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ABSTRACT The paper proposes an approach for mining imbalanced datasets combining specialized
oversampling and undersamplingmethods. The oversampling part produces a set of non-dominated synthetic
examples using two, possibly conflicting, criteria including classification potential and the distance from
the borderline between minority and majority distances. The undersampling part is used to remove from
the majority class examples that are likely to cause mistakes and disturbances in the process of mining.
To validate the approach an extensive computational experiment has been carried. Performance of the
proposed approach has been compared with that of several leading algorithms proposed for balancing
minority and majority datasets. To assure fairness of comparisons a singular learner based on Gene
Expression Programming (GEP) has been used in all cases. Experiment results confirmed that the proposed
approach outperforms other methods investigated in the experiment.

INDEX TERMS Dominance relation, gene expression programming, imbalanced datasets, oversampling,
undersampling.

I. INTRODUCTION
Many real-world problems, such as fraud detection, disease
diagnosis, and rare event prediction, involve imbalanced
datasets. Therefore, addressing imbalanced datasets is essen-
tial to create practical and effective machine learning solu-
tions for these applications. Neglecting imbalanced datasets
can lead to biased models, where the minority class is often
misclassified or ignored. Addressing imbalances is crucial for
ensuring fairness and preventing discrimination in machine
learning models. In critical domains like healthcare and
finance, where the cost of false positives and false negatives
can be high, addressing imbalanced datasets is essential
to minimize errors and make reliable predictions.. Models
trained on imbalanced data without addressing the imbalance
may not perform well, as they tend to be biased toward
the majority class. By addressing the imbalance, one can
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improve the model’s performance and its ability to generalize
new, unseen data. In scenarios where rare events are of
significant interest, like identifying defects in manufacturing
or detecting security breaches, mining imbalanced datasets is
essential to capture these infrequent occurrences effectively.
In conclusion, mining imbalanced datasets is crucial to
building effective, unbiased, and practical machine-learning
models in various real-world scenarios. In this paper we
propose a novel approach for mining two-classes imbalanced
datasets, denoted further as DOMR. The approach uses
both - oversampling and undersampling algorithms. The
oversampling part is used for generating a set of non-
dominated synthetic examples extending the minority class
data. Oversampling aims at producing synthetic minority
examples using two possibly conflicting criteria including
real-valued classification potential as defined in [18], which
should be maximized and, the distance from the borderline
between minority and majority instances, which should be
minimized. The undersampling part is used to remove from
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the majority class data examples that are likely to cause
mistakes and disturbances in the process of mining. Besides,
undersampling helps in reducing computational complexity
of the approach.

The proposed approach has been validated in an extensive
computational experiment. In the experiment we have com-
pared our method with several other specialized approaches
which, according to our knowledge, are known to assure
high quality performance when mining imbalanced datasets.
As far as we know no other oversampling/undersampling
procedure published in the recent years, based on a single
classifier, has outperformed the best method from our set
of reference methods. The main contributions of the paper
include:

• Selecting and describing in a unified way a set of
top-performing balancing techniques based on over-
sampling and undersampling, later used as reference
algorithms.

• Proposing a novel technique for balancing imbalanced
datasets based on two criteria – classification potential of
the synthetic instance, and its average distance to nearest
neighbors from majority class.

• Proposing a method for evolving and selecting synthetic
examples based on the criterion of the non-domination
level.

• Validating experimentally the proposed approach.

The rest of the paper is organized as follows. Section II
offers description of the related work. In this section we
discuss approaches to imbalanced data mining which are
later used for comparisons in the reported computational
experiment. Section III contains a detailed and formal
description of the proposed method. Section IV reports on
the computational experiment carried out to validate our
approach. Finally, Section V contains conclusion and ideas
for future research.

II. RELATED WORK
The existing body of knowledge and methods specializing
in mining imbalanced data has been reviewed in several
papers including for example [7], [10], and [19]. Algorithms
designed for mining imbalanced data often use oversampling,
undersampling, or a combination of both. Both techniques
require changes in the data distribution aiming at balancing
available datasets prior to inducing learners, and belong to
the data-level methods (see [19]). Oversampling algorithms
which work by increasing the number of the minority class
examples are one of themost effectivemethods for addressing
the class imbalanced problem. The idea is to produce a
set of the, so-called, synthetic minority class examples that
subsequently can be used to balance the dataset which
is to be mined. Oversampling can be also coupled with
undersampling techniques working by reducing the number
of majority class instances.

According to [15], main categories of the oversampling
techniques cover the following: neighborhood-based, density
and probability-based, fuzzy and rough sets-based, and
structure, and feature-based approaches. The most popular
neighborhood-based oversampling algorithms are SMOTE
and its numerous extensions. SMOTE proposed in [4] uses
only minority class examples. SMOTE works by choosing
instances being close in the feature space, drawing a line
between them in the feature space, and locating a new
synthetic example at a point along that line. Among the most
popular extensions of SMOTE one can mention Borderline-
SMOTE (B-SMOTE) [11], Safe-Level SMOTE (SL SMOTE)
[3], Synthetic Minority Oversampling Method with Adaptive
Qualified Synthesizer Selection (ASN SMOTE) [28], and
a Feature-Weighted Oversampling Approach (FW-SMOTE)
[21]. Neighborhood-based approaches have a subcategory
known as clustering-based oversampling. Examples include
[2] and [23].

Density-based algorithms concentrate on identifying
regions of similar density for the minority class and locate
synthetic examples in areas dense with minority class data.
Examples include probability density function estimation
[9], and Gaussian-SMOTE [24]. Some disadvantages of
the density-based algorithms like relying only on minority
class data are alleviated by Oversampling with the Majority
(SWIM) proposed in [26]. K-Nearest Neighbor Oversam-
pling approach (KNNOR) proposed in [13] considers the
relative density of the entire population for generating
synthetic examples.

Methods based on fuzzy and rough sets theory are expected
to be suitable to deal with cases of noisy data. Examples
of the approach include an oversampling method using the
neighborhood rough set theory (RSFSAID) [5], and fuzzy
C-means clustering (FCM-EBRB) [8].

Among structure and feature-based oversampling well-
performing approaches use kernel functions [20], [22],
[25]. Another effective approach belonging to the dis-
cussed category is using the concept of radial based
functions [17], [18].

As can be seen from the above brief review, the body
of knowledge available for dealing with imbalanced data
is constantly growing and, over the years, becomes more
advanced and mature, assuring better performance when
dealing with real problems. In what follows the algorithms
used in the subsequent validating experiments are described
in a unified way. The first one is SMOTE which is
one of the most popular class imbalance learning since
it was first introduced by Chawla et al. [4]. The idea
is to oversample the data from the minority class by
generating synthetic instances using linear interpolation
of minority instances and their neighbors, details shown
in Algorithm 1.

In case of ADASYN [12], which is based on SMOTE, the
use of minority instances is differentiated by weights which
decide how many times each minority instance is used. More
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Algorithm 1 SMOTE
Require: data from minority class minC , parameter n -

number of new instances, parameter k - number of neighbors
Ensure: extended minority exMin
exMin← minC
for i = 1 to n do

select random minority instance x ∈ minC
select random k-neighbor x ′ ∈ minC of x
generate a new instance xnew = x + δ(x ′ − x), where
random δ ∈ (0, 1)
append xnew to exMin

end for
return exMin

synthetic data is generated for minority class examples that
are harder to learn that is have more majority instances in
their neighborhood, see Algorithm 2.

Algorithm 2 ADASYN
Require: data fromminority classminC , data from majority
class majC , parameter n - number of new instances,
parameter k - number of neighbors

Ensure: extended minority exMin
exMin← minC
for i = 0 to |minC| do
x ← i-th instance from minC
1x ← number of k-neighbors of x from the majority
class
rx ← 1x/k {normalize rx to r ′x}
gx ← r ′x ·n {gx decides how many times x will be used}
for i = 0 to gx do
zx ← random k-neighbor of x
x̄ ← x + (zx − x) · δ, random δ ∈ (0, 1)
append x̄ to exMin

end for
end for
return exMin

When using LAMO [27] only so-called boundary instances
take part in generation of synthetic minority instances. They
are sampling seeds identified according to the distribution
of majority and minority instances in the neighborhood. The
local distribution of each seed is examined according to
the distance to the nearest minority and majority instance.
Two parameters k1, k2, defining respectively, the number of
neighbors for minority and majority instances, are used. For
x ∈ minC let NMin(x) stand for the set of k1-neighbors of x,
similarly for x ∈ majC the k2 neighbors of x define NMaj(x).
Algorithm 3 describes the first step of LAMO which allows
to select minority instances which are borderline ones. In the
second step Gaussian Mixture Model is applied to model the
probability density function for sampling seeds from Border .
Finally, similarly as in SMOTE, applying linear interpolation
toBorder , newminority instances are generated.More details
are in [27]. Radial-based approach to oversampling RBO,
introduced in [18], makes use of the potential estimation to

Algorithm 3 LAMO - Generating Borderline Instances
Require: data fromminority classminC , data from majority

class majC , parameter k1 - number of neighbors for
instances from minC , parameter k2 - number of neighbors
for instances from majC ,

Ensure: Border - border line instances from minority class
Sbormaj ← {q : q ∈ majC & q ∈ NMin(x) & x ∈ minC}
Sbormin ← {x ∈ minC : x ∈ NMax(q) & q ∈ Sbormaj}

for x ∈ Sbormin do
DISmin(x) = dist(x, zxmin) where zxmin is the closest
minority instance
DISmaj(x) = dist(x, zxmaj) where zxmaj is the closest
majority instance
DIFF(x) = |DISmaj(x)− DISmin(x)|

end for
DIFF ← {DIFF(x) : x ∈ Sbormin}

µ(DIFF)← mean of DIFF
σ (DIFF)← standard deviation of DIFF
Border ← {x ∈ Sbormin : DIFF(x) ≤ µ(DIFF) +
3σ (DIFF)}
return Border

generate new minority instances. The potential of instance x
is defined as

8(x,majC,minC, γ ) =
∑

y∈majC

e−(dist(x,y)/γ )
2)

−

∑
y∈minC

e−(dist(x,y)/γ )
2) (1)

where γ is a parameter which represents the spread of radial
based function. In the experiments Algorithm 4 was used.
CSMOUTE introduced in [16] is a combined method using

Algorithm 4 RAD-Radial-Based Oversampling
Require: data from minority class minC , data from majority

class majC , parameter n - number of new instances, param-
eter it - number of iterations, p-probability of interrupting
iterations, step - optimization step

Ensure: extended minority exMin
exMin← minC
for i = 1 to n do

select random minority instance x ∈ minC
for j = 1 to it do
dir ← random basis vector of size equal to number of
attributes
sign← random value from {−1, 1}
xnew← x + dir · sign · step
if |φ(xnew,majC,minC, γ )| < |φ(x,majC,minC, γ )|
then
x ← xnew

end if
stop iterations with probability p

end for
append xnew to exMin

end for
return exMin
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SMOTE for oversampling and SMUTE for undersampling.
It is shown in Algorithm 5.

Algorithm 5 CSMOUTE- Combined Undersampling and
Oversampling
Require: data fromminority classminC , data from majority
class majC , parameter k - number of neighbors, parameter
r-ratio of data balancing

Ensure: balanced data set
m← |majC| − |minC| { m defines the size difference}
n← m · r {n synthetic instances are added to minC}
apply SMOTE to minC , majC , n, k to output exMin
{perform SMUTE to undersample majC}
majN ← majC
redMaj← ∅
for i = 1 to n do
select random instance x1 ∈ majN
select random k-neighbor x2 ∈ majN of x1
xnew← x1 + δ · (x2 − x1), random δ ∈ (0, 1)
delete x1, x2 from majN
append xnew to redMaj

end for
return exMin ∪ redMaj

The algorithm FW-SMOTE [21] is another method based
on SMOTE. The main assumption is that when applying
interpolation the importance of attributes should be varied
by the introduction of weights. First, Fisher score of each
attribute is calculated as the difference of means of the
attributes in each of two classes and normalized by the
standard deviation:

FS(att) =
|µ

maj
att − µmin

att |

(σmajatt )2 + (σminatt )2
(2)

where µ
maj
att and µmin

att are the mean values of the attribute att
in, respectively, majority and minority data and similarly for
σ
maj
att , σminatt being the standard deviations. The attributes are

sorted in the descending order of Fisher score FS. Assuming
sorted order of attributes, weights are calculated as:

weight(att) = (
att
N

)α − (
att − 1
N

)α (3)

for att = 1, . . .N , where N is the number of attributes, α is
an input parameter. The distance between two instances x, y
of size N is defined as weighted Minkowski distance, which
is

dist(x, y) = (
N∑

att=1

weight(att) · |xatt − yatt |p)1/p (4)

where p is an input parameter.
Recently introduced SMOTE-RkNN [29] makes use of

reverse k-nearest neighbors. As the authors claim, the
algorithm identifies noise based on probability density rather
than local neighborhood information. The algorithm starts

Algorithm 6 FW-SMOTE
Require: N -number of attributes, data from minority class
minC , data from majority class majC , parameter n - number
of new instances, parameter k - number of neighbors,

Ensure: extended minority exMin
for att = 1 to N do

calculate Fisher score FS(att) using (2)
end for
sort attributes in descending order according to Fisher score
for att = 1 to N do

calculate weight(att) using (3)
end for
for i = 1 to n do

select random minority instance x ∈ minC
set k- nearest neighbors of x usingMinkowski distance (4)
select random k-neighbor xn of x
generate a new instance xnew = x + δ(xn − x), where
random δ ∈ (0, 1)
append xnew to exMin

end for
return exMin

with the application of SMOTE to balance the dataset. Then
separately for each of two classes, the number of reverse
k-nearest neighbors for each instance is counted. Finally, the
probability density of an instance within its class is compared
with that in the other class and this allows to estimate whether
an instance (both majority and minority) is noise, or not. The
instances classified as not noise are appended to the final
dataset. It is shown as Algorithm 7.

III. THE PROPOSED APPROACH
The proposed approach, named DOMR, is an extension of
the algorithm proposed in the earlier work of the authors
[14], in particular a new scheme for undersampling part has
been used. The approach uses domination relation between
instances and genetic algorithms to oversample minority
objects in an iterative process. The relation of domination
≺ defined for any two instances (rows) makes use of two
criteria. Assume majority objects majC , minority objects
minC fixed. The first criterion makes use of potential as used
in (1). For any two instances x, y we write:

x ≺1 y⇐⇒φ(x,majC,minC, γ )<φ(y,majC,minC, γ )

(5)

The second criterion employs the average distance of an
instance to 25% of nearest neighbors from the majority class.
For a fixed instance x and fixed majority dataset majC let
{x1, . . . , xn} stand for the 25% of nearest neighbors of x from
majC . Define:

distMajority(x,majC) =
n∑
i=1

dist(x, xi)/n

x ≺2 y⇐⇒distMajority(x,majC)<distMajority(y,majC)

(6)
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Algorithm 7 SMOTE - RkNN
Require: D = majC ∪ minC - initial dataset, parameter k -
number of neighbors, control parameter λ

Ensure: balanced dataset BD
perform SMOTE to balance dataset to Dn ⊃ D
for i = 1 to |Dn| do
for j = 0, 1 do

ξ j(i)← number of reverse k-nearest neighbors of i-th
instance from class j

end for
for j = 0, 1 do

ξ
j
← normalized ξ j

end for
BD← ∅
for i = 1 to |Dn| do

if i-th instance in class 0 then
if ξ

0
(i) < λ · ξ

1
(i) then

append i-th instance to BD
else if ξ

1
(i) < λ · ξ

0
(i) then

append i-th instance to BD
end if

end if
end for

end for
return BD

Finally, x dominates y iff

x ≺ y⇐⇒ x ≺1 y & x ≺2 y (7)

Balancing the dataset makes use of a genetic algorithm
where the objects of the population are minority synthetic
instances and the fitness function is defined with the help
of non-dominating levels. For the population P a fast-
non-dominated-sort algorithm from [6] is applied to define
non-domination level of each member of the population.
To do that, for each p ∈ P three values are calculated: Sp - the
set of population members dominated by p, np - domination
count, which is the number of population members that
dominate p, rank(p) - the level of non domination of p, and the
value of the fitness function at the same time. The details of
calculating values of non-domination level are in Algorithm
8.

Genetic algorithm uses mutation and crossover operations.
Assume that data contain m attributes. Mutation operation is
defined in a standard way, that is for a population member x,
attribute number att ≤ m is randomly chosen, a random value
atV from the domain of att is drawn and a new population
member x̄ is generated which is equal to x except the value
of att which is replaced by atV .
As for the crossover two versions are used. In case of

one-point crossover, for two members x = x1, . . . , xm
and y = y1, . . . , ym of the population a random cutting
place is chosen 1 < l ≤ m and new members x̄ =
x1, . . . , xl−1, yl, . . . , ym and ȳ = y1, . . . , yl−1, xl, . . . , xm

Algorithm 8 Calculation of Non Domination Levels
Require: domination relation for members of the population
P

Ensure: non domination levels {rank(p) : p ∈ P}
F1 = ∅

for all p ∈ P do
Sp = ∅
np = 0
for all q ∈ P do

if p ≺ q then
Sp = Sp ∪ q

else if q ≺ p then
np+ = 1

end if
end for
if np = 0 then
rank(p) = 1
F1 = F1 ∪ p

end if
end for
i = 1
while Fi ̸= ∅ do
Q = ∅
for all p ∈ Fi do
for all q ∈ Sp do
nq = nq − 1
if nq = 0 then
rank(q) = i+ 1
Q = Q ∪ q

end if
end for

end for
i = i+ 1
Fi = Q

end while
return values of rank function

are generated. In case of two point crossover, two cutting
places 1 < l < p ≤ m are drawn and new
members are x̄ = x1, . . . , xl−1, yl, . . . , yp−1, xp, . . . , xm and
ȳ = y1, . . . , yl−1, xl, . . . , xp−1, yp, . . . , ym are added to the
population. After each application of the genetic algorithm,
those objects of the population which are on the first level of
non-domination are attached to the newminority dataset. The
details of the genetic algorithm to balance the dataset are in
Algorithm 9.

To reduce the size of the majority class instances the
algorithm shown as Algorithm 10 was used. It starts with
generating the centroid of minority instances which is then
used to delete those majority instances which are closest.

The overall architecture of the proposedmethod for mining
imbalanced datasets based on dominance relation is shown
as Algorithm 11. In Figure 1 the workflow of the proposed
approach is shown.
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Algorithm 9 DOM-Balancing the Dataset With Domination
Relation
Require: majC majority dataset, minC- minority dataset, n
- balancing parameter

Ensure: extended minority dataset newMin
newMin← ∅
population ← randomly generated n rows from minority
class
while |newMin| < n do
{prepare domination matrix}
for all x, y ∈ population do
domin(x, y)← x ≺ y

end for
using domin determine {rank(x) : x ∈ population}
(Algorithm 8)
newMin← newMin ∪ {x ∈ population : rank(x) = 1}
for all x ∈ population do
fitness(x)← rank(x)

end for
use fitness and roulette to generate newPopulation
population ← apply mutation and crossover to
newPopulation

end while
return newMin

Algorithm 10 Undersampling With Minority Class Centroid
Require: data frommajority classmajC , data from minority
class minC , parameter s - size of reduced majority class.

Ensure: reduced majority class redMaj ⊂ majC of size s.
calculate centroid CN of minC
define distances of CN to majority instances

DIST = {dist(x,CN ) : x ∈ majC}

sort DIST in ascending order SORT = {d1, . . . , d|majC|}
keep in reduced majority class instances whose distances
are in the initial s segment of DIST

redMaj = {x ∈ majC : dist(x,CN ) ≤ ds}

return redMaj

A. COMPUTATIONAL COMPLEXITY ANALYSIS
To estimate the computational complexity of the proposed
approach we use the following observations:
• as follows from [6], establishing fitness of the population
members requires O(N 2), where N is population size;
since after each application of genetic algorithm at least
one instance is added to the new minority set, therefore
at most N iterations are performed and the complexity
of Algorithm 9 is O(N 3),

• in case of Algorithm 10, the calculation of distances of
majority instances to the centroid requires O(M ) steps,

Algorithm 11 Proposed Approach
Require: dataset D = majC ∪ minC , rL- reduction level.
Ensure: performance measures F1, AUC, G- geometric

mean.
redMaj← result ofAlgorithm 10 onD, reducing majority
class size by rL
n ← |redMaj| − |minC| {n -number of data to balance
majority and minority class}
newMin ← result of Algorithm 9 applied to dataset
redMaj ∪ minC , with parameter n
D← redMaj ∪ minC ∪ newMin { D is balanced dataset}
perform 5-CV scheme of GEP classification on D
return performance measures F1, AUC, G-geometric
mean

FIGURE 1. The workflow of the proposed approach.

whereM is the number ofmajority instances, and sorting
requires O(M logM ) steps,

• since N is less than the size of the minority data, both
N andM are bounded by the size of the dataset, and the
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complexity of Algorithm 11 is O(D3), where D is the
size of the considered dataset.

IV. COMPUTATIONAL EXPERIMENT
A. DATASETS
To validate the proposed approach we have carried out an
extensive computational experiment. It involved 70 imbal-
anced datasets from Keel-Dataset Repository [1]. Main
characteristics of the discussed datasets are shown in Table 1.

B. EXPERIMENT PLAN
The performance of the proposed approach has been
compared with the performance of several state-of-the-
art oversampling methods and, additionally, one ‘‘classic’’
technique - ADASYN. Details of the above algorithms are
given in the Related Work section. The notation used in
further comparisons consists of three parts – acronym of the
method, letter R, present only in case the proposed majority
class reduction algorithm has been used, and symbol of
the performance metric used. Thus, for example, notation
‘‘ADAR G’’ refers to value of the geometric mean produced
by the ADASYN algorithm supplemented by the proposed
majority class data reduction algorithm.

All subsequently reported experiment results refer to
averages calculated over 30 results obtained by running
6 independent repetitions of the 5-CV scheme. In the
experiment, for each oversampling method, three perfor-
mance measures including F1 metric, area under the receiver
operating characteristic curve (AUC), and geometric mean
(G) have been calculated. Besides, for each oversampling
method and each performance measure results have been
obtained for two variants – with and without the proposed
algorithm for majority class data reduction. When the
majority data reduction procedure is applied we use the
same level of reduction for all considered methods as in the
DOMR. Altogether, results of 42 experiment configurations
with 70 cases each, have been produced and, subsequently,
reported.

To assure fairness of the performance comparison between
the investigated methods we have decided to use a single
classifier with the default settings to perform the classifi-
cation task after the respective oversampling/undersampling
method has produced balanced datasets with equal number
of examples in the minority and majority classes. As the
classifier, we selected the Gene Expression Programming
(GEP) technique producing binary classifiers in the form of
expression trees. Our motivation for using GEP is two-fold.
Firstly, GEP is known to produce good classification results
when used as a classifier. Secondly, GEP produced classifiers
in the form of expression trees are easily explainable.

C. PARAMETERS
All investigated methods have been implemented by the
authors in Java using the Eclipse platform. The software runs

TABLE 1. Datasets used in the reported experiments.
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under the open source software license and is available from
the authors at request.

In the case of the method for mining imbalanced datasets
based on dominance relation the algorithm is parameter-free
and returns the required number of synthetic examples to
balance majority and minority classes. Parameters for the
remaining methods have been set at values used or suggested
by their authors in original papers.

Apart from using 7 balancing techniques described in
Section III we have decided to consider additionally the
possibility of reducing the number of themajority class exam-
ples. Such a reduction influences both – the computational
time required by a balancing technique and the subsequent
performance of the classifier used. From the computational
complexity analysis, it is clear that reducing the number
of examples in the majority class set of examples reduces
the computational time needed to balance minority and
majority sets. The influence of reducing the majority class
size on subsequent classifier performance is not, however,
straightforward. A preliminary study carried out to identify
the relation between the reduction level of the majority set
has shown that in a majority of cases, a reasonable reduction
does not influence negatively the classifier performance and
may even improve it. The above claim is also supported
by the results of the computational experiment reported in
this paper. Based on the preliminary study results we have
decided to use the following heuristic rules for controlling
the majority set reduction level when using all considered
balancing techniques for all datasets.

• 10% reduction for problems with the overall number of
instances (#inst.) smaller than 300.

• 20% or 30% reduction for problems with 300 < #inst.
< 600.

• 30% or 40% reduction for problems with 601 < #inst.
< 1200.

• 50% or 60% reduction for problems with 1201 < #inst.
< 1800.

• 70% or 80% reduction for problems with 1801 < #inst.
< 2500.

• 80% or 90% reduction for problems with #inst. greater
than 2501.

The sequence of actions performed in the process of solving
the imbalanced dataset mining problem with the majority set
reduction includes the following three steps:

1) Using the proposed heuristics rules and Algorithm 10
reduce the majority set size.

2) Perform data balancing using one of the considered
techniques.

3) Use Gene Expression Programming to mine the
balanced dataset.

Gene Expression Programming classifier used in the experi-
ment requires setting the value of several parameters. In the
experiment, for all considered methods and variants, the GEP
classifier has been used with the following parameter value
settings: population size – 200; number of iterations – 200;

TABLE 2. Experiment results – F1 performance measure.

TABLE 3. Experiment results – AUC performance measure.

probabilities of mutation, RIS transposition, IS transposition,
1-point and 2-point recombination – 0.5, 0.2, 0.2, 0.2, 0.2,
respectively. For selection the roulette wheel method has been
used.

D. EXPERIMENT RESULTS
In Tables 2 – 4 experiment results for each considered
performance measure are shown. Results have been sorted
according to mean performance measure value from the
best to the worst one. Apart from the respective mean
value we show average rank and standard deviation of
results produced by considered methods. To check whether
there are significant differences among results produced by
different methods we use the Friedman ANOVA test. The
null hypothesis is that there are no such differences. The
respective values of the Chi-square statistics (N = 70, df =
13) and p-values are shown in Table 5.

Data from Table 5 allow to observe that for each
performance measure null hypotheses do not hold and there
are significant differences between results produced by
different methods at significance level of 0.05.

Since the Friedman test does not tell which of the
investigated methods contributes most to differences among
results we have also performed the Nemenyi test to determine
exactly which groups of methods produce statistically signif-
icant differences of means. The Nemenyi test is a post-hoc
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TABLE 4. Experiment results – G performance measure.

TABLE 5. Friedman test results.

TABLE 6. Nemenyi post hoc test results for F1 performance measure.

test that compares multiple models after a significant result
from Friedman’s test. The null hypothesis for Nemenyi is
that there is no difference between any two methods, and
the alternative hypothesis is that at least one pair of methods
performs differently. The test proved that in the investigated
case, the null hypothesis has to be rejected and the alternative
hypothesis holds true. Results of the Nemenyi test are shown
in Tables 6 – 8. In these tables relations between performance
of each pair of methods are denoted by 0 or 1. Relation 0 tells
that both methods produce statistically similar results, while
relation 1 tells that the respective method from column #
produces statistically different means. The order of methods
in Tables 6 – 8 corresponds strictly to the order of methods in
Tables 2 – 4.

E. EXPERIMENT RESULTS ANALYSIS
Data shown in Tables 2 - 4 allow to observe that a clear winner
among consideredmethods and their variants is oversampling
for mining imbalanced datasets based on dominance relation
(proposed in this paper) and denoted DOMR. The above
finding is true for all three performance measures considered.

TABLE 7. Nemenyi post hoc test results for AUC performance measure.

TABLE 8. Nemenyi post hoc test results for G performance measure.

In the case of F1 measure, DOMR F1 has obtained
mean score over 70 considered datasets of 0.962 with the
Standard Deviation of results at 0.037 and the average
rank equal to 11.42 out of 14.00 possible. The second best
performer has been DOM F1 with scores 0.946, 10.81, and
0.053, respectively. The third best performer has been the
CSMR F1 with scores 0.93, 10.87, and 0.055. The worst
performer, out of 14 considered techniques, has been ADA
F1. In terms of the AUC measure two leading methods have
not changed with the DOMR AUC obtaining a mean scores
of 0.94, 11.71, and 0.054 followed by the DOM AUC with
scores 0.9368, 11.11, and 0.055.The worst performer for the
considered measure has been LAM AUC. The picture has
not changed much in the case of G measure. Again DOMR
G and DOM G have been leading with LAM G offering
the worst performance Satisfactory performance, in addition
to the leaders, with mean F1 score above 0.9 obtained in
the reported experiment, has been achieved by RAD F1,
ADA F1, CSM F1, FWS F1 and RNN F1 methods. Similar
group closely following the leaders with the AUC measure
above 0.9 have consisted of RNNR, ADAR, RADR, CSMR,
FWSR, RAD, and RNN. Similar group of methods with
satisfactory performance above 0.9 for the G performance
measure, included RADR, RNNR, ADAR, CSMR, FWSR,
and RAD. For the F1 performance measure, the Nemenyi
post hoc test allows us to draw the following conclusion
true at the significance level of 0.05: DOMR, CSMR, and
DOM perform significantly better than ADA, CSM, FWS,
RNNR, LAMR, FWSR, RADR, LAM, and ADAR. For the
AUC performance measure the Nemenyi post hoc test allows
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us to draw the following conclusion true at the significance
level of 0.05: DOM and DOMR perform significantly better
than ADAR, RADR, CSMR, FWSR, RAD, RNN, CSM,
ADA, FWS, LAMR, and LAM. For the G performance
measure, the Nemenyi post hoc test allows us to draw the
following conclusion true at the significance level of 0.05:
DOM and DOMR perform significantly better than ADAR,
CSMR, FWSR, RAD, CSM, RNN, ADA, FWS, LAMR,
and LAM. Overall, DOMR, and DOM outperform in terms
of the number of wins among all the remaining balancing
techniques considered in this paper.

The reported experiment has also confirmed that the
proposed approach for reducing the number of examples
in the majority set is usually advantageous considering the
classification performance.

V. CONCLUSION
The main contribution of the paper is proposing and
validating an approach for mining two classes imbalanced
datasets, based on oversampling where non-dominated syn-
thetic examples are generated, and undersampling of the
majority class examples. Non-dominated synthetic examples
are generated using two criteria - real-valued classification
potential, and distance from the borderline between minority
and majority instances, while majority class examples are
reduced by discarding those which are closest to the centroid
of the minority class data.

The proposed method has been validated in an extended
computational experiment with 70 examples from the Keel
repository of imbalanced datasets serving as the testbed.
In the experiment, the performance of our method named
DOMR has been compared with the performance of 6 other
oversampling approaches known to offer good performance
when dealing with imbalanced datasets. DOMR, in nearly
all cases, outperformed statistically all other methods. The
finding is true for each of the 3 considered performance
metrics including the F1 measure, the area under the receiver
operating characteristic curve, and the geometric mean.
In the subsequent ranking of methods, the version of the
proposed approach without the undersampling part takes the
second place followed by Combined Synthetic Oversampling
and Undersampling Technique, Feature Weighted Synthetic
Minority Oversampling Technique, and Hybrid Resampling
Method based on SMOTE and reverse k-nearest neighbors.
The last two methods on 4th and 5th place depending on the
performance measure used.

Another important finding concerns the beneficial role of
the proposed undersampling algorithm. In a vast majority
of cases supplementing the original oversampling method
with the proposed undersampling algorithm brings an
improvement in performance providing the reduction is set
at a moderate level.

Directions of future research could include an extension
of the two-classes version into multiple classes imbalanced
dataset mining. We would also like to investigate the
influence of using different learners from the performance

point of view. Another possible direction of research is
considering more than two criteria when producing synthetic
examples within an oversampling process.

In this paper, we did not study numerous possible
extensions of the proposed approach. Applying specialized
techniques for feature selection, engineering, as well as
ensemble methods like bagging, boosting, or stacking could
bring further benefits in terms of learner performance.
Techniques for dealing with missing data could be also used
when needed. Such extensions would not, however, change
the core of the proposed method.
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