
point of view.

Finally, it should be mentioned that there are mechanisms
proposed for IP networks in which the probability of rejection
of a packet arriving to the router is a function of different
factors, than the current system occupancy, e.g. [29], [30],
[31], [32], [33], [34], [35], and [36]. These are, however,
conceptually different mechanisms than the one studied
herein.

III. MODEL
The following queueing model is considered.

Jobs arrive at the server following a general renewal
stream, which means that interarrival times are random,
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mutually independent, and their distribution is defined by
distribution function G(t). It is assumed that the mean
interarrival time, m, is finite, i.e.:

m =

∫
∞

0
(1 − G(t)) dt < ∞. (1)

(Systems with m = ∞ cary little practical significance,
because the mean queue size is zero in such systems).

Jobs arriving to the server when it is processing
another jobs, are aggregated into a queue. The server
processes jobs from this queue in the order they arrived
(FIFO). The processing time of a job is random and follows an
exponential distributionwith parameterµ. The overall system
capacity is restricted to accommodate a maximum of K jobs,
which includes the processing position. If a job arrives while
there are already K jobs in the system, the just-arrived job is
rejected - it departs the system undone and never returns. (In
networking, the arriving packet is simply deleted).

Furthermore, an arriving job can be rejected even if there
are fewer than K jobs in the system, upon its arrival. This
rejection takes place with probability d(i), where i represents
the number of jobs in the system when the new job enters.

Finally, we assume that if the system is not empty at t = 0,
then the time origin aligns with the arrival time of a new job.
This assumption does not limit the generality of the model,
but simplifies some of the equations.

IV. SYSTEM THROUGHPUT
Let Cn(t) be the mean number of jobs completed in (0, t),
assuming that the system occupancy at time origin was n.
We begin with assembling a system of integral equations

for Cn(t). Specifically, for n = 1, . . . ,K it holds:

Cn(t)

=

∫ t

0

n−1∑
k=0

e−µz(µz)k

k!

(
1−d(n− k)

)(
k+Cn−k+1(t − z)

)
dG(z)

+

∫ t

0

(
1−

n−1∑
k=0

e−µz(µz)k

k!

) (
1−d(0)

)(
n+C1(t − z)

)
dG(z)

+

∫ t

0

n−1∑
k=0

e−µz(µz)k

k!
d(n− k)

(
k + Cn−k (t − z)

)
dG(z)

+

∫ t

0

(
1 −

n−1∑
k=0

e−µz(µz)k

k!

)
d(0)

(
n+ C0(t − z)

)
dG(z)

+
(
1 − G(t)

) n−1∑
k=0

k
e−µt (µt)k

k!

+
(
1 − G(t)

)
n

(
1 −

n−1∑
k=0

e−µt (µt)k

k!

)
. (2)

System (2) is derived by conditioning on joint distribution
of the initial arrival time, z, and the number of jobs processed
by this time, k . Namely, the first term of (2) is associated with
the event where less than n jobs are processed by z and the

job arriving at z is accepted. The second term is associated
with the event where all n jobs are processed by z and the job
arriving at z is accepted. Similarly, the third and the fourth
terms are associated with the event where the job arriving at z
is rejected. The fifth term of (2) encompasses the event where
the initial arrival takes place after t and less than n jobs are
processed by t . Finally, the sixth term encompasses the event
where the initial arrival takes place after t , and all n jobs are
processed by t .

Note also that for n = K and k = 1, there is CK+1(t)
summand in the first term of (2). Its value is, however,
mathematically irrelevant, because it is multiplied by 1 −

d(K ), which is zero. The value of CK+1(t) is also irrelevant
from a practical point of view, because the system occupancy
will never beK+1 under assumptions of the previous section.
Therefore, we may assume simply, CK+1(t) = 0.
Assume now that n = 0. We obtain then:

C0(t) =

∫ t

0

(
1 − d(0)

)
C1(t − z)dG(z)

+

∫ t

0
d(0)C0(t − z)dG(z)

+
(
1 − G(t)

)
· 0. (3)

System (3) is derived by conditioning on the initial arrival
time, z, only. The first term is associated with the event where
z < t and the initial arrival is accepted. Similarly, the second
term is associated with the event where the initial arrival is
rejected. Finally, the third term of (3) encompasses the event
where the initial arrival takes place after t .
To derive Cn(t) for arbitrary t , we need to solve

integral equations (2) and (3). These equations, however,
are intractable in their current forms in the time domain.
Therefore, we will solve them in the Laplace transform
domain. Such approach does not affect the applicability of
the results, as there are many efficient inversion formulae
available to transform the results back from the Laplace
domain to the time domain.

