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ABSTRACT Myocardial Infarction (MI), commonly known as a heart attack, is a type of cardiovascular
disease characterized by the death of heart muscle cells. This condition occurs due to the blockage of blood
vessels around the heart, inhibiting blood flow and causing an insufficient oxygen supply to the body.
Typically, cardiovascular disease tests involve electrocardiogram (ECG) and photoplethysmogram (PPG)
signals. In recent years, researchers have explored the application of Phonocardiogram (PCG) signals for
cardiovascular detection due to their non-invasive, efficient, accessible, and cost-effective nature. While
deep learning has been successful in object detection in digital images, its application to PCG signals for
heart attack detection is rare. This study bridges this gap by introducing an enhanced technique called the
Myocardial Infarction Detection System (MIDs). In contrast to previous deep learning research, this study
employs a transfer learning algorithm as a classifier for MI feature datasets. Feature extraction is performed
in segments to obtain more accurateMI features. Six feature extraction methods and transfer learning models
based on Convolutional Neural Networks (CNN) using the VGG-16 architecture were selected as the primary
components for MI identification. Additionally, this study compares these models with other CNN transfer
learning models, such as VGG-19 and Xception, to assess their performance. Two experimental scenarios
were conducted to evaluate MIDs performance in MI detection: experiments without hyperparameter tuning
and with hyperparameter tuning. The results indicate that MIDs with CNN (VGG-16) after tuning exhibited
the highest detection performance compared to other transfer learning CNN models, both with and without
tuning. The accuracy, specificity, and sensitivity of MIDS detection with this configuration were 96.7%,
96.0%, and 97.4%, respectively. This research contributes to the development of an enhanced MI detection
technique based on PCG signals using a transfer learning CNN.

INDEX TERMS Myocardial infarction, PCG, classification, deep learning.

I. INTRODUCTION
According to data from the Indonesian Ministry of Health,
approximately 4.2 million individuals in Indonesia suffer

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

from cardiovascular diseases. Furthermore, information from
the World Health Organization’s official website estimated
that in 2019, about 17.9 million people globally lost
their lives due to heart diseases, with 85% of these
cases attributed to heart attacks or strokes. These statistics
underscore the critical importance of early detection and
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management of heart diseases to mitigate their serious health
impacts.

Research conducted by Khan et al. [1] explains that a heart
attack occurs when the supply of oxygen carried by the blood
to the heart is disrupted due to the narrowing of blood vessels.
Heart attacks can also lead to other cardiovascular diseases,
given the close relationship between various cardiovascular
disorders. For example, Coronary Artery Disease (CAD)
is closely linked to heart attacks. CAD is caused by the
narrowing of blood vessels due to plaque buildup on the
artery walls. If the plaque continues to grow and eventually
ruptures, it can block blood flow in the arteries, triggering a
heart attack [2]. Understanding these relationships is crucial
for preventing and managing related diseases.

Traditionally, cardiovascular disease tests have been
conducted using electrocardiogram (ECG) and photoplethys-
mogram (PPG) signals [3]. However, recent research has
explored the use of phonocardiogram (PCG) signals as
an alternative for detecting cardiovascular problems. PCG
signals, obtained from recording heart sounds, have attracted
researchers’ attention due to their noninvasive nature, effi-
ciency, ease of use, and affordability [4].
Recent advancements in deep learning models have led

to significant progress in the detection and management
of cardiovascular diseases within the realm of biomedical
engineering. For example, the iHBP-DeepPSSM model uses
deep learning methods to accurately find hormone-binding
proteins (HBPs) [5]. Similarly, researchers have developed
intelligent computer-aided diagnosis (CAD) systems based
on PCG signal analysis to recognize cardiovascular diseases
within the field of biomedical engineering. For instance,
Latif et al. [6] utilized a Recurrent Neural Network (RNN)
deep learning model to detect abnormal heartbeats on
PCG signals, achieving an accuracy of 98%. Additionally,
Li et al. [4] predicted Coronary Artery Disease (CAD) on
PCG signals using a Convolutional Neural Network (CNN)
and a Bidirectional Gated Recurrent Unit (GRU), achieving
an accuracy of 95.62%.

