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ABSTRACT Monocular depth estimation technology is widely utilized in autonomous driving for sensing
and obstacle avoidance. Recent advancements in deep-learning techniques have resulted in significant
progress in monocular depth estimation. However, monocular depth estimation is mainly optimized for
the luminosity error of pixels, mostly disregarding the related problems of result ambiguity and boundary
artifacts in the image. To address these issues, we developed an improved network model called SAU-
Net. The superposition of excessive convolutional layers in conventional convolution networks impairs the
network’s timeliness and results in the loss of primary information. Therefore, we propose a convolution-free
stratified transformer as an image feature extractor at the network’s coding end, which limits self-attention to
innumerable windows and leverages sliding windows for characterization to reduce the network delay. This
study also addresses the issue of critical information loss. We connect each feature map directly to another
from a different scale. In addition, an attention module is introduced to focus on the effective features, which
increases the amount of target information in the depth map. We employ the gradient loss function during the
training stage to improve the segmentation accuracy of the network and the smoothness of the output image.
Training and testing were conducted using the KITTI dataset. To ensure the robustness of the algorithm
in practical applications, we also validated the algorithm using a campus dataset that we collected. The
experimental results indicated that the accuracy of the algorithm was 89.1%, 96.4%, and 98.5% under three
proportional thresholds. The estimated depth map was clear in details and edges, with fewer artifacts.

INDEX TERMS Autonomous driving, monocular depth estimation, SAU-net, stratified transformer.

I. INTRODUCTION
Monocular depth estimation is becoming increasingly impor-
tant in autonomous driving [1]. Accurately predicting the
depth information of the vehicle’s surrounding environment
is crucial for various autonomous driving functions, including
autonomous navigation, obstacle avoidance, and automatic
parking [2], [3]. Traditional autonomous driving systems
mostly use light detection and ranging (LiDAR) datasets
or stereovision technology to achieve depth perception [4].
These methods often require expensive equipment and incur
high energy costs. Furthermore, they can only be used in par-
ticular environments. In contrast, monocular depth estimation
technology can predict the depth using the images captured
by a single camera, improving the environmental awareness
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and decision-making ability of the autonomous driving sys-
tem without other hardware. In addition, the accuracy and
robustness of monocular depth estimation technology have
significantly improved [5]. Studies have indicated that in
particular scenarios, it can outperform traditional stereovision
methods [6]. Therefore, it is necessary to study algorithms for
monocular depth estimation.

Monocular depth estimation using deep-learning tech-
niques can be categorized into supervised and self-supervised
methods. Regarding supervised monocular depth estimation,
the Eigen team [7] made significant contributions by utilizing
depth maps to train models. They developed a convolutional
neural network (CNN) structure with coarse and fine scales,
achieving accurate estimation results and pioneering deep
learning in monocular image depth estimation. Li et al. [8]
developed a deep network for multilayer conditional random
fields (CRFs). Their approach involved a two-stage network
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for depth map estimation and refinement. Superpixel tech-
nology was applied to the input image in the first stage, with
image patches extracted around these super pixels. The depth
map was refined, and the superpixel depth map was modified
to the pixel level in the second stage using a multilayer CRF.
This significantly increased the resolution of the output depth
map. Qi et al. [9] employed two networks to estimate depth
maps and the surface normal from a single depth image.
These two networks facilitated depth-to-normal and normal-
to-depth conversion, resulting in improved depth maps and
surface normal accuracy. Summarily, supervised depth esti-
mation methods require large annotated datasets for training
models. However, high-resolution public labeled datasets
require substantial equipment and intensive labor, while com-
monly used datasets for sparse-depth information labeling
remain prevalent. Consequently, supervised deep-learning
methods are unsuitable for application scenarios that require
dense estimation.

In contrast to supervised depth estimation, the self-
supervised learning method of monocular depth estimation
involves learning depth information directly from geometric
constraints and does not require numerous densely labeled
datasets. Typically, stereo-paired images or monocular image
sequences are used for training, transforming the depth
estimation problem into an image reconstruction problem.
Network-predicted binocular images and disparity maps are
used to achieve self-supervised monocular depth estimation.
Garg et al. [10] proposed a self-supervised monocular depth
estimation network based on stereovision. The left view in
the binocular image is considered as the input; in addition,
the corresponding disparity map is predicted by a CNN. Sub-
sequently, the right view is input to reconstruct the left view
according to the cross-reconstruction principle, and the com-
posite loss function, including photometric reconstruction
loss and depth gradient loss, is used to constrain the network
weight. Finally, the best-predicted disparity map is obtained.
However, they employed Taylor expansion for linear opti-
mization in deformation reconstruction. The result of this
method is not completely differentiable; thus, the model may
fall into a local optimal solution, which makes the prediction
result not ideal. To overcome this difficulty, Godard et al.
[11] introduced differentiable difference functions, proposed
left–right consistency constraints to train self-supervised net-
works, and reconstructed left–right views. In addition, they
optimized the loss function, proposing surface matching
losses and parallax smoothing losses. Their experiment con-
firmed that the addition of the new loss function increases
the accuracy of each view prediction. Watson et al. [12]
introduced depth hints to alleviate the impact of reprojection
in the reconstruction process. These hints increase the current
luminosity loss function and play a substantive role in training
the current leading self-monitoringmodel. For the problem of
occlusion and artifacts, the introduction of depth hints may
help to identify and deal with partially occluded situations.
However, there are still difficulties in highly complex or
dense occlusion situations, and obtaining high-quality depth

cues may require complex camera equipment or additional
sensors, which may be expensive and unsuitable for certain
applications.