From (2), we then have:

C∗
n (s) =

n−1∑
k=0

(1 − d(n− k)) hk (s)
(
k
s

+ C∗

n−k+1(s)
)

+ (1 − d(0))

(
g(s) −

n−1∑
k=0

hk (s)

)(n
s

+ C∗

1 (s)
)

+

n−1∑
k=0

d(n− k)hk (s)
(
k
s

+ C∗
n−k (s)

)

+ d(0)

(
g(s) −

n−1∑
k=0

hk (s)

)(n
s

+ C∗

0 (s)
)

+

n−1∑
k=0

kfk (s)

+ n

(
y(s) −

n−1∑
k=0

fk (s)

)
, n = 1, . . . ,K , (4)
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where

C∗
n (s) =

∫
∞

0
e−stCn(t)dt, (5)

hk (s) =
1
k!

∫
∞

0
e−t(s+µ)(µt)kdG(t), (6)

g(s) =

∫
∞

0
e−stdG(t), (7)

fk (s) =
1
k!

∫
∞

0
e−t(s+µ)(µt)k (1 − G(t)) t, (8)

y(s) =

∫
∞

0
e−st (1 − G(t)) t. (9)

Specifically, (4) has been obtained by employing the Laplace
transform to (2) and making use of the Convolution Theorem,
[37], which transforms two functions convoluted in the time
domain into a product of their transforms. (We have four such
convolutions in initial four terms of (2)).

In the similar manner we obtain:

C∗

0 (s) =
(
1 − d(0)

)
g(s)C∗

1 (s) + d(0)g(s)C∗

0 (s) (10)

from (3).
We can rearrange (4) and (10) with respect to unknowns

C∗
n . After that, we get from (4):

d(0)an(s)C∗

0 (s) + (1 − d(0)) an(s)C∗

1 (s)

+

n∑
k=0

d(k)hn−k (s)C∗
k (s)

+

n∑
k=0

(1 − d(k)) hn−k (s)C∗

k+1(s) − C∗
n (s) = cn(s),

n = 1, . . . , K , (11)

where

an(s) = g(s) −

n∑
k=0

hk (s), (12)

bn(s) = y(s) −

n∑
k=0

fk (s), (13)

cn(s) = −
1
s

n∑
k=0

khk (s) −
n
s
an(s) −

n∑
k=0

kfk (s) − nbn(s),

(14)

while (10) yields:(
1 − d(0)g(s)

)
C∗

0 (s) −
(
1 − d(0)

)
g(s)C∗

1 (s) = 0. (15)

Clearly, (11) and (15) constitute now an ordered system of
K+1 linear equations withK+1 variablesC∗

0 (s), . . . ,C
∗
K (s).

This system can be easily rewritten in the matrix form, and its
solution can be presented using an inverted square matrix of
size (K + 1) × (K + 1).

In this way, we get the following theorem.
Theorem 1: The transform of the number of jobs

completed in (0, t) has the following form:

C∗(s) = W−1(s)c(s), (16)

where

C∗(s) = [C∗

0 (s), . . . ,C
∗
K (s)]

T , (17)

c(s) = [0, c1(s) . . . , cK (s)]T , (18)

W (s) = [wij(s)]i=0,...,K ;j=0,...,K , (19)

wij(s)

=



1 − d(0)g(s), if i = 0, j = 0,
−(1 − d(0))g(s), if i = 0, j = 1,
(1 − d(0))a0(s) + d(1)h0(s) − 1, if i = 1, j = 1,
d(0)ai−1(s), if i ≥ 1, j = 0,
(1 − d(0))ai−1(s) + d(1)hi−1(s), if i ≥ 2, j = 1,
(1 − d(i))h0(s), if i≥1, j= i+1,
d(i)h0(s) + (1 − d(i−1))h1(s)−1, if i≥2, i= j,
d(j)hi−j(s) + (1−d(j−1))hi−j+1(s), if j≥2, i ≥ j+1,
0, otherwise,

(20)

hk (s) is given in (6), g(s) in (7), ak (s) in (12), while ck (s)
in (14).