However, research on MI detection in PCG signals
is still relatively rare. We found only two studies by
Khan et al. [1], Amini et al. [7] that classified MI on PCG
signal. Khan et al. [1] used an ensemble subspace KNN
model as a classifier, achieving an accuracy of 94.9%.
In contrast, Amini et al. [7] used Recurrent Neural Net-
work (RNN) as a classifier and achieving accuracy of 95.3%.
Therefore, it can be concluded that there has been no
research using transfer deep learning to detect MI in PCG
signals.

Considering the scarcity of studies focusing on MI
detection in PCG signals, this research proposes a new
technical innovation: a Myocardial Infarction Detection
System (MIDs) specifically designed for detecting MI in
PCG signals. Unlike many previous deep learning studies,
this research employs a transfer deep learning algorithm
as a classifier, while the process of MI feature extraction

is conducted in segments. The objective is to obtain more
accurate and relevant MI characteristics, enhancing the
system’s ability to detect MI in PCG signals.

Six feature extraction methods and a CNN-based transfer
deep learning model with a VGG-16 architecture have been
selected as the main components of MIDs. Furthermore, this
research compares the performance of these components with
other CNN transfer deep learning models, such as VGG-19
and Xception.

The research evaluates theMIDs through two experimental
scenarios. First, the MIDs experiment with transfer deep
learning without tuning measures the models’ performance
in their native state without additional adjustments. Second,
the MIDs experiment with hyperparameter tuning involves
adjusting parameter values in the model architecture to
enhance the model’s performance in detecting MI.

This comparative analysis aims to provide a better
understanding of how CNN transfer deep learning models
behave in detecting MI and determine whether additional
adjustments, such as hyperparameter tuning, can improve the
models MI detection performance. In conclusion, the main
contributions of this study can be summarized as follows:

• Proposed an enhanced Myocardial Infarction Detection
System (MIDs).

• Performed segmentation techniques between the fea-
ture extraction and classification stages in deep
learning.

• Used six feature extraction methods and a CNN-based
transfer deep learning model.

• Compared the performance of MIDs components with
other CNN transfer deep learning models

• Evaluated MIDs through two experimental scenarios:
without tuning and with hyperparameter tuning.

These contributions collectively advance the field of MI
detection in PCG signals and provide a foundation for
improved accuracy and relevance in identifying myocardial
infarction, which can have significant implications for digital
healthcare.

II. RELATED WORKS
Cardiovascular diseases stand as the leading cause of
global mortality, responsible for approximately 17.9 million
deaths in 2017 [8]. Among these diseases is MI. Extensive
research has been conducted onMI detection, primarily using
Electrocardiogram (ECG) signals. ECG is a signal derived
from the myocardium’s electrical activity [9]. However, the
utilization of other signals remains rare, particularly in the
context of MI detection.

Sridhar et al. [10] conducted research on MI detection
in ECG signals using non-linear features in combina-
tion with the Support Vector Machine (SVM) classifier.
Their study achieved a sensitivity of 98.8%, a specificity
of 93.8%, and an accuracy of 97.9%. In a different
approach, Fatimah et al. [11] proposed MI detection in
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single-lead ECG by employing four classifiers: Ensemble
Subspace k-Nearest Neighbors (KNN), k-Nearest Neigh-
bors (KNN), Support Vector Machine (SVM), and Ensem-
ble Bagged Trees (EBT). The results of their research
demonstrated a sensitivity of 99.61% and an accuracy
of 99.65%.

