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ABSTRACT Despite of its importance and potential, the research on the peak power forecasting has received
little attention. The decrease of the peak power not only reduces operational expense, but also avoids outages
especially during the peak demand season. Thus, peak power forecasting, which is the key enabler for such
advantages, can bring significant gains especially to a large-scale, energy-intensivemanufacturing plant. This
paper proposes a high-precision multi-step forecasting method to predict both the the peak power series and
time of day the peak occurs. The proposed approach first predicts the peak power for a certain timespan (e.g.,
a day) by solving a regression problemwithmultiple features, including daily workload andweather forecast.
Then, it generates hourly peak power series for the same timespan to increase the prediction accuracy and
to identify the peak hour. In contrast to the daily workload plans, hourly plans rarely exist in practice and
thus, hourly peak power forecasting is an auto-regression problem which becomes challenging as prediction
timespan increases. In this work, a Constrained and Conditional Transformer (C2Transformer) is proposed
for accurate multi-step peak power forecasting. The proposed model takes in the past hourly peak power
series of length k along with a single peak predicted over a timespan of length n. Conditioning on the
predicted long-term peak, the model generates n hourly power peaks. Also, the proposed C2Transformer
has an additional constraint which is minimizing the difference between the predicted peak among n hours
and the maximum value among the generated hourly peaks. Through extensive evaluations on a real data
set from multiple sources, the proposed C2Transformer has shown superior performance to the widely used
deep learning models.

INDEX TERMS Peak power forecasting, multi-step prediction, deep learning, transformer, manufacturing
plants.

I. INTRODUCTION
Global economic development has led to a rise in electricity
usage. As per the Energy Information Administration (EIA),
energy consumption has been on the rise and is projected to
continue this upward trajectory until 2050 (see Fig. 1 [1]).
While the ongoing growth in energy consumption may be

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeeb Dey .

considered an inevitable outcome of development at a certain
stage, both industry and academia have voiced concerns
about its adverse effects, notably its contribution to carbon
emissions. Furthermore, energy consumption constitutes
a significant portion of operating expenses (OpEx) for
businesses. Consequently, substantial efforts have been made
to mitigate power consumption.

To effectively reduce the power consumption while
maintaining the desired production capacity, it is crucial
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FIGURE 1. The energy consumption forecast worldwide in quadrillion
watt units.

to accurately forecast power consumption [2]. There have
been numerous studies conducted to improve the accuracy of
power consumption forecasting and to enhance its accuracy
using methods such as statistical techniques [3], [4], machine
learning [5], [6], [7], and deep learning [8], [9], [10].
However, little attention has been given for predicting peak
power consumption, despite its considerable importance in
managing operating expenses (OpEx). For instance, certain
electric power companies factor in the time of energy use
when calculating bills for commercial customers [11]. This
means that energy consumed during peak demand hours
incurs higher costs. For another example, in South Korea,
the electricity bill rate for the industrial sector is determined
based on the previous year’s peak power consumption.
Therefore, accurately identifying when instantaneous power
consumption reaches its daily peak is of significant impor-
tance in reducing OpEx.

In general, predicting and reducing (peak) power consump-
tion is significantly challenging, and due to its substantial
impact on business and nature, it has been widely studied
in the literature. This includes the energy prediction and
consumption inmanufacturing industries [12]which is amain
topic of the present study. Power consumption has also been
considered with importance in the following domains: smart
grid [13], Internet of Things [14], wireless communications
[15], data center [16] to name a few. In other words, further
development of the power prediction technology is still in
demand, and has great potentials in wide range of domains.
It should also be noted that data acquisition tools [17] and
communication protocols [18] are the technologies that lay a
foundation for reliable data collection.

In this context, this paper presents an innovative and
highly accurate solution for forecasting peak power, aiming
to predict both the hourly peaks and the specific time of day
when the daily peak occurs. The key contributions of this
paper can be summarized as follows:

• Despite its significance, forecasting peak power
consumption has garnered less concentration when

compared to predicting total power usage. This paper
introduces a framework designed to achieve precise
multi-step peak power forecasting. The proposed
framework incorporates several components, including
improvements to the Transformer model, two distinct
data set preparation strategies, and a two-level model
ensemble.

• To enhance the precision of peak power prediction, this
paper introduces a method that merges multi-variable
regression and auto-regression. The proposed technique
leverages multi-variable regression to forecast peak
power over the long term and employs it to generate
multi-step, short-term peak power series predictions.

• We have proposed two data preparation approaches,
namely periodic sampling and continuous sampling,
with the aim of improving prediction accuracy while
simultaneously expanding the data-set size.