Another interesting transient performance characteristic,
Tn(t), is defined as follows:

Tn(t) = m
dCn(t)
dt

, (21)

wherem is the mean interarrival time. In other words, Tn(t) is
the intensity of the output process at the time t , which equals
dCn(t)
dt , normalized to the mean arrival rate 1/m, given the

initial occupancy was n. We have also:

T ∗
n (s) =

∫
∞

0
e−stTn(t)dt. (22)

Having Theorem 1, it is an easy task to obtain T ∗
n (s).

Specifically, using Derivative Theorem for the Laplace
transform, [37], yields:

T ∗
n (s) = m s C∗

n (s), (23)

where C∗
n (s) can be computed by means of Theorem 1.

Finally, we can also derive the stationary throughput, T ,
defined as the ratio of jobs that traverse successfully the
system over a long period. By definition, we have:

T = lim
t→∞

T0(t). (24)

Note that limt→∞ Tn(t) with any other n, instead of 0, can be
employed in (24). This is thanks to the fact that the stationary
characteristic does not depend on the initial system state and
the limit in (24) is unaltered for every n.

Using Terminal-Value Theorem for the Laplace transform,
[37], we have:

T = lim
s→0

sT ∗

0 (s) = m lim
s→0

s2C∗

0 (s), (25)

where C∗

0 (s) can be computed by means of Theorem 1.
It might prompt one to ask, if it is possible to present

Theorem 1 in an explicit form, rather than using a matrix
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inversion. Such explicit solutions are often presented for
classic models, with no d(i) function. Regrettably, this might
be very hard or impossible when d(i) is employed. The
chief reason is that the model is not vertically homogeneous.
A classic model is vertically homogeneous in the sense as
follows: given some system occupancy i > 0, the probability
that the occupancy will first increase by 1, before decreasing
by 1, does not depend on i. Such homogeneity can be
exploited to obtain explicit solutions. In the system with d(i),
the probability that the occupancy will first increase by 1,
before decreasing by 1, depends on i, throughout function
d(i). Moreover, function d(i) is arbitrary, hence no vertical
repetitiveness can be established nor exploited to obtain the
solution in explicit form.

A. SPECIAL CASES
To use formulae (16), (23), and (25), we need to know hk (s),
g(s), fk (s) and y(s), given in (6)-(9), respectively.
For many popular forms of distribution G(t), these

functions can be derived symbolically. For instance, if G(t)
is a constant distribution at point D, then:

hk (s) =
1
k!
e−D(s+µ)(Dµ)k , (26)

g(s) = e−Ds, (27)

fk (s) =
µk

k!(µ + s)k+1 (k! − 0(k + 1,D(µ + s)), (28)

y(s) =
1 − e−Ds

s
, (29)

where 0(a, z) is the incomplete gamma function.
If G(t) is the uniform distribution on interval (A,B), then:

hk (s) =
1

k!(B− A)

[
A(Aµ)kE−k (A(µ + s))

− B(Bµ)kE−k (B(µ + s))
]
, (30)

g(s) =
e−As − e−Bs

(B− A)s
, (31)

fk (s) =
µk

k!(µ + s)k+1 (k! − 0(k + 1,A(µ + s)) (32)

+
1

k!(A− B)(µ + s)
·
{
Ae−A(µ+s)(Aµ)k − Be−B(µ+s)(Bµ)k

+ (k − B(µ + s) + 1)
[
A(Aµ)kE−k (A(µ + s))

− B(Bµ)kE−k (B(µ + s))
]}

,

y(s) =
1 − e−As

s
+
e−(A+B)s[−eAs + eBs(1 + As− Bs)]

(A− B)s2
,

(33)

where En(z) is the exponential integral function.
If G(t) is exponential with the parameter λ, then:

hk (s) =
λµk

(λ + µ + s)k+1 , (34)

g(s) =
λ

λ + s
, (35)

fk (s) =
µk

(λ + µ + s)k+1 , (36)

y(s) =
1

λ + s
. (37)

If G(t) is the gamma distribution with the shape parameter
α and the rate parameter β, then:

hk (s) =
µkβα0[k + α]

k!0(α)(µ + s+ β)k+α
, (38)

g(s) =

(
β

s+ β

)α

, (39)

fk (s) =

µk0(k+α+1)H (k+1, k+α+1, k+2, −µ+s
β

)

(k + 1)!0(α)βk+1 ,

(40)

y(s) =
1
s

−
1
s

(
β

s+ β

)α

, (41)

where H (a, b, c, z) is the hypergeometric function.
For other forms of distribution G, quantities hk , g, fk and y

can be obtained easily by numerical integration.

V. EXAMPLES OF NUMERIC SOLUTIONS
In these examples, the following shapes of function d(i),
suggested in the literature, are used:

- linear (see, e.g. [5]):

d1(i) =


0, if i < 32,
i
32

− 1, if 32 ≤ i < 64,

1, if i ≥ 64.

(42)

- quadratic (see, e.g. [7]):

d2(i) =


0, if i < 32,
i2

1024
−

i
16

+ 1, if 32 ≤ i < 64,

1, if i ≥ 64.

(43)

- cubic (see, e.g. [8], [9]):

d3(i) =


0, if i < 32,
i3

32768
−

3i2

1024
+

3i
32

− 1, if 32 ≤ i < 64,

1, if i ≥ 64.
(44)

- negative exponential (see, e.g. [6]):

d4(i) =


0, if i < 32,
1
2

−
e−(i−32)/10

2
, if 32 ≤ i < 64,

1, if i ≥ 64.

(45)
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TABLE 1. The stationary throughput for different functions d (i ) and std.
deviations of the interarrival distribution. ρ = 1 in every case.

- compound, with cubic and linear parts (see, e.g. [11]):

d5(i) =



0, if i < 32,
(i− 32)3

3872
, if 32 ≤ i < 43,

i
32

− 1, if 43 ≤ i < 53,

(i− 64)3

3872
+ 1, if 53 ≤ i < 64,

1, if i ≥ 64.

(46)

We can notice that all these functions were adopted to the
system capacity of K = 64. All of them operate effectively
on the second half of the capacity, i.e. on i = 32, . . . , 64.
Functions d1 − d3 can be ordered with respect to their
rejectiveness. Specifically, d2 is less rejective than d1 (i.e.
d1(i) ≥ d2(i) for every i), while d3 is less rejective than d2.
Functions d4-d5 cannot be ordered is such a way, because
they are less rejective in some intervals and more rejective
in others.

The interarrival distribution is gamma with the same
shape and rate parameters, α = β. This setting gives a
normalized mean interarrival time m = 1. However, altering
α, we can obtain different values of the std. dev. of the
interarrival distribution, S, without changing the system load.
Specifically, we have:

S =
1

√
α

. (47)

Similarly, altering the service rate µ, we can obtain an
arbitrary system load:

ρ =
1
mµ

=
1
µ

. (48)

A. STATIONARY EXAMPLES
We begin with examples of the stationary throughput, T .
In Tab. 1, the stationary throughput is presented, for all

functions d1 − d5 and the std. deviations of the interarrival
distribution varying from 0.1 to 10, while maintaining the
load of 1. The following inferences can be drawn from this
table.

Firstly, the std. deviation of the interarrival distribution has
a tremendous effect on the system throughput. Even for a
moderate S = 2, the throughput is reduced to about 95% in
all the cases. For S = 10, the throughput is reduced radically,

TABLE 2. The stationary throughput for different functions d (i ) and
system loads. S = 2 in every case.

FIGURE 1. The stationary throughput as a function of the load and the
std. deviation of the interarrival distribution. d1(i ) is used.

to about 57%. Secondly, we see that Td1 ≤ Td2 ≤ Td3 for
every S, which was to be anticipated seeing that d1(i) ≥

d2(i) ≥ d3(i) for every i. But if we compare the results
for d4(i) and d5(i), the situation is not as straightforward.
For small values of S, up to S = 2, d5(i) provides a
better throughput than d4(i). Conversely, for high values of
S, a better throughput is offered by d4(i). This can be linked
to the fact that for i ≤ 42 it holds d4(i) ≥ d5(i), while for
i > 42 is holds d4(i) ≤ d5(i).
Finally, the throughput does not vary a lot with the form

of function d(i), regardless of the std. deviation of the
interarrival distribution. It is essential to note, however, that
all the considered functions d(i) are non-decreasing and
operating on the same interval, i.e., i = 32, . . . , 64. They
differ primarily in terms of their shape and convexity. Using
a broader range of different functions d(i) would yield more
diverse throughput results.

In Table 2, the stationary throughput is presented for all
functions d1 to d5 with the load varying from 0.4 to 1.6, while
maintaining the std. deviation of the interarrival distribution
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FIGURE 2. The intensity of the output proces in time for different
functions d (i ) and the initial occupancy 0, ρ = 1 and S = 2.

FIGURE 3. The intensity of the output proces in time for different
functions d (i ) and the initial occupancy 10, ρ = 1 and S = 2.

FIGURE 4. The intensity of the output proces in time for different
functions d (i ) and the initial occupancy 64, ρ = 1 and S = 2.

at 2. It is evident that the load has a significant impact on
the throughput. A nearly maximal throughput is observed for
system loads up to about 0.8. However, when the load reaches
0.9, even though the system is still significantly underloaded,
the throughput begins to deteriorate, losing about 2% for ρ =

0.9, 5% for ρ = 1 and 17% for ρ = 1.2.

FIGURE 5. The intensity of the output proces in time for different initial
system occupancies and S = 2, ρ = 1, d1(i ).

Finally, in Figure 1, the stationary throughput is depicted
as a function of both ρ and S for d1(i) rejections. We can
see the yellow region of pairs (ρ, S), where a relatively high
throughput of the system is preserved.

B. TRANSIENT EXAMPLES
Now, we will proceed with transient examples, in which the
intensity of the output process will be shown as a function of
time.

In Figures 2, 3, and 4, the transient intensity of the
output process is displayed for the initial system occupancies
of 0, 10, and 64 jobs, respectively, with separate curves for
functions d1 − d5. All three figures were generated with
ρ = 1 and S = 2.
The following inferences can be drawn from these figures.
Firstly, achieving the stationary throughput, indicated

by a flat curve, can take a relatively long time, up to
500-600 seconds. Secondly, the convergence time does not
depend significantly on the initial occupancy. However, it is
slightly influenced by the target stationary throughput. If the
target throughput is higher, the convergence time tends to be
slightly longer. For example, compare the d3 curve with the
d1 curve. Thirdly, in the initial period of about 300 seconds,
the course of Tn(t) depends strongly on the initial occupancy,
n. When n = 64 (Fig. 4), the server is busy for about
60 seconds, processing the initial queue. Therefore, even if
the rejection rate is high during this period, the output process
remains intense. Conversely, when n = 0 (Fig. 2), the server
has to wait for new arriving jobs to process them, resulting in
a lower initial output intensity. Finally, when n = 10 (Fig. 3),
the server processes the initial queue for about 10 seconds,
leading to a relatively high initial output intensity. After this
initial processing, the server has to wait for new arriving jobs,
causing the intensity to drop significantly and reach a local
minimum.Afterward, the output intensity gradually increases
until it reaches the stationary value.

This effect can be studied further in Fig. 5, in which
the course of the intensity of the output proces in time is
depicted for function d1(i) only, but with different initial
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FIGURE 6. The intensity of the output proces in time for different system
loads and the initial occupancy 0, S = 2 and d1(i ).

FIGURE 7. The intensity of the output proces in time for different system
loads and the initial occupancy 64, S = 2 and d1(i ).

system occupancies. The local minimum mentioned earlier
can be seen for all non-zero initial occupancies up to about
32. The smaller the initial occupancy, the lower the minimum
coordinate and the smaller the minimal intensity.

In the following two figures, we will investigate the
transient course of the output intensity depending on the load.
Specifically, in Figures 6 and 7, this intensity is depicted for
the initial occupancy of 0 and 64, respectively. Both figures
were obtained assuming S = 2 and using function d1(i).
As can be observed, the convergence to the stationary

throughput is more rapid when ρ is significantly greater than
1 or significantly less than 1. When ρ is close to 1 or slightly
less than 1, the convergence is slower.

It is also notable that for small values of ρ and non-zero
initial system occupancy, the output intensity can temporarily
exceed 1. This is caused by the fast service rate when
ρ is small. Specifically, if there are jobs accumulated in
the queue at some point, the fast service can process and
depart them at a rate faster than the arrival rate. However,
this situation is short-lived and the system eventually
stabilizes.

In Figure 8, we can observe the transient performance of
the output intensity depending on the std. deviation of the

FIGURE 8. The intensity of the output proces in time for different std.
deviations of the interarrival distribution and the initial occupancy 32,
ρ = 1 and d1(i ).

FIGURE 9. The mean number jobs completed by the time t , for different
std. deviations of the interarrival distribution and the initial occupancy 0,
ρ = 1 and d1(i ).

interarrival distribution, for the initial occupancy of 32 jobs.
We already know from Section V-A that high values of S
induce a low stationary throughput. In Fig. 8 we may see
additionally that the deterioration of the output intensity is
rather quick for high S – after about 100 seconds, it is already
very low.

Finally, in Figure 9 we observe how the input distribution
influences the counting process, i.e. the mean number of jobs
completed in (0, t), starting from the initial occupancy of 0.
Once again, different input distributions were used with the
std. deviation varying from 0 to 7. Evidently, the growth rate
is influenced by the std. deviation of the input distribution.
Specifically, the smaller S, the steeper the curve. Due to this,
substantial differences in the numbers of processed jobs, even
in a relatively short time, may occur. For example, 214 jobs
are completed on average during first 300 seconds when
S = 7. Conversely, when S = 0, the number of completed
jobs is 285 on average, in the same interval. This a significant
discrepancy if we take into account that all the parameters, i.e.
ρ, µ and d(i), are the same, whereas the only difference is the
std. deviation of the input distribution.
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VI. CONCLUSION
We conducted a comprehensive analysis of the throughput for
a queue with probabilistic job rejections based on the system
occupancy. Both the stationary and transient cases were
addressed. In the transient situation, we derived a formula
for the number of jobs completed by the system within an
interval of arbitrary length, and a formula for the intensity
of the output process at time t . In the stationary situation,
we found a formula for the stationary throughput.

Theoretical findings were supported by numeric cal-
culations. These calculations covered various forms of
function d(i), system loads, std. deviations of the interarrival
distribution, and initial system occupancies. They exposed
the influence of each of these factors on the throughput.

Specifically, we observed that a significant impact on the
stationary throughput is exerted by the std. deviations of
the interarrival distribution and the load. For instance, even
for a moderate deviation, S = 2, the throughput began to
deteriorate for an underloaded system with ρ = 0.9. For a
fully loaded system, ρ = 1, the throughput was reduced by
5%, and deteriorated rapidly as the load increased beyond that
point.

Conversely, we observed that varying function d(i) did not
have a substantial impact on the throughput, at least when all
the used functions operated on the same interval and were
non-decreasing. However, the choice of d(i) did have some
subtle yet significant effects on the throughput. For instance,
for certain forms of d(i), the throughput was better when
the std. deviation of the interarrival distribution was low and
worse when it was high. For other forms of d(i), the opposite
effect was observed.

In the transient examples, we observed a relatively lengthy
convergence to the stationary throughput. We noticed that
the convergence time was shorter for both underloaded and
overloaded systems, but longer for systems operating around
ρ = 1 (fully loaded). Additionally, the convergence tended to
be longer when the target stationary throughput was higher.
Conversely, the convergence time did not exhibit a strong
dependence on the initial occupancy.

An interesting avenue for future research would be analyz-
ing mathematical models such that the rejection probability is
not based on the current system occupancy, but on some other
factor(s). For instance, in the mechanism proposed in [29],
waiting time of jobs in the queue is used. Specifically, if the
waiting time is above some parameter, for long enough, a job
is rejected and the next rejection is scheduled in the future.
Understanding mathematically how such waiting time-based
rejection mechanism affects the system performance and how
it compares to occupancy-based rejection mechanism could
provide valuable insights.
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