Besides classical machine learning methods, various
studies have employed deep learning techniques for MI
detection. Baloglu et al. [12] conductedMI classification on a
multi-lead ECG using a deep CNN, achieving an impressive
accuracy of 99.78%. Similarly, Hammad et al. [13] employed
a CNN model on imbalanced data for MI detection,
yielding an accuracy of 89.7%, a sensitivity of 81.1%,
and a specificity of 88.5%. In another approach, Rai
and Chatterjee [14] utilized a hybrid CNN-LSTM model
for MI detection in ECG signals, achieving a remarkable
accuracy of 99.8%. Likewise, Feng et al. [15] also employed
a hybrid CNN-LSTM model, resulting in a sensitivity of
98.2%, a specificity of 86.5%, and an accuracy of 95.4%.
Additionally, Hasbullah et al. [16] classified MI using two
hybrid scenario models: CNN-LSTM and CNN-BiLSTM.
The CNN-LSTM model achieved an accuracy of 89%,
while the CNN-BiLSTM model achieved 91%. Furthermore,
Hafshejani et al. [17] conducted research on MI detection
in both ECG and Vectorcardiography (VCG) signals. For
ECG signals, the research achieved a sensitivity of 100%,
a specificity of 98.7%, and an accuracy of 99.4%.Meanwhile,
in the case of VCG signals, the approach demonstrated a
sensitivity of 98%, a specificity of 100%, and an accuracy
of 98.9%.

In their study, Khan et al. [18] utilized the Pulse
Plethysmograph signal for MI detection. The research tested
three algorithms: Support Vector Machine (SVM), k-Nearest
Neighbor (KNN), and Decision Tree. The algorithm that
demonstrated the best performance in the study was
SVM, achieving a sensitivity of 100%, a specificity
of 95.1%, and an accuracy of 98.5%. In a different study,
Chakraborty et al. [19] identified MI in the PPG signal
using several algorithms, including Decision Tree (DT),
Quadratic Discriminant (QD), Logistic Regression (LR),
Linear SVM (LS), Nonlinear SVM (NLS), and k-Nearest
Neighbor (kNN). The best result was obtained with SVM,
which showed a sensitivity of 92.7% and an accuracy
of 95.4%.

There are several studies that utilize transfer deep learning
as a classifier. Alghamdi et al. [20] employed VGG-Net to
detect MI in ECG signals, achieving a sensitivity of 98.76%,
specificity of 99.1%, and accuracy of 99.0%. Additionally,
Han and Shi [21] proposed a Multi-Lead Residual Neural
Network (ML-ResNet) to detect MI across 12 ECG leads,
achieving a sensitivity of 94.8%, a specificity of 97.3%, and
an accuracy of 95.5%.

Among the previously mentioned studies, the use of
PCG signals for MI detection remains exceptionally rare.
To date, we have identified only two studies that specifically
focuses on MI detection using PCG signals. In this study,

Khan et al. [1] classified MI or heart attacks based
on PCG signals, employing Mel-frequency cepstral coef-
ficients (MFCC) and the k-Nearest Neighbors (KNN)
algorithm. However, a notable limitation of this research is
the absence of signal filtering, leading to the presence of noise
in the detected signals. Last, Amini et al. [7] used RNNmodel
to detect MI on PCG signal. The proposed model resulting
an accuracy of 95.3%. The research is subject to certain
limitations, mostly due to the lack of precise information
pertaining to the proposed model. Similarly, to previous
research, there is no information regarding overfitting.

It can be concluded that the majority of researchers
predominantly rely on Electrocardiogram (ECG) signals for
MI detection. In fact, as stated by Behbahani [22], the use
of PCG signals has been developed independently in recent
years, without the need for direct comparison with ECG
signals. This presents an opportunity for other researchers to
explore PCG signals as a viable topic for further research.

III. MATERIAL AND METHOD
A. MATERIALS
1) DATA
The data utilized in this research was obtained from Hasan
Sadikin Hospital in Bandung, West Java, Indonesia. This
dataset comprises PCG signals collected from two distinct
groups of subjects: normal individuals and those who have
experienced MI. Each participant contributed four different
PCG recordings, each taken from specific heart sound
measurement locations, namely the apex, Right Upper Sternal
Border (RUSB), Left Upper Sternal Border (LUSB), and Left
Lower Sternal Border (LLSB). For the purposes of this study,
all four recordings from each participant were analyzed to
detect cases of cardiac arrest, which was the primary focus of
this research.

The data used in this research is the result of feature
extraction, with a total of 50 features. There are a total
of 560 heart sound signal recordings (normal and MI),
resulting in a total of 28,000 features. Furthermore, the data
was divided into two sets: training data, which constituted
70% of the dataset, and test data, which comprised the
remaining 30%. A detailed breakdown of this data division
can be found in Table 1.

TABLE 1. Number of data splittings.

a: NORMAL SIGNAL
There were 70 normal patients, contributing a total of
280 recordings across all patients. Figures 1 through 4 display
the raw data of a normal signal.

b: MI SIGNAL
There were 70 patients who had experienced heart attacks,
contributing a total of 280 recordings, which were equivalent
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FIGURE 1. Normal PCG signal on Apex (recording 1 of normal).

FIGURE 2. Normal PCG signal on RUSB (recording 1 of normal).

FIGURE 3. Normal PCG signal on LUSB (recording 1 of normal).

FIGURE 4. Normal PCG signal on LLSB (recording 1 of normal).

FIGURE 5. MI PCG signal on Apex (recording 1 of MI).

FIGURE 6. MI PCG signal on RUSB (recording 1 of MI).

to the normal signals. Signal illustrations can be observed in
Figures 5 to 8.

2) ENVIRONMENT
In this research, we employed a range of resources, both
hardware and software. Our hardware resources were integral

FIGURE 7. MI PCG signal on LUSB (recording 1 of MI).

FIGURE 8. MI PCG signal on LLSB (recording 1 of MI).

to the data capture process, where we utilized a digital
stethoscope to record PCG signals and a computer for
subsequent data processing.

In terms of software resources, we selected the Python
programming language as our primary tool for data process-
ing and analysis. Additionally, we utilized various digital
platforms to create the illustrations featured in this paper.
Through the utilization of these diverse tools, we were able
to conduct a comprehensive analysis, enabling us to achieve
our research objectives.

B. METHOD
1) RESEARCH SCENARIO
a: FIRST SCENARIO
In the first scenario of this research, we conducted a
performance comparison of three Convolutional Neural
Network (CNN) transfer deep learning models: VGG-16,
VGG-19, and Xception. This comparison was carried
out under default conditions, with no specific parameters
adjusted.

To ensure a consistent evaluation, we maintained consis-
tent values for two crucial parameters: the number of epochs
(epochs = 50) and the batch size (batch_size = 32) for
training each model. Additionally, 10-fold cross-validation
was implementedwithin the training data samples to optimize
MI detection accuracy and prevent overfitting when training
the model. The primary objective of scenario 1 was to assess
the performance of these models without any modifications
during the initial training process.

b: SECOND SCENARIO
In the second scenario, this research tested the three
models by applying hyperparameter tuning to the two main
parameters: the number of epochs and batch_size. Moreover,
the process of hyperparameter tuning has the potential to
enhance the accuracy and effectiveness of MI detection [23].
The GridSearchCVmethod was employed to identify the best
combination of parameter values for both parameters. Similar
to the first scenario, we applied 10-fold cross-validation to the
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training data samples. The outcomes of the hyperparameter
tuning process are detailed in Table 2.

TABLE 2. The results of GridSearchCV from each models.

2) COMPARISON
This research conducted three comparisons to achieve the
research objectives. Firstly, a comparison was made based on
the results of the first scenario experiment, which involved
assessing the performance of the three transfer deep learning
models under default settings without additional adjustments
to specific parameters.

Secondly, the experimental outcomes of the second
scenario were compared with the performance of the models
in the first scenario. This comparison specifically involved
evaluating the performance of the VGG-16, VGG-19, and
Xception models both without tuning and with hyperparam-
eter tuning.

Lastly, the study’s results were compared with those of
previous studies that focused on heart sound detection in PCG
signals in a broader context.

IV. PROPOSED SYSTEM FOR MI DETECTION (MIDs)
The Myocardial Infarction Detection System (MIDs) intro-
duced in this research incorporates an enhanced approach
by dividing data analysis processes into distinct stages:
preprocessing, feature extraction, and classification.

This technique is groundbreaking because traditionally,
the separation of data analysis processes has been applied
in classical machine learning. However, in this research,
we attempted to implement it within a deep learning model.
Additionally, the feature extraction methods employed are
diverse, encompassing six different techniques, some of
which have never been previously utilized on PCG sig-
nals. An illustration of the proposed MIDs can be found
in Figure 9.

In essence, MIDs comprises preprocessing, feature extrac-
tion, and classification stages. Each of these stages is
elaborated upon in the subsequent subsections.

A. PREPROCESSING
In this study, the preprocessing stage involves a denoising
process applied to the entire signal. The denoising method
applied uses the noisereduce library, a tool developed by
Sainburg et al. [24] in 2020. The library has been employed
in various studies related to sound signals. For instance,
Liu et al. [25] effectively utilized noisereduce to remove
noise from spontaneous audio in speech, achieving an
accuracy of 92.72%.

In our research, we applied noisereduce to clean the
PCG signal from noise. Examples of denoising results can
be observed in Figure 10 and Figure 11, which illustrate
the outcomes of denoising on normal signals and PCG
signals from the Left Lower Sternal Border (LLSB) location,
respectively.

B. FEATURE EXTRACTION
Feature extraction is a crucial stage before classification, and
the resulting features can help classify objects correctly [26].
In this research, six distinct feature extraction methods
were employed: Discrete Wavelet Transform (DWT), Mel
Frequency Cepstral Coefficients (MFCC), Shannon Entropy,
Constant Q Transform (CQT), Chromagram, and Root Mean
Squared (RMS). The primary goal of these methods was
to augment the dataset used for analysis by increasing the
number of features. In total, these six methods contributed
to the extraction of 58 features.

Moreover, based on the highest Information Gain (IG)
value, 50 features were chosen for further analysis. Table 3
provides detailed information about these 50 selected features
utilized in the research.

These selected features serve as significant representations
of PCG data during the classification stage. The feature
selection process was conducted with the intention of
enhancing the relevance of the existing features, thereby
improving the overall classification performance.

TABLE 3. List of 50 features that are used in this proposed work.

• DWT
In this research, the Discrete Wavelet Transform (DWT)
was applied, for efficient information extraction, low-
frequency wavelets must be effectively separated into
multiple levels, as they are more informative than
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FIGURE 9. Proposed MIDs.

FIGURE 10. Example of a denoised normal signal (recording 1 of normal).

FIGURE 11. Example of a denoised MI signal (recording 1 of MI).

high-frequency wavelets [27]. We used a db6 decom-
position level set at level 4, following the methodology
outlined by Mandala et al. [28]. The PCG signal
underwent DWT to generate detailed wavelet coeffi-
cients (cD) and approximate wavelet coefficients (cA),
as described in previous studies [29]. The resulting
detail and approximate coefficients were combined to
represent low-frequency components, as illustrated in
the equation below [30]:

A = cAn +

n∑
i=1

cDn (1)

In Equation 1, it is evident that A represents the wavelet
coefficient value, while the symbol n corresponds to the
number of approximate levels.

• MFCC
The next feature extraction method is Mel Frequency
Cepstral Coefficients (MFCC). Traditionally,MFCChas

been employed for speech recognition purposes; how-
ever, it has gained widespread usage in signal processing
applications as well [31]. There are several stages in
MFCC as carried out in previous studies [31], [32], the
following are the stages of MFCC:

1) Windowing
At this phase, the signal is divided into short-time
frames, generally 25 ms. Then, using hamming
windowing to reduce discontinuity, the equation
used is the following Equation 2:

Mn = 0.54 − 0.46(
2π (n− 1)
N − 1

) (2)

whereMn is the number of samples.
2) Filterbank

This stage involves the conversion to achieve the
desired non-linear frequency representation. The
filterbank equation is given by Equation 3:

fmel = 2595 log10(1 +
f

700
) (3)

In the Equation 3, the symbol f is the signal
frequency.

3) Discrete cosine transform Discrete cosine trans-
form or DCT is an optional stage that performs
signal compression using the DCT algorithm.

• CQT
The Constant Q Transform (CQT) is a method used
to transform time-domain signals into a time-frequency
domain, where the distances between center frequencies
are uniform, and the Q-factors are consistent [33].
This method can be implemented using the ‘‘Librosa’’
library in Python. CQT generates coefficients that are
subsequently extracted into various features, as detailed
in Table 3. As stated by Equation 4 [34], CQT can be
perceived as similar to a filter. Equation 4 provides an
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FIGURE 12. VGG-16 architecture.

example of calculating the frequency of the i-th spectral
component.

fi = (21/x)ifmin (4)

where the symbol i represents the spectral component,
and the symbol nn represents the octave number of the
bank of filters. Meanwhile, fmin denotes the minimum
frequency. Additionally, to calculate the Q-value (con-
stant Q), the following formula is used:

Q =
f
δf

(5)

For the frequency to bandwidth ratio (δf ) to be constant,
the window size must be inversely proportional to the
frequency [34].

• Chromagram
The next extraction method used is chromagram.
Chromagram is a method for converting time-frequency
signals into temporary tone variations [35]. According
to Shepard (1964), the chromagram formula written in
the Equation [35] research is Equation 6:

j(t, c) = A(l(t, f )) (6)

Here, l(t, f ) represents the spectrogramwith the formula
f = 2c+h. The spectrogram is used to summarize
properties in the signal’s distribution across frequency
and time.

• RMS
Root Mean Squared (RMS) extracts time features from
the signal [36]. RMS can be calculated using the
‘‘Librosa’’ library in Python, with the Equation 7 being:

RMS =

√√√√ n∑
i=1

x2(n) (7)

• Shannon Entropy
Shannon entropy is a calculation of the average amount
of information in a signal. According to Equation [37],
Equation 8 is a formula used to calculate a signal’s
entropy.

S = −

m∑
i=1

|X |
2log|X |

2 (8)

C. CNN-BASED TRANSFER DEEP LEARNING
In this research, a Convolutional Neural Network (CNN) was
employed as a classifier. CNN is a widely used deep learning
algorithm in healthcare-related research [38]. As stated by
Li et al. [4], many researchers opt for CNN as a classification
algorithm due to its ability to recognize patterns in objects
or data. Additionally, CNN can identify patterns without the
need for separate feature extraction or selection processes.

CNNs have seen significant advancements, leading to the
development of various architectures. Deep learning models
that have undergone extensive training and demonstrate
high performance are often referred to as ‘‘pre-trained’’ or
transfer deep learning models. Transfer deep learning is a
machine learning technique where knowledge acquired by
a model in one task or domain is utilized to enhance the
model’s performance in a different task or domain. In transfer
deep learning, a pre-trained model, trained on diverse and
extensive datasets, serves as a starting point. This model is
then fine-tuned for a more specific task or dataset [39].

In this study, the main classifier in the classification
stage was the CNN-based VGG-16 transfer deep learning
model. The VGG16 architecture is composed of several
layers, including 13 convolutional blocks. Each block is
comprised of a convolutional layer followed by Rectified
Linear Unit (ReLU) activation. In addition, there are five
max-pooling layers that have been intentionally placed
following certain convolutional blocks. In the latter stages of
the architectural design, a sequence of three fully connected
layers is utilized before to the ultimate output layer. The
training of VGG16 in this study employed Stochastic
Gradient Descent (SGD) as the optimizer, with a learning rate
of 0.01. Furthermore, the architecture of the VGG-16 model
is illustrated in Figure 12.

In addition to utilizing the VGG-16 transfer deep learning
CNNmodel, this research also incorporates two other transfer
deep learning CNN models, namely VGG-19 and Xception.
The aim is to assesswhichmodel ismost effective in detecting
MI in PCG signals.

It is important to note that the three transfer deep learning
models used were originally developed for digital image
processing, making them inherently two-dimensional (2D)
in their basic dimensions. However, in this research, the
PCG signal is one-dimensional data (1D). Consequently,
we modified the architecture of the transfer deep learning
CNN models to convert the two-dimensional layers into
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FIGURE 13. The flow of applying transfer deep learning in this research.

one-dimensional layers to match the PCG signal. This
adaptation method has been previously applied in several
studies, as described by Cheng et al. [40] and Gao et al. [41].
They adjusted the VGG-16 transfer deep learning model
to process one-dimensional data using one-dimensional
convolutional layers.

To elaborate further, Figure 13 illustrates how transfer
deep learning is implemented in this research, demonstrating
the necessary adjustments to accommodate one-dimensional
signal data.

D. PERFORMANCE MATRIX
In this research, three key evaluation metrics were employed:
accuracy, sensitivity, and specificity. This methodology has
been utilized in previous studies, as referenced in [42],
[43], [44], and [45]. By employing these metrics, the
research aimed to provide a comprehensive assessment of
the classification algorithm’s performance in detecting MI in
PCG signals.

Accuracy Equation

accuracy =
TP+ TN

TP+ FP+ FN + TN
(9)

Specificity Equation

specificity =
TN

TN + FP
(10)

Sensitivity Equation

sensitivity =
TP

TP+ FN
(11)

In Equation 9, this formula is utilized to calculate accuracy
during the heart attack classification stage. In Equation 10,
this formula is employed to compute specificity during the
classification stage. Equation 11 represents the sensitivity
calculation applied during the classification stage.

TABLE 4. Comparison table of different transfer deep learning model
results without tuning.

FIGURE 14. Comparison chart of model performance results on transfer
deep learning model without tuning.

In these equations, TP (True-Positive) stands for the
number of heart attack signals correctly classified, TN (True-
Negative) denotes the number of normal signals correctly
classified, FP (False-Positive) represents the number of
heart attack signals incorrectly classified, and FN (False-
Negative) indicates the number of normal signals incorrectly
classified [46].

V. RESULTS
A. RESULTS OF THE FIRST SCENARIO
In the first scenario, this research evaluated the three transfer
deep learning CNN models without additional parameter
adjustments. The performance results of each model are
presented in Table 4, and Figure 14 provides a visual
representation of these results. The Xception model exhibited
the highest specificity at 88.%. In contrast, the VGG-16
model achieved the highest sensitivity and accuracy at 93.6%
and 90.4%, respectively.

B. RESULTS OF THE SECOND SCENARIO
In the second scenario, this research compared the perfor-
mance results of the threemodels, namelyVGG-16, VGG-19,
and Xception, after applying hyperparameter tuning. Table 5
and Figure 15 illustrate the comparison ofmodel performance
before and after hyperparameter tuning. It is evident that
each model experienced improvements after hyperparameter
tuning. The model that exhibited the best performance
after tuning was VGG-16, showing significant improvement.
It achieved a sensitivity of 97.4%, a specificity of 96.0%, and
an accuracy of 96.7%.

Furthermore, Figure 16 depicts a confusion matrix illus-
trating the prediction results in two class categories: the
normal class and the MI class using the training data.
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TABLE 5. Comparison table of different transfer deep learning model
results with hyperparameter tuning.

FIGURE 15. Comparison chart of model performance results on transfer
deep learning model with hyperparameter tuning.

FIGURE 16. Confusion matrix result - number of predictions.

In addition, Figure 17 displays the accuracy of MI detection
with 30 epochs and 10-fold cross-validation on both training
and validation data. The accuracy patterns between training
and validation data are similar but show a noticeable gap.
Figure 18 presents the loss values with 30 epochs and 10-fold
cross-validation on both training and validation data. Similar
to accuracy, the loss values between training and validation
data exhibit similar patterns without substantial gaps. These
results indicate the robustness of the obtained transfer deep
learning model.

Additionally, Figure 17 demonstrates the accuracy of MI
detection with 30 epochs and 10-fold cross-validation on
both training and validation data. The accuracy patterns
between training and validation data are similar but reveal
a noticeable gap. Furthermore, Figure 18 illustrates the loss
values with 30 epochs and 10-fold cross-validation on both

FIGURE 17. Accuracy value in 30 epoch.

FIGURE 18. Loss value in 30 epoch.

training and validation data. Similar to accuracy, the loss
values between training and validation data exhibit similar
patterns without a substantial gap. These results indicate
the robustness and reliability of the obtained transfer deep
learning model.

C. COMPARISON WITH OTHER WORK BASED ON
CLASSIFICATION MYOCARDIAL INFRACTION WITH PCG
We compared the performance of our research with several
previous studies based on the use of PCG signals to detect
abnormal heart sounds. This comparison was motivated by
the scarcity of research on MI detection in PCG signals.

Our proposed MIDs outperforms the referenced studies
across all evaluation metrics. It is important to note that this
comparison may not be entirely ‘‘apples-to-apples’’, as each
study in Table 6 has different components andmethodologies.
Nevertheless, MIDs achieved superior performance in MI
detection on PCG signals.

VI. DISCUSSION
In this research, an enhanced MIDs for PCG signals,
named MIDs, is proposed. The dataset was obtained from
Hasan Sadikin Hospital in Bandung, Indonesia, comprising
70 normal subjects and 70 subjects with heart attacks,
each providing 4 voice recordings, totaling 280 normal and
280 heart attack data points.

The approach utilized is classification through a trans-
fer deep learning model based on Convolutional Neural
Network (CNN), with VGG-16 as the primary model.
Feature representations from PCG data were created using
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TABLE 6. Comparison of MIDs with several previous studies.

50 features extracted from six methods: Discrete Wavelet
Transform (DWT), Mel-Frequency Cepstral Coefficients
(MFCC), Constant-Q Transform (CQT), Chromagram, Root
Mean Squared (RMS), and Shannon Entropy. Feature extrac-
tion enabled the formulation of relevant characteristics for
classification, categorizing data into ‘‘Normal’’ (healthy) and
‘‘MI’’ (Myocardial Infarction).

Comparison with other transfer deep learning models,
VGG-19 and Xception, was conducted in two scenarios:
firstly, comparing models without additional parameter
adjustments, and secondly, after hyperparameter tuning. The
results demonstrated that VGG-16, post hyperparameter
tuning, outperformed other models, achieving a sensitivity of
97.4%, specificity of 96.0%, and accuracy of 96.7%. Despite
its simpler architecture compared to VGG-19 or Xception,
VGG-16 showcased excellent performance in detecting heart
attacks in PCG signals. Several factors, including data
volume, model complexity, or a combination thereof, can
influence model performance.

Comparison with previous studies focusing on MI detec-
tion in PCG signals revealed our research’s superior perfor-
mance, outperforming related studies significantly. Further-
more, in broader studies of abnormal heart sound detection
in PCG signals, our research consistently outperformed
comparable studies, showcasing our positive contribution to
the field.

However, it’s crucial to note that various factors, including
data quality and feature extraction methods, significantly
impact model performance. Addressing these aspects and
employing appropriate classification algorithms are vital in
enhancing the accuracy and effectiveness of heart attack
detection via PCG signals.

VII. CONCLUSION AND FUTURE WORK
This research focuses on the development ofMIDs, amyocar-
dial infarction detection system designed for PCG signals.

The approach involves segmented processes including data
preprocessing, feature extraction, and classification, employ-
ing an innovative adaptation of the Convolutional Neural
Network (CNN) with an optimized VGG-16 architecture as
the primary classifier. Comparative analysis with other trans-
fer deep learning algorithms like VGG-19 and Xception was
conducted. The proposed MIDs demonstrated outstanding
performance, achieving 97.4% sensitivity, 96.0% specificity,
and 96.7% accuracy.

However, the study acknowledges the potential for further
enhancement through improved data quality. Future efforts
will focus on leveraging higher-quality datasets, aiming to
achieve even more substantial performance improvements.
This research aspires to make a significant contribution to
the development of myocardial infarction detection systems
in PCG signals.
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