Thus, we developed a self-supervisedmonomial depth esti-
mationmodel called SAU-net based on StratifiedTransformer
and an improved U-Net [13] framework. By improving the
algorithm and optimizing the loss function, the depth estima-
tion can be improved without the use of expensive equipment.
The problems of occlusion and artifacts in the image are
solved to the greatest extent possible, leading to significantly
enhanced accuracy in the predicted depth map. Experimental
results indicated that the algorithm can highlight the edge of
the depth map and play a role in blocking. The contributions
of this study are as follows:

1. Using a stratified transformer-based layered feature
extractor to replace the commonly used depth residual net-
work (Res-Net) reduces the number of layers in the network,
expands the receptive field, and provides greater flexibility in
extracting feature maps of different sizes.

2. An improvement was made to U-Net, in which the
layered feature map is connected to the decoding layer
employing a jump connection, and the attention mechanism
is introduced to focus attention on the primary information in
the feature map, which alleviates the over-segmentation and
increases the segmentation precision.

3. A loss function based on luminosity reprojection and
automatic masking loss, supplemented by gradient loss, was
constructed. In addition, it is employed in the depth map to
reduce boundary artifacts and highlight detailed features.

4. The proposed algorithm was evaluated using the KITTI
dataset and a self-collected campus dataset in comparison
with many advanced algorithms.

The remainder of this paper is organized as follows.
Section II briefly reviews previous studies involving the
attention mechanism, transformer, and U-Net. In Section III,
we describe the network model of SAU-net. The experi-
ments and their results are presented in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK
In this section, we introduce attention mechanisms, trans-
formers, and U-Net.

A. ATTENTION MECHANISM
The attention mechanism focuses on local information. It was
initially used in the field of natural language processing
(NLP) to extract contextual semantic information for improv-
ing model performance [14], and since it was introduced
into the field of vision, it has been widely used in image
classification, object detection, semantic segmentation, face
recognition, and other tasks [15], [16]. Recently, several
studies have been performed on the use of the attention mech-
anism in the field of vision. Hu et al. [17] proposed SE Net,
focusing on the channel part and recalibrating the channel
feature response by superimposing an SE block, thus improv-
ing the representation capability of the traditional CNN
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network and creating a precedent for channel attention. Yang
et al. [18] proposed the concept of the Gated Signal (GCT)
on this basis. They replaced the FC layer in SE Net with a
normalized module in the processing of channel-wise embed-
dings in GCT, modeled the feature relationship between
channels, and increased the efficiency of information collec-
tion. However, the addition of excessive modules increases
the network complexity. To reduce the model complex-
ity while ensuring the quality of the output results, Wang
et al. [19] proposed an efficient channel attention module
(ECA), which replaces conventional dimensionality reduc-
tion with inter-channel interactions. ECA transforms the
multilayer perceptron (MLP) modules in the SE block into
one-dimensional convolution, which significantly reduces the
number of parameters. This method addresses the problem of
the increase in computation due to module superposition.

The attention mechanism can aid the model by assigning
different weights to various parts of the input image [20],
extracting critical information, and allowing the model to
make more accurate judgments without incurring additional
computational and storage costs [21], [22]. Because of these
advantages, this method has a strong generalization ability.
In the present study, the attention-mechanismmodule is intro-
duced in the compressed channel part to make it focus on the
detailed features, which can increase the prediction accuracy
without excessively increasing the calculation amount and
ensure the real-time performance.

B. TRANSFORMER
A transformer is a neural-network structure based on an
attention mechanism that can perform sequence-to-sequence
conversion without convolutional or cyclic layers. The trans-
former first achieved major success in the NLP field and was
subsequently introduced into the field of computer vision.
The vision transformer (VIT) was proposed by Dosovitskiy et
al. [23] as the first pure transformer structure for image pro-
cessing. The algorithm proves that the pure attention network
is superior to the most advanced CNN in image classification.
Subsequently, numerous tasks based on the VIT network
architecture have emerged. Lin et al. [24] proposed a VIT
controller using VIT as the backbone network for adaptive
fusion and feature selection in semantic segmentation. Riz-
zoliet al. [25] injected depth information frommultiple stages
into a segmentation module based on the VIT architecture for
passive semantic segmentation. Deng et al. [26] combined
linear attention with a U-Net network to obtain a T-former
for inpainting tasks.

Although the application and development of the trans-
former has brought revolutionary improvements to the field
of computer vision, the conventional transformer has a
lower computing efficiency than the StratifiedTransformer
proposed in this study. The transformer necessitates the calcu-
lation of every element of the entire sequence once, resulting
in a substantial increase in computational cost when the
input image is extremely large. The Stratified Transformer

uses a sliding-window mechanism to split large images
into smaller pieces and exchange information between these
pieces, avoiding the computational burden of processing the
entire image simultaneously.

C. U-NET
U-Net is a type of CNN with a simple and symmetric
structure. Different from the first two hot in the NLP field
[27], U-Net is widely used in medical image segmentation.
Researchers have developed numerous U-Net-based network
models [28], [29] to improve the quality of medical images
and the accuracy of automated medical systems. In depth
estimation and optimization models based on U-Net have
achieved significant breakthroughs. Liang et al. [30] con-
structed an attention feature fusion module based on the
original U-Net, which is called AFFMand consists of channel
and spatial attention modules. The improved U-Net model
increased the segmentation accuracy of the image. Cui et al.
[31] fused an improvedU-Net networkwith a pose network to
construct a lightweight depth estimation model called Mon-
oDA for unmanned agricultural vehicles to obtain the depth
information of the surrounding environment. This model
achieves a good balance between accuracy and computation
time. Duong et al. [32] constructed a depth estimation model
called UR-Net, which adds attention to the decoder and
replaces the transmission block in the conventional U-Net
with spatial pyramid pool blocks (ASPP). In experiments,
their model outperformed U-Net with regard to the error rate
and accuracy.

U-Net has numerous advantages in the field of
segmentation—particularly for the processing of detailed
features. However, because of problems in the convolutional
structure, such as translation invariance and an insufficient
ability to capture long-term dependence, it cannot capture
sufficient image features when processing large datasets.
The transformer network has a large receptive field that
can address these two problems well; however, it has short-
comings in processing fine-grained information, resulting in
inaccurate positioning. Therefore, the combination of the two
can produce better results, which is explained in detail in
Section III.

III. SAU-NET
Starting with the construction of the network model, this
section introduces the Stratified Transformer, the improved
AU-Net network architecture, and the selection of the loss
function to illustrate the proposed self-supervised monocular
depth estimation method.

A. DEEP NETWORK FRAMEWORK
The self-supervised depth estimation strategy used in Mon-
odepth2 [33] is employed in this study to estimate the depth
value and relative pose of monocular image sequences. The
overall network structure comprises a deep network and a
camera pose network. The SAU-net section uses an architec-
ture that combines the improved AU-Net network with the

137736 VOLUME 11, 2023



W. Zhao et al.: SAU-Net: Monocular Depth Estimation

FIGURE 1. Network architecture.

Stratified Transformer. The overall network is an end-to-end
structure, with the Stratified Transformer feature extractor as
the network’s coding part and the improved U-Net network
as the decoding part. A single-frame image at a particular
moment is taken as the input of the deep network, and this
moment and the image sequence of two adjacent frames are
taken as the inputs of the pose network. The pose network
is a standard CNN, the encoding part is Resnet34 [34], and
the decoding part is an AU-Net network. The structure of
Resnet34 is as follows: Conv (3× 3)–BN–RELU–Conv (3×

3)–BN, where ‘‘BN’’ represents a batch normalization layer
and ‘‘RELU’’ represents the rectified linear unit activation
function. In the whole model, the convolution step is set
to 2, and the output part of the convolution kernel adopts the
RELU activation function. The loss function has a structure
of one primary loss and one auxiliary loss. The primary loss
follows the double loss function in Monodepth2, and the
auxiliary loss is the gradient loss [35]. The proposed network
architecture is depicted in Fig. 1, with images from the KITTI
dataset [36].

B. STRATIFIED TRANSFORMER STRUCTURE
The Swin transformer [37] uses a hierarchical construction
method similar to that of CNNs. The Stratified Transformer
structure used in this study adopts several architecture designs
employed in the Swin transformer. In contrast to VIT, which
generates a single feature map of input features with a sim-
ilar resolution, the Stratified Transformer generates multiple
feature maps with different resolutions. We first convolve the
original input data to obtain the feature map and then divide
the feature map into small patches. Because the feature map’s
size and resolution will be halved after the downsampling
module, the patch and network architecture pattern module
in Fig. 1 splice features to reduce the space size by a factor
of 2 and expand the feature dimension by a factor of 4.
As illustrated in Fig. 2(a), four hierarchical blocks are used to
generate feature maps of four different resolutions, i.e., 1/2,
1/4, 1/8, and 1/16.

The sliding-window mechanism allows the Swin trans-
former to increase the extraction efficiency for image infor-
mation features; however, segmentation errors or missing
segmentation may still occur when feature mapping segmen-
tation is performed for the first time. We reclassified each
pixel and utilized a single Swin block to optimize the orig-
inal segmentation map, mitigating such problems. The Swin
block is a self-attention module and an essential component
of the network structure depicted in Fig. 2(b). We replaced
the multi-head self-attention (MSA) mechanism in the trans-
former with windowmulti-head self-attention (W-MSA), and
each window counts only its attention. This simplifies the
calculation to linear complexity, significantly reducing the
amount of computation. Furthermore, the sliding window
solves the problem of information isolation induced by the
independence of each window. It can increase the recognition
accuracy for each pixel and lead to a space dependence
between adjacent regions of the image.

A Swin block consists of W-MSA, SW-MSA, and anMLP.
Each module is preceded by a layer normalization (LN) layer,
and the remaining connections are applied after each module.
The MLP module consists of two layers with a Gaussian
Error Linear Units (GELU) nonlinear activation function.
Multiresolution feature maps are generated by computing
successive stratified transformer blocks, as follows:

d̂n = W −MSA[LN (dn−1)] + dn−1 (1)

dn = MLP[LN (d̂n)] + d̂n (2)

d̂n+1
= SW −MSA[LN (dn)] + dn (3)

dn+1
= MLP[LN (d̂n+1)] + d̂n+1 (4)

where d̂n and dn represent the characteristic outputs of (S)W-
MSA andMLP in module n, respectively; similarly, d̂n+1 and
dn+1 represent the characteristic outputs of n + 1; and dn−1

represents the corresponding characteristic output of layer n–
1. According to these features of the Stratified Transformer,
the jump join strategy generates intensive feature predictions,
resulting in a model with few parameters and low computa-
tional costs.

C. AU -NET STRUCTURE
The original U-Net network is a lightweight full CNN, which
includes a contraction path and an expansion path, which
correspond to the coding and decoding parts, respectively,
of the network. Its advantage is that the network structure is
simple and efficient, and good training results can be obtained
even in the case of a small data volume.

However, the skip connectionmodule in theU-Net network
is inadequate, and its function is overly simple to improve the
connectivity among the internal features of the deep decoder.
The layered image features of four different resolutions (1/2,
1/4, 1/8, and 1/16) are passed from the encoder to each stage
of the deep decoder via the jump connection between the
encoder and the deep decoder to overcome the shortcomings
of this section. Subsequently, the attention module is used
to locate the most critical information from the compressed
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FIGURE 2. Stratified transformer structure diagrams. (a) network structure diagram; (b) block structure diagram.

channel, reducing the degree of loss of target features and
significantly improving the performance of the network. The
network architecture is illustrated in Fig. 3.

Once the layered image features are passed to the decoder,
they are projected onto the same dimensional space; subse-
quently, the features of different stages are joined using the
method of adding elements. Subsequently, the cascade path
is interpolated bilinearly from the bottom up:

xs =

∑s

k=1
(fk ) ↑ (5)

where fk and () ↑ represent the projection features of the stage
k and the two-line interpolation, respectively.

∑s
k=1 (fk ) ↑

refers to the superposition of k from 1 to the s stage. The
nonlinear feature mapping module is used to map the spliced
features to the same dimensional space, and the aliasing effect
is alleviated by bilinear upsampling. Double upsampling is
performed to improve the versatility of the network.

Convolutional layers of 3 × 3 and 1 × 1 are used in
the depth decoder part, whereas a single convolutional layer
of 3 × 3 and 1 × 1 is used in the projection module and

feature mapping module, respectively. In the first layer of
the depth decoder, the crop operation is performed when the
skip connection is executed. First, the size of the feature map
is reduced to half the original size, crucial features are cap-
tured through the attention mechanism, and a 2× upsampling
operation is performed to restore the size of the feature map.
Finally, the feature map of the restored size is combined with
the layered image features in the same dimension to form a
feature map with a 2× size. The second and subsequent con-
volutional layers have no cropping or upsampling operations.

D. LOSS FUNCTION
The loss function constructed in this study consists of a
primary loss function and an auxiliary loss function. Consid-
ering the network structure used for extracting image feature
information, we decompose the whole network optimization
into two subproblems. The primary loss function is used to
eliminate the effects of object movement and occlusion. The
auxiliary loss function solves the problems of missing local
detail and deep holes in the depth map.
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FIGURE 3. AU-Net architecture.

First, we use the double loss function in Monodepthh2 as
our primary function L1, which is obtained by multiplying
the luminosity reprojection function La and the automatic
masking loss µ. The photometric reprojection is expressed
as follows:

La =

∑
t ′
pe(Ht ,Ht ′→t ) (6)

Ht ′→t = Ht ′ [proj(Zt ,Dt→t ′ , k)] (7)

where Ht denotes the target image, Ht ′ denotes the source
view, and Ht→t ′ represents the part where the reprojection
error of the abnormal image is smaller than that of the original
image. In stereo matching, Ht ′ is the second image of Ht
but the pose of Ht ′ is not known in the monocular sequence;
thus, it is necessary to calculateHt→t ′ at the two-dimensional
level. pe represents the luminosity reprojection error, which
is composed of the loss function L ′ and SSIM (structural
similarity index measure), as given by (8); Zt denotes the
generated depth map corresponding to Ht ; K is the internal
function; proj() is the projection coordinate of Zt at the two-
dimensional level, and Dt→t ′ represents the camera pose of
each source view relative to the target image.

pe(Ha,Hb) = ∂.
1 − SSIM (Ha − Hb)

2
+ L ′ (8)

L ′
= (1 − ∂)||Ha − Hb|| (9)

Here, (1−∂)||Ha−Hb|| is the loss function L ′, which is used to
calculate the absolute-value error of pixels in the target image
and the estimated image, that is, ∂ = 0.85. The value refers to
the setting of Godard et al. [11]. SSIM indicates the similarity
between two images. To reduce projection errors and the
number of artifacts in depth maps, we select the minimum
error of luminosity reprojection for calculation. Therefore,
the final expression of luminosity reprojection is

La = min
t ′
pe(Ht − Ht ′→t ) (10)

Using the automatic masking loss function µ, the main loss
L1 can be determined as

µ = [min
t ′
pe(Ht ,Ht ′ ) < min

t ′
pe(Ht ,Ht ′→t )] (11)

where µ = 1 when the conditions within the parentheses are
met; otherwise, µ = 0. [] denotes the Iverson parentheses.
Because the reprojection error of Ht ′→t exceeds that of Ht ,

µ is used to ignore the pixel loss of the original luminosity
reprojection error. Finally, the primary loss function is

L1 = µ.La (12)

The main reason why we designed the auxiliary function
L2 is that when the loss function is only the primary loss, it is
easy to ignore a large number of background and object detail
pixels; thus, the convergence is extremely fast. However,
it is easy to have large gradient-value changes, leading to
unstable training, and the output results also have the prob-
lem of missing local details. The gradient loss function can
enhance local details—particularly at the depth boundary—
and make the gradient decline more smoothly by measuring
the similarity between the ground truth (GT) and the model
prediction. Through the aforementioned analysis, we added
gradient loss as a supplement during the training process, with
the expression

L2 =
1
N

N∑
i

|gh,i − m(g∗)h,i| + |gv,i − m(g∗)v,i| (13)

Here, N represents the total number of pixels; gh,i and
m(g∗)h,i represent the ith gradient value in the depth map
and the interpolated GT value in the horizontal direction,
respectively; gv,i and m(g∗)v,i represent the corresponding
values in the vertical direction; and || is the absolute-value
symbol. In calculating the loss, we only consider the differ-
ences between the predicted and GT values in the horizontal
and vertical directions.

The loss function used in this study is

L = αL1 + βL2 (14)

where α and β represent the equilibrium factors of L1 and
L2, respectively, whose values are analyzed via a trial-and-
error method in this study. During adjustment, the batch size
is fixed, the proportion of parameter values is increased and
reduced, the training curve of the loss rate and accuracy is
examined, and the optimal value is selected. Experiments
indicate that the value of the α/β ratio gradually converges
during the process of increasing from small to large.When the
value of ratio is too large, the convergence is too fast, resulting
in inadequate training and overfitting. In the experiments,
the convergence effect is best when the parameter ratio is in
the range of 95–105; thus, α and β are set as 10 and 0.1,
respectively, in this study. The training curves presented in
Figs. 4 and 5 were obtained when α = 10 and β = 0.1.

Different loss functions were added to SAU-net for train-
ing. As illustrated in Fig. 4, with an increase in the training
period, the gradient of the loss function of one primary loss
and one auxiliary loss was stable when the rate of conver-
gence was almost the same as that for the single primary loss
function. As indicated by Fig. 5, the composite loss function
also had excellent performance with regard to accuracy. In the
first 10 epochs, the accuracies of the two were almost iden-
tical. Following the 20th epoch, the accuracy of the proposed
loss function significantly exceeded that of the single loss
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FIGURE 4. Loss rate curves for the SAU-net training set.

function. Additionally, the volatility of the curve was lower
with regard to data stability.

IV. EXPERIMENTAL PROCESS AND RESULTS
We evaluated the prediction performance of the SAU-net
algorithm on the KITTI dataset and a self-collected cam-
pus dataset. We conducted several ablation experiments for
optimizing the loss function and algorithm structure. The
algorithm was compared with conventional monocular depth
estimation algorithms. Additionally, the original algorithm
was compared with the optimized algorithm in the same
scenario, and the effectiveness of the proposed algorithm was
verified.

A. ACQUISITION OF DATASETS
We conducted training using the KITTI dataset, which is the
world’s largest computer-vision algorithm evaluation dataset
for automatic-driving scenarios. After removing the static
frames in the monocular sequence, we used the method
suggested in Eigen to split the fusion dataset, selecting
39915 images for training and 4525 for testing. Furthermore,
to verify the robustness of the algorithm in practical applica-
tions, we collected 200 images on campus and added them
to the KITTI dataset for evaluating the performance of the
model. The resolution of the images was themost widely used
resolution for evaluating the depth estimation performance on
the KITTI dataset (640 × 190).
For collecting campus data, we used a monocular cam-

era produced by BYD Han the original factory, which has
the characteristics of small distortion and clear images.
A BYD HanDM-I car was used as the mobile platform
for the experiment. To ensure the accuracy of the camera’s
field of view and data acquisition, we installed the cam-
era at the center of the car’s front windshield, with the
lens kept horizontal and 120 cm above the ground. The
car was moving at a speed of 20 km/h during the data
collection.

FIGURE 5. Accuracy curves for the SAU-net training set.

B. IMPLEMENTATION DETAILS
To expand the dataset and prevent overfitting, data enhance-
ment operations such as translation and inversion were
performed on three adjacent input images. The network
model used in this experiment is based on the Pytorch frame-
work, and four Nvidia RTX 3090 graphics processing units
(GPUs) were used for training. The model used the Adam
optimizer [38], and the parameters were set to β1 = 0.9 and
β2 = 0.999. The proposed model had an initial learning rate
of 1 × 10−4, 80 training epochs, and a batch size of 12 per
epoch. Following the 20th epoch, the loss rate decreased
slowly to nearly 0. To solve this problem, we attenuated
the learning rate to one-tenth of the original at 60 epochs
after training. To reduce the training time of the network and
improve the overall performance of the model, we trained the
model using the pre-training weights on ImageNet-1k [39].

C. EVALUATION INDICES
The evaluation indices used in this study were commonly
used error indices and threshold accuracy indices (δ). Among
these, the quantitative standard of the error indicators were
the absolute relative error (Abs Rel), root-mean-square error
(RMS), logarithmic root-mean-square error (log RMS), and
squared relative error (Sq Rel). They are used to measure the
error between the prediction result and the real depth. The
smaller the value of the error index, the better the experimen-
tal result. The threshold accuracy index δ was used tomeasure
the accuracy of the model; a larger value corresponded to a
higher prediction accuracy. The advantage of this index is that
it directly reflects the accuracy of the prediction results. The
corresponding formulas are as follows:

% of dis.t.max(
Di
D∗
i
,
D∗
i

Di
) = δ < thr (15)

Abs Rel =
1
N

∑N

i=1

|Di − D∗
i |

D∗
i

(16)
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FIGURE 6. Campus data acquisition equipment.

RMS =

√
1
N

∑N

i=1
|Di − D∗

i |
2 (17)

logRMS =

√
1
N

∑N

i=1
|lgDi − D∗

i |
2 (18)

Sq Rel =
1
N

∑N

i=1

|Di − D2
i |
2

D∗
i

(19)

where Di represents the predicted depth value of the ith pixel,
D∗
i represents the true depth value corresponding to the ith

pixel, andN represents the total number of pixels. The thresh-
old was thr = 1.25i, with i = 1, 2, 3.

D. ANALYSIS OF RESULTS
First, we performed ablation experiments on two different
loss functions to verify their impact on the output of the
algorithm. When we replace the backbone of the original
convolutional network with the stratified transformer, we dis-
cover that when only the loss function of a single structure
is used to train the network, the output depth map appears
similar to wrinkles in the top area of the image. For clarity,
this phenomenon is indicated by white boxes in Fig. 7. The
broad receptive field of the stratified transformer allows the
network to extract a large amount of image information in
an extremely short time, while the original loss function
often ignores many background pixels in the calculation pro-
cess, resulting in a loss of image depth information. Later,
we incorporated gradient loss as an auxiliary loss to alleviate
the negative impact caused by the imbalance between fore-
ground and background areas, which addressed this problem.

Subsequently, we selected five scenarios from the KITTI
dataset: pedestrian, vehicle, crowded, open, and other work-
ing conditions. For these scenarios, we compared our results
with the results of other advanced algorithms, as shown in
Fig. 8.

Fig. 8 shows a comparison of the results of the proposed
method, Monodepth2 [33], and Midas [40]. Monodepth2
[33]and Midas [40] are classical algorithms for monocular
depth estimation. As indicated by the figure, the depth map
produced by our method was more precise in both distant
and close-range regions. In the distant part, for the other two
algorithms, there were black areas in the image that could
not be recognized, while the estimated depth map showed
the edge contour of the distant part. Our algorithm was more
effective for restoring edges and details.

To verify the reliability of the SAU-net algorithm and its
robustness in practical applications, we also collected scenes

on the campus as test data. For the campus data, we selected
five scene diagrams under different lighting conditions, such
as cloudy day, sunny day, and shadow. Similar to the above
experiments, we compared the results of SAU-net with those
of other advanced algorithms.

Fig. 9(a) presents an image collected on a cloudy day,
Figs. 9(b)–(d) present images of sunny scenes, and Fig. 9(e)
presents an image of a shadow scene. As illustrated, from
left to right, the image estimated by Monodepth2 [33] had
the worst effect in the results of horizontal comparison, and
distant scenes could not be displayed in the depth map,
resulting in the problem of depth loss, which is particularly
obvious in Figs. 9(d) and (e). Compared with Monodepth2
[33], Midas [40] paid more attention to the segmentation
effect of the edge parts of objects; thus, the objects in the
scene were clearly displayed in the depth map. However, for
the detailed features of objects and the prediction of distant
scenes, the effect was not ideal, and there was still a problem
of depth loss. Compared with the other two networks, SAU-
net compensated for the problem of depth loss in the details
and distant features of images and significantly increased
the prediction accuracy. For example, the electric bicycle in
Fig. 9(b), the tree in the distant shadow in Fig. 9(d), and
the white car in Fig. 9(e) are all clearly represented in our
depth map. As indicated by the longitudinal comparison, the
results of the proposed networkwere slightly worse on cloudy
days, and the electric bicycle in Fig. 9(a) was less visible
in the depth map, which was caused by the inability of the
monocular camera to collect good experimental data under
poor lighting conditions.

Thus, we evaluated the depth maps estimated by different
algorithms and verified the effectiveness of SAU-net from
a subjective viewpoint. Next, to confirm the robustness of
the proposed algorithm, we compared it with relevant algo-
rithms proposed in recent years using the KITTI dataset.
We analyzed the effectiveness of the proposed algorithm from
an objective viewpoint using the aforementioned evaluation
indices. The results are presented in Table 1.

As indicated by Table 1, among the previously proposed
monocular depth estimation methods based on supervised
learning, the deep ordered regression network proposed by
Fu et al. [44] performed the best, and it has been signif-
icantly improved with regard to both error and accuracy.
In the field of self-supervised learning methods, the pro-
posed SAU-net model performed the best. The Midas [40]
algorithm is one of the most advanced algorithms in the
field of supervised monocular depth estimation. However,
compared with SAU-net, its log RMS was only 0.1% smaller,
and its results for the other three error indices were inferior
to those of the proposed algorithm. This is because we add
the attention-mechanismmodule on the decoding side, which
significantly reduces the loss of feature information, and the
design of the composite loss function addresses the problems
of depth loss and the fuzzy target edge, reducing the values of
the four error indicators. From the perspective of the threshold
accuracy δ, the image prediction accuracy within the three
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FIGURE 7. Experimental comparison of loss functions.

FIGURE 8. Comparison of experimental results.

recognized threshold ranges of 1.25, 1.252, and 1.253 reached
89.1%, 96.4%, and 98.5%, respectively, which were 0.7%,
0.2% and 0.2% higher than those of the Midas algorithm

[40]. In summary, the self-supervised learning method SAU-
net outperformed the conventional algorithms for almost all
the evaluation indicators. Of course, compared with labeled
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FIGURE 9. Experimental comparison for campus data.

supervised learning methods, there was a gap in the experi-
mental results owing to the lack of sufficient GT values.

Real-time performance is crucial index for judging the per-
formance of an algorithm; thus, the computational complex-
ity of the proposed algorithm was evaluated. We compared
the computational efficiency of the network and the number
of parameters of the model with those of the self-supervised
monocular depth estimation algorithms in Table 1. The results
are presented in Fig. 10.

Here, the horizontal axis indicates the threshold accuracy
δ < 1.25, which can be used to measure the accuracy of the
algorithm, and the vertical axis indicates the processing time
required by the test set to test a single image (in seconds).
The experiments were performed on an AGX Orin edge
computing embedded system, which is specifically designed
to detect the real-time responses of algorithms and is often
used in autonomous driving, smart-factory machines, etc.
As indicated by Fig. 10, our algorithm was undoubtedly
the best with regard to accuracy, reaching 89.1%. Regarding
the processing time, MonoR18 [33] was the fastest, with a
single-image processing time of 0.0028 s; however, it had
the lowest accuracy (87.7%). This is because the algorithm
uses an 18-layer Res-Net model, and fewer network lay-
ers extract fewer features. In contrast, Monodepth2R50 [33]
increases the number of network layers in the coding part,
which increased the accuracy of the output results but also
increased the computation time. For Midas [40], the accuracy
ranked second, the processing time ranked second-to-last, and
the cost was relatively high. Pack-Net [46] had the longest
processing time, and its accuracy was 87.8%, which was
1.3% lower than that of the proposed algorithm; thus, its
performance was inferior overall.

The number of model parameters of the proposed
algorithm was compared with those of other algorithms,
as shown in Table 2. Compared with Pack-Net [46], the
number of parameters of the proposed algorithm was reduced
by 50.4%. Among the five algorithms evaluated, the proposed
algorithm had the second-fewest parameters. This is because
instead of expanding the sensitivity field by stacking layers
of the network, we use StratifiedTransformer, which reduces
the complexity of the network, and the sliding-windowmech-
anism design further increases the computational efficiency.
Compared with MonoR18 [33], the number of parameters
was slightly increased; however, compared with Midas [40]
andMonoR50 [33], the number of parameters was reduced by
13.5Mb and 9.9Mb, respectively. As indicated by the results
in Tables 1 and 2 and Fig. 10, our algorithm not only guar-
antees real-time performance but also has a higher accuracy
and better cost performance than conventional algorithms.

E. ABLATION EXPERIMENT
To highlight the innovative aspects of this study, we con-
ducted ablation experiments on the algorithm, and the results
are presented in Fig. 11, where ‘‘STF-T’’ refers to the strati-
fied transformer.

In the figure, red boxes highlight the effects of algorithm
improvement. To minimize the influence of other factors on
the ablation experiment results, we selected five scenarios
similar to those in Fig. 8 for comparison. As demonstrated,
the depth map estimated by the unmodified original network
model was blurry, with missing details, and there was a
problem of artifacts in the estimation of the distant view.
For example, the columns in scene (a) and the tree supports
in scene (d) both have a lack of depth information, which
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TABLE 1. Verification results for the KITTI dataset obtained using the Eigen split set. In the ‘‘Pattern’’ column, D represents the supervised learning
method, M represents the monocular self-supervision method, and S represents the self-supervision method based on stereoscopic image pairs. R18 and
R50 indicate that the backbone is Resnet18 and Resnet50, respectively. The best results are underlined, and the results of the proposed method are
presented in bold.

FIGURE 10. Computational efficiencies of different algorithms.

TABLE 2. Comparison of the parameters of different algorithm models.
‘‘Mb’’ is unit of measurement for the number of parameters.

our method compensated for this effectively. Regarding the
problem of occlusion, for example, the crowd in scene (b),
bicycles behind the flower bed, and pedestrians and vehicles
in scene (c), this algorithm incorporates an attention module
based on U-Net, which improves the capture of object edge
features and significantly improves the model’s performance.
In addition, the stratified transformer has better scalability
and a better receptive field than the Res-Net network; there-
fore, our method also achieved good results in the estimation
of distant objects. For example, the car and McDonald’s logo

in scene (e) exhibited significant improvements in image blur
and artifacts.

To demonstrate the effectiveness of the proposed method,
we conducted ablation experiments inwhich the experimental
images of the feature extractor Fig. 11 components were
compared with the those of the dense decoder of the depth
estimation network. The error and precision values are pre-
sented in Table 3.

As indicated by Table 3, the error indices RMS and Sq
Rel were reduced by 0.221 and 0.072, respectively, after
the backbone was changed. Following the addition of the
attention module, their values were further reduced; the RMS
and Sq Rel decreased by 0.044 and 0.041, respectively. Thus,
replacing the backbone of Res-Net with a Stratified Trans-
former structure more significantly reduced the error values.
The addition of attention also increased the accuracy, but the
effect was slightly weaker. However, from the perspective
of the threshold accuracy, the addition of the attention mod-
ule played a very important role in improving the accuracy.
At thr = 1.25, the addition of attention increased the preci-
sion of the network by 0.8%, whereas changing the backbone
only increased the precision by 0.6%. This is because when
the backbone was changed, to ensure the timeliness of the
network, we also performed subsampling operations, during
which features were lost. Therefore, although the accuracy is
increased when only the backbone is changed, the improve-
ment effect is limited. To solve this problem, we added the
attention module in the compressed channel part.

V. CONCLUSION
We developed an algorithm for increasing the accuracy of
depth maps in self-supervised monocular depth estimation,
which is reduced by object occlusion and artifacts. 1) The
core idea of this algorithm is that a StratifiedTransformer is
used to replace the backbone of traditional CNNs such as Res-
Net, and multi-scale features are captured in a hierarchical
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FIGURE 11. Component comparison experimental diagram.

TABLE 3. Ablation results for the KITTI dataset. In the ‘‘Method’’ column, ‘‘+’’ refers to the encoding layer, and ‘‘−’’ refers to the decoding layer.
Resnet50+UNet is the original network model. In ‘‘STF-T+UNet,’’ the backbone of the original ResNet network is replaced with the Stratified Transformer.
‘‘STF-T+AUNet’’ is the propsoed algorithm.

manner to obtain a large sensitivity field, increasing the accu-
racy of the model. 2) On the basis of photometric reprojection
and an automatic masking loss function, a gradient function is
added to formmain and auxiliary structures for improving the
quality of the depth map. Moreover, an attention-mechanism
module is added to U-Net, which makes the network focus
on the object occlusion and artifacts and increases the seg-
mentation accuracy. 3) Comparative experimental results for
the KITTI dataset and a campus dataset indicated that the
depth map boundary estimated by the proposed algorithm
was clearer and had less artifacts than those estimated by
conventional algorithms. Thus, SAU-net can better solve the
problems of missing details and depth loss in the depth map,
indicating its effectiveness and feasibility.
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