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ABSTRACT The challenge of transforming the apparent age of human faces in videos has not been
adequately addressed due to the complexities involved in preserving spatial and temporal consistency. This
task is further complicated by the scarcity of video datasets featuring specific individuals across various
age groups. To address these issues, we introduce Re-Aging GAN++ (RAGAN++), a unified framework
designed to perform facial age transformation in videos utilizing an innovative GAN-based model trained
on still image data. Initially, the modulation process acquires multi-scale personalized age features to depict
the attributes of the target age group. Subsequently, the encoder applies Gaussian smoothing at each scale,
ensuring a seamless frame-to-frame transition that accounts for inter-frame variations, such as facial motion
within the camera’s field of view. Remarkably, the proposed model demonstrates the ability to perform facial
age transformation in videos despite being trained exclusively on image data. Our proposed method exhibits
exceptional spatio-temporal consistency concerning facial identity, expression, and pose while maintaining
natural variations across diverse age groups.

INDEX TERMS Video generation, age manipulation, GAN, spatio-temporal consistency.

I. INTRODUCTION
The process of changing the apparent age of a human face
involves either making it look older or younger. This is
done through age progression or regression, which uses a
complex model trained on age distributions to manipulate
a given face to match a target age. The target age acts
as a conditional term that guides the model to produce
facial images with characteristics appropriate for a certain
age, as shown in Figure 1. However, video-based age
transformation methods face challenges not encountered in
image-based methods. These challenges arise due to the need
to maintain consistency between frames and variations within
frames to produce spatially and temporally consistent results.
The output face must represent the same identity as the input
face with age factors aligned according to the geometry of the
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face, including the pose and expression. Additionally, smooth
transitions between adjacent frames are required to maintain
temporal consistency.

Existing studies have mainly focused on transforming face
age in images [1], [2], [3], [4], [5], [6], [7], [8]. However,
the literature contains few discussions on transforming
face age in video content, and only a limited number
of approaches have been developed to handle video data,
as mentioned in [9] and [10]. These methods can perform
some modifications, including traversing a latent space,
classification, and fine-tuning. Unfortunately, these methods
often produce noticeable artifacts and unnatural or jittering
effects, which can significantly reduce the overall quality and
realism of the transformed videos. Additionally, the scarcity
of video datasets containing faces of different age groups and
specific subjects is a significant obstacle in the development
of video-based facial age transformation methods. As we
previously discussed, another important issue in this field is
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FIGURE 1. Age transformation results generated by the proposed method
in video content. The first row shows the sample frames of the input
video sequence, while the second and third rows show the result of age
regression (i.e., younger) and progression (i.e., older), respectively.

the efficiency of deep learning based models, as mentioned
in [11].

This study aims to propose a face age transformation
method that can generate naturalistic faces appearing to be
of a specific target age in video content, while handling
intra- and inter-frame variations. To achieve this goal,
we propose a new framework called RAGAN++, which
considers video age transformation as an image translation
problem. We were motivated by the success of an existing
method with an age modulator module [7], and developed
a more scalable framework to process video data without
relying on external models. We maintain the self-guidance
characteristics of the existing method using the age modula-
tor, while also introducing an encoder-decoder structure with
point modifications to handle variations within and between
frames.

Our proposed framework consists of an encoder-decoder
structure that integrates a multi-scale age modulator. This
approach facilitates direct feature flow and avoids feature
space alignment. To ensure visually realistic and accurate
transformations, we designed the encoder to focus only
on face regions in image frames, preserving necessary
intra-frame variations like identity and background. We also
added a Gaussian smoothing layer in each scale of the
encoder to mimic inter-frame variations. Smoothness is
considered as a perception of motion to simulate temporal
consistency in videos from still images. Thus, our generator
does not require labeled video sets and is applicable
to real videos. By modulating identity features in a
multi-scale manner, we apply specific age variations at
each scale of image decoding using an age modulator.
The main contributions of this work are summarized as
follows.

• We propose a novel framework capable of transforming
the apparent ages of faces in videos, even though it is
trained only on static image data.

• We introduce an encoder to create smooth motion
transitions between adjacent frames, which is critical for
maintaining temporal consistency.

• Our multi-scale personalized age features enable
age transformation while preserving the identity and
appearance of the input face.

• Extensive experimental results show that our proposed
method, which solely relies on image data, pro-
duces more realistic face age transformations in video
content.

II. RELATED WORK
In this section, we introduce the existing face aging methods
that aremore relevant to our approach, while a comprehensive
review of face aging works can be found in [12] and [13].

A. IMAGE-TO-IMAGE TRANSLATION
A wide variety of studies [3], [14], [15], [16], [17], [18],
[19], [20], [21], [22] have extensively explored the use of
GANmodels to achieve greater realism in age transformation.
However, these approaches often produce blurry results and
distort the identity information of the input face, as pointed
out by recent works [2], [23]. Consequently, methods that
operate at higher resolutions have been proposed to address
this issue. For instance, HRFAE [2] was developed to
perform high-resolution age transformations using a simple
procedure that re-weights the encoded features using the
output of a single fully connected layer. Despois et al.
[24] proposed a method that integrates aging maps into
the decoding procedure through the adoption of SPADE
blocks [25] to produce high-resolution facial images. How-
ever, these methods are mostly limited to age progression,
and their ability to perform age regression is not always
satisfactory.
There are several recent methods proposed for lifespan

synthesis. LATS [1] is one such method that performs
modulated convolutions on identity and injects a latent vector
representing the target age, similar to StyleGAN2 [26].
However, LATS is limited to face synthesis only and does not
incorporate background data, which can result in undesired
artifacts. In contrast, the authors of [5] proposed a method
that disentangles the characteristics of faces, such as shape,
texture, and identity, to effectively preserve identity and
model unique shapes and textures with respect to a target
age.While this method provides better texture transformation
and shape deformation, it suffers from the same issues as
LATS. Another recent work [6] embeds an age estimator
and personalized age embedding transformation modules
into a regular encoder-decoder architecture to remove aging
factors at the estimated age and obtain an embedding
at the target age. However, this estimator may modify
or shift identity traits in certain scenarios, limiting its
effectiveness.
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FIGURE 2. Illustration of the proposed framework for face age transformation in videos. The proposed encoder and multi-scale
modulations are designed to transform given input sequences to a target age ŷ in a more visually realistic way.

B. VIDEO-TO-VIDEO TRANSLATION
StyleGAN is a highly advanced image generationmethod that
has been proposed for generating highly realistic images [26],
[27]. It has been used in various applications, including
video-to-video translation, which is an extension of image-to-
image translation for video content [9], [10]. To generate the
intended content, several studies have employed pre-trained
StyleGAN models while introducing diverse methods to
find latent or manipulation directions of an image [28],
[29]. However, finding and labeling these directions is a
tedious process and is generally difficult to accomplish
due to the nature of the StyleGAN space, particularly the
intermediate latent W space. In light of this, Yao et al. [9]
recently conducted a study to edit faces in real videos using
StyleGAN. They inverted images to W+ space by using a
dedicated encoder [29] to match latent spaces with a trained
latent-code transformer. This allowed for more disentangled
edits, including age, to be carried out.

Tzaban et al. [10] utilized StyleGAN to manipulate
faces in video frames. They proposed a straightforward
reconstruction-to-stitch pipeline, which incorporated both
reconstruction and stitching to fine-tune the generator. The
image inversion method [29] and finding image pivots using
PTI [30] were combined in this method, enabling it to
perform highly accurate yet highly editable reconstructions
by simply editing the latent space in a given semantic
direction. In contrast, an earlier work by Duong et al.
[31] used deep reinforcement learning for face aging to
perform video age progression, with the method performing
manifold traversal from younger to older age regions given a
latent representation of frames. Furthermore, Zoss et al. [32]
proposed a practical, production-ready face re-aging network
called FRAN that is controllable, temporally stable, and
identity-preserving. However, this method only synthesizes
the face region, with other parts such as hair and teeth
remaining static regardless of aging. Furthermore, prior
research in video-based age transformation has been limited
due to the need for a significant amount of age-related

face videos. This requirement makes it impractical to
perform age transformation on a large scale. In contrast,
a Gaussian smoothing layer was added to each level of
the proposed encoder to replicate inter-frame variations
and ensure temporal consistency, enabling the generator to
be used with real videos without requiring labeled video
datasets.

III. PROPOSED METHOD
A. OVERVIEW
In the context of image translation, the generator G is trained
to convert input images x from one domain A to another
domain B, while the discriminator D learns to distinguish
between real and fake images. Typically, the generator
and discriminator are constructed using an encoder-decoder
architecture, which up-samples and down-samples data to
learn intricate image distributions. Our goal is to train a single
generator G to produce an image x̂ of a specific age ŷ ∈ Y
from an input image x ∈ X , where the generated image looks
natural and maintains both intra- and inter-frame variations.
To accomplish this, we propose an encoder that includes a
Gaussian smoothing layer to smooth out motion transitions
and we present multi-scale age modulations to facilitate
naturalistic age manipulation. We provide an overview of our
proposed framework in Figure 2. It is worth noting that our
framework is trained on still images but can be applied to
video content.

B. ENCODER
Recent studies have demonstrated that generators with an
encoder structure are highly effective in producing natu-
ralistic images. Most works incorporating down-sampling
convolutional blocks designed as encoders to extract features
from input data. An encoder GE is responsible for extracting
the identity information F id of a given face x, as represented
by the equation F id = GE (x). This simple feature extraction
supplies facial information at various levels. This approach
is essential to maintain intra-frame variations of the target
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FIGURE 3. Detailed architecture of the proposed encoder network.

face, such as the person’s identity, expression, and pose,
to generate an image that appears to represent the same
person as the output. Hence, we are interested in extracting
only face-related features and avoid processing background
variations that are unnecessary for face age transformation.
To separate the former from the latter, we first crop the face
region and then adopt a masking operation [7], [33], [34]
at the initial image-to-feature layer of GE to avoid retaining
information on the image background. This enables G to
focus solely on the features of the target face, whereas the
background can be reintegrated in the final image decoding
layer.

However, a standard encoder designed for image trans-
lations may not suffice to handle interframe variations.
As mentioned above, considering the motion of the input
face between adjacent frames is important in manipulating
its apparent age. Thus, we consider that the standard encoder
part of G may tend to generate distinct faces where smooth
motion transition is lost. This issue is discussed in greater
detail in the description of the ablation studies carried out as
part of this work. To address this, we modify GE according
to the structure shown in Figure 3. Specifically, this structure
adds Gaussian smoothing layers at each scale of the encoder
alongside the standard feature-flow of the encoder. These
multi-scale features provide a complementary representation
encompassing the global and local characteristics of the
face to help the encoder to mimic temporal variations
in the generated images. We opt for Gaussian smoothing
because Gaussian kernel filtering is widely used to remove
undesirable fluctuations in video stabilization [35], [36].
However, in contrast to video stabilization, we aim to
prevent G from producing abrupt changes of appearance
in transformed adjacent frames by smoothing deep features
of the encoder. Considering different types of fluctuations,
we incorporate two Gaussian smoothing layers within each
residual block. We empirically set σl and σh as low and
high values, respectively, to mimic minimal and maximal
smoothness (i.e., slow and fast motion transitions in adjacent
frames) on feature maps.

C. MULTI-SCALE MODULATIONS
Age modulations is an important aspect of this research.
In contrast to existing methods, we utilize meaningful
multi-scale features to facilitate better age transformation.
Every scale of GE supplies coarse to-fine features that

convey general information about the face, whereas existing
methods [2], [7], [23] simply focus on bottleneck features.
We consider that this approach leads to information loss, and
address this issue by adopting a multi-scale approach in our
age modulations. Specifically, our modulator takes identity
features Fid from the encoder as usual, but produces its
age-aligned counterpart by learning Fage = M(Fid , ŷ) from
each scale of GE and by considering the target age ŷ, where
Fage is an N -dimensional vector that is further used in the
decoder layers. To embed the target age into the modulations,
we opt for the simplest option of establishing a bi-linear
interaction between two trainable embedding functions E,E ′

andFid formulated asFage = Fid+E(ŷ)+Fid⊙E ′(ŷ). Thus,
G learns the optimal age features for the input face at different
scales, which enables the preservation of input details and
the addition of personalized age characteristics. The proposed
approach can perform joint training relatively easily because
such modulations are incorporated into G.

D. DECODER
We adopt a standard decoder architecture for GD to avoid
any unnecessary complexity in learning to generate images.
To produce age-transformed face outputs, the GD network
operates on the identity Fid and multi-scale personalized age
features Fage by performing x̂ = GD(Fid ,Fage). Through
this operation, GD learns to preserve the identity of the input
face while manipulating its age characteristics. Remarkably,
the Fage feature addresses this requirement more effectively,
because it belongs to the same identity and shares person-
specific traits. Hence, the identity features Fid are self
modulated by Fage through affine transformations that shift
and center the features. We then reintegrate the background
features into the image with the transformed facial features.
To avoid any changes in both face and background infor-
mation, we simply combine these features by addition prior
to bringing the learned feature representation into the image
domain. This enables the proposed approach to produce
visually plausible image results. As a post-processing step,
we adopt the well known Poisson blending [37] to combine
the original input with the transformed face relatively easily.

E. DISCRIMINATOR
To lead G to learn meaningful information, we construct
D following the successful architecture presented in [7]
and [38]. To establish a fair competition between networks,
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FIGURE 4. Visual comparison of the output of existing methods with that
of our proposed method.

we trainD on the image sets used for G. Hence, the proposed
model is an image-based discriminator that conducts a
multi-task classification on the ages of faces in input images.
Specifically, a classification layer consists of multiple output
branches to differentiate among various ages. Each branch
learns to distinguish whether an image is real or fake in its
age domain by performing binary classification.

F. OBJECTIVE TERMS
Our framework aims to control the image generation process
by transforming the inputs of the generator network through
an age modulator. Because age labels are considered as
a control factor, the framework must learn the proper
condition-specific information of the target distribution. This
requires the determination of objectives to appropriately
supervise the framework. To this end, we utilize multiple
objective functions, including adversarial, reconstruction,
cycle consistency, and perceptual loss. To calculate the loss
functions, we generate images based on an input image x and
its real age label y, and a random target age ŷ. Accordingly,
three different images are generated using the following:

x̂ = G(x, ŷ), xrec = G(x, y), xcycle = G(x̂, y), (1)

TABLE 1. Quantitative comparison of methods in terms of temporal
consistency metrics proposed by [10].

where x̂, xrec and xcyc are the transformed, reconstructed, and
cycle-transformed images, respectively.

1) ADVERSARIAL LOSS
Our discriminator performs age-validity classification, the
output of which is specific to the age domain. This approach
can be considered as a class-conditioned D. We define an
adversarial loss as follows:

Ladv(G,D) = Ex,y
[
logDy(x)

]
+ Ex,y′

[
log

(
1 −Dy′ (x ′)

)]
, (2)

where Dy(·) is the single output of D which belongs to y.

2) RECONSTRUCTION LOSS
During the training phase, the possibility that the target age ŷ
and the real age y of the input face x may fall into the same
age group must be considered. In this case, G should produce
a transformed image x x̂ similar to the input x. To train the
generator to handle such cases, we generate an image with its
real age and use it to calculate a reconstruction loss as follows:

Lrec(G) = ∥x − xrec∥1 (3)

3) CYCLE-CONSISTENCY LOSS
Shifts in apparent identity are an issue in face age trans-
formation, and methods should address this in training
G. We consider that minimizing only (2) and (3) may
not suffice. To address this circumstance, we adopt a
cycle-consistency loss [39], [40], [41] in the training
objectives. By doing so, the proximity of the age-transformed
image x̂ to the input x can be determined at inference.
We lead the generator to focus on the difference between
the age-transformed and input faces using the following
expression:

Lcyc(G) = ∥x − xcyc∥1 (4)

4) PERCEPTUAL LOSS
To encourage G to generate natural and perceptu-
ally realistic results, we adopt the learned perceptual
image patch similarity LPIPS (Lper ) metric described
in [42]. For this purpose, we utilize a VGG net-
work pre-trained on the ImageNet dataset. We per-
form loss calculation by using the distance metric
between the extracted features of the real and generated
images.

VOLUME 11, 2023 137381



F. Makhmudkhujaev et al.: RAGAN++: Temporally Consistent Transformation of Faces in Videos

FIGURE 5. Qualitative age regression results produced by our method from in-the-wild videos. In each block, the first row shows the input sequence and
the second shows the output sequences.

TABLE 2. Ablation study: Performance of our proposed methods when
added to a baseline RAGAN model.

5) FULL OBJECTIVE
The following expression defines the overall objective
considered to optimize G and D:

min
G

max
D

λadvLadv + λrecLrec + λcycLcyc + λperLper (5)

where λadv, λrec,, λcyc and λper are the weights necessary to
avoid side effects of different losses in the training phase.

IV. EXPERIMENTAL SETUP
A. DATASET
We train the framework on the FFHQ dataset [27], which
is labeled for the age transformation task. This dataset
comprises images from 70,000 different identities in 10 age
groups. By following the strategy presented in [1], we prepare
training and testing datasets that omit images with low
confidence scores for the included labels. The resolution of
all the images utilized in the training phase and evaluations
is set to 256 × 256 pixels as a standard resolution used in
existing studies.

B. HYPERPARAMETERS
The proposed framework is trained on a single NVIDIA RTX
A6000 GPU (48 GB) with a batch size of 12 for 30 epochs.
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FIGURE 6. Qualitative age progression results produced by our method from in-the-wild videos. In each block, the first row shows the input sequence
and the second shows the output sequences.

FIGURE 7. Age transformation results on consecutive frames generated
by RAGAN and RAGAN++.

We utilize the well-known Adam [43] optimizer with the
following parameter settings: β1 = 0.0, β2 = 0.99, and
η = 10−4. We also incorporate R1 regularization [44] in
the training phase. In addition, the learning rate scheduler is
used for the generator and discriminator. We train the model

with λrec = 10, λcyc = 1, and λadv = 1 during the initial
2 epochs. Then, we switch λrec = 1 to help the generator
focus on image reconstruction.

In the quantitative evaluations, we evaluate the generated
images in terms of identity preservation and age modifi-
cation. For this purpose, we utilize the Frechét inception
distance (FID) [45] and Frechét video distance (FVD) [46]
metrics, which evaluate the discrepancy between distri-
butions in the image and video domains, respectively.
In addition, we also adopt the identity preservation metrics
proposed in [10]. To demonstrate the effectiveness of our
method, we apply it to a range of in the wild videos gathered
from popular publicly available content. These include
challenging scenes characterized by complex backgrounds
and considerable movement.

V. EXPERIMENTAL RESULTS
A. QUALITATIVE EVALUATION
We perform a qualitative comparison between our proposed
approach and existing methods for video data. Specifically,
we compare our results with those of Yao et al. [9], PTI [30],
and STIT [30]. A qualitative comparison is presented in
Figure 4. Our framework is able to generate visually plausible
output sequences while modifying the ages of the input faces
realistically. We consider that the results of or approach look
better than or as good as those of recent state-of-the-art
methods in terms of their subjective appearance. Overall, our
simple yet effective single framework is able to maintain
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FIGURE 8. Image-to-image translation results using RAGAN++.

intra- and inter-frame variations while transforming faces
according to target ages.

We apply the proposed method to real-world videos.
Figure 5 and Figure 6 show example of the outputs,
which is evaluated for age regression and progression
cases, respectively. The readers also might refer to the
supplementary material for the video results. As observed
from the comparison results, our proposed method succeed
in adding and removing aging-related lines, such as wrinkles
and facial hair, without affecting the consistency between
adjacent frames. However, it should be noted that we also
observed a certain limitation of the proposed method in
handling extreme poses, i.e., faces that appear in images from
other than a front-facing perspective, which is due to the
limitation of the model having been trained on a dataset that
mostly includes images in which the input person is roughly
facing the camera.

B. QUANTITATIVE EVALUATION
For a quantitative evaluation, we follow the existing work
of [10], which proposed amethod to evaluate the coherence of
generated videos. Specifically, we evaluate the performance
in terms of two metrics that consider temporally local (TL-
ID) and temporally global (TG-ID) identity preservation. The
former (TL-ID) assesses the local consistency of a video by
comparing the properties of pairs of adjacent video frames
using an identity-detection network [47]. A method with
higher TL-ID scores is more likely to yield results that are
smooth and free of significant local identity jitters or artifacts.
The latter (TG-ID) uses the same identity detection network
as well as an averaging strategy to compare all possible pairs
(regardless of adjacency) of video frames to determine their
similarity. This metric attempts to detect slow but consistent
identity drift and capture long-range coherence. For both
measures, a score of 1 wouldmean that themethod effectively
preserves the identity of the source video consistently.

Table 1 presents a comparison of the results of our
proposed framework with those of Yao et al. [9], PTI [30],
and STIT [10]. It is observed that our method achieves better
results in terms of both metrics compared to the others, which
suggests its temporal coherence. Of note, these results also
show the higher quality of the generated videos. However, the
performance of our method is slightly lower than that of STIT

in terms of TL-ID. We attribute this result to our generator
learning to introduce more local-level age transformation on
the face regions.

C. ABLATION STUDY
We begin our ablation studies by demonstrating the efficiency
of our proposed encoder in comparison to the existing
RAGAN [7]. We transform three consecutive frames to an
older age (i.e., ŷ = 55) using the existing and our proposed
methods. Figure 7 shows the input along with the transformed
frames. Although RAGAN generates an image of a person
according to the target age, face regions showing motion
are damaged or lost, specifically the mouth region. We also
calculate the vertical and horizontal projections of these
images to show how the input and transformed distributions
diverged. It is observed that the distributions of the images
output by RAGAN++ in both directions are close to those
of the input images, which suggests a need for smoother
transitions.

We conducted an ablation study to demonstrate the
effectiveness of each component of our proposed pipeline.
The purpose of this study was to validate the contribution
of different components by switching and progressively
adding them to the framework. To this end, we trained
a model with the baseline encoder and gradually added
the proposed components. Table 2 presents the effects of
replacing the baseline encoder with the proposed encoder and
generating age-transformed images by adding multi-scale
modulations only. The results show that the proposed
encoder yielded a significant improvement compared to the
baseline encoder. This improvement can be attributed to
the better representation of texture transformations such as
wrinkles, which are characteristic of older faces, due to the
smoothing process added in the temporal encoder. On the
other hand, multi-scale modulations resulted in improved age
transformations of the faces. Overall, these findings support
the effectiveness of our proposed pipeline and its components
for generating visually realistic age transformations in video
content.

D. IMAGE-TO-IMAGE TRANSLATIONS
We conducted an experiment to show the effectiveness of
our proposed framework for image-to-image translation by
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performing a simple face age transfer. Our aim was to
demonstrate how our approach could be applied in various
image translation tasks. To evaluate the quality of our
approach, we compared our results with those obtained
using the baseline RAGAN model. The qualitative results,
which are presented in Figure 8, indicate that our proposed
approach did not result in any significant reduction in the
quality of the generated images. Furthermore, we observed an
improvement in the quality of the mapping of one expression
to another when using our proposed model. This suggests
that our approach could be applied in other image translation
tasks where the quality of the mapping is an important
factor. Overall, the results of our experiment provide evidence
that our proposed framework is a promising approach for
image-to-image translation tasks.

VI. CONCLUSION
In this study, we presented a novel framework for age
transformation called RAGAN++. Our proposed method
enables the generation of visually consistent aging effects
on faces in video content while preserving the intra- and
inter-frame variations present in the videos. By utilizing a
modulation process, we were able to spatially transform the
age of the input face and reliably introduce the characteristics
of the target age in a target person’s appearance. We also
incorporated Gaussian smoothing layers into the encoder
structure to simulate smooth facial motion transitions in a
more efficient manner, resulting in temporally consistent
results. Despite being trained on image data, our single
framework was able to effectively transform face age on
video content, demonstrating its applicability to real-world
scenarios. Moreover, the visual perception of the transformed
image results of our proposed method was superior to that of
existing methods.
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