• In this paper, we introduce a novel approach
known as Constrained and Conditional Transformer
(C2Transformer), which serves as an enhancement
to the Transformer model. This C2Transformer is
designed to achieve highly accurate multi-step hourly
peak power forecasting. The generated predictions
for the short-term, denoted as n-step predictions, are
subsequently employed tomake longer-term peak power
predictions and determine when these longer-term peaks
are expected to occur. As an example, C2Transformer
can generate hourly peak power series, which are then
utilized to calculate the daily peak power levels and
pinpoint the specific time of day when these peaks are
likely to manifest. The conditional input, derived from
a long-term peak prediction generated by an external
regression model, plays a pivotal role in the decoder
logic of the Transformer. It is utilized to enhance the
accuracy of time-series predictions. Additionally, this
same conditional input serves as an essential constraint
within the proposed model. Specifically, it ensures that
the maximum value among the generated peak series
aligns with the external input, thereby maintaining
consistency with the external peak prediction.

• The proposed model extends its capabilities to predict
the timing of the long-term peak occurrence. While
the model’s primary output consists of hourly peak
predictions, it recognizes that for plant operators, longer-
term peaks like the daily peak hold greater significance.
As a result, the proposed model can generate precise
multi-step hourly peak predictions, which can, in turn,
be used to derive accurate daily peak values and
determine the exact time at which the daily peak is
expected to transpire.

• To further enhance the performance of the trainedmodel,
we introduce a two-level ensemble approach. In the
lower-level ensemble, models trained using the same
type of data-set but with varying hyper-parameters are
integrated using a max-combine rule to achieve precise
peak predictions. In the upper-level ensemble, the results
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obtained from the lower-level ensemble are combined
using a mean-combine rule to enhance the model’s
overall generalization performance.

• To assess the efficacy of our proposed model,
we conducted comprehensive evaluation and compara-
tive studies, pitting it against commonly used methods
for time-series prediction. These methods include
ARIMA, 1D-CNN, LSTM, ConvLSTM, and the Vanilla
Transformer model.

The remainder of this paper is structured as follows.
Section II summarizes the previous studies related to
the power forecasting. Section III presents the proposed
constrained and conditional Transformer (C2Transformer)
for peak power forecasting. The effectiveness of the proposed
method is validated in Section IV, and Section V presents the
conclusion of this study.

II. RELATED WORK
There have been several studies on power consumption
prediction with various approaches. Power consumption
prediction is usually cast as a time-series forecasting problem,
hence traditional statistical method for has been adopted
widely. Krishna et al. [3] proposed to use AutoRegressive
Moving Average model (ARMA) [19] and AutoRegressive
Integrated Moving Average (ARIMA) [20] model for pre-
dicting half-hourly power consumption. One of the findings
therein is the inappropriateness of using ARMA because
power consumption data is typically non-stationary. Con-
sequently, the ARIMA model, with first-order differencing
to make the data weakly stationary, demonstrated better
performance when compared to ARMA. Alberg et al. [4]
proposed a sliding window-based forecasting algorithm
utilizing ARIMA or Seasonal ARIMA (SARIMA). The
authors have demonstrated that the SARIMA-based sliding
window forecasting algorithm is more effective. However,
these models assume that the data is stationary and seasonal.
Thus, traditional statistical approaches such as ARIMA and
SARIMA may not be suitable for such data that entails little
stationarity or seasonality.

To overcome the limitations and to make more accurate
predictions, various machine learning methods have been
proposed. Zhou et al. [5] hypothesized that weather condi-
tions and power usage are closely related. Consequently, the
authors clustered the data based on weather conditions and
compared three widely used algorithms: Back Propagation
(BP), Radial Basis Function (RBF), and Support Vector
Regression (SVR). The evaluation results revealed that SVR
achieved the smallest errors in terms of Root Mean Square
Error (RSME) andMeanAbsolute Percentage Error (MAPE).
Additionally, the clustering-based approach resulted in more
accurate predictions than the counterparts without clustering.
R. et al. [6] conducted evaluations using ARIMA and
Extreme Gradient Boosting (XGBoost) [7] to predict the
energy consumption where hourly energy consumption and
the related features are available. According to the authors’
findings, XGBoost outperformed ARIMA in terms of RMSE.

Furthermore, the authors identified the best-performing
hyper-parameter set for XGBoost.

Recently, deep learning-based approaches have been
widely used for power forecasting due to their outstanding
performance and the availability of large dataset. Kim et al.
[8] compared hourly power usage prediction performance
between Long Short-Term Memory (LSTM) [9] and the
Double Seasonal Holt-Winter algorithm [21]. According to
the authors, LSTM performed better in terms of RMSE,
while the Double Seasonal Holt-Winter algorithm failed
to capture sudden changes in power usage patterns. Kim
and Cho [10] proposed to enhance LSTM by combining it
with CNN1-LSTM for predicting hourly power consumption.
The authors pointed out that the CNN layer is used to
select influential features between variables affecting power
consumption, while the LSTM layer is used for learning and
forecasting the underlying time-series power consumption
patterns. Evaluation results showed that the CNN-LSTM
model achieved the least RMSE compared to Conditional
Restricted Boltzmann Machine (CRBM) [22], FCRBM [23],
and Seq2Seq [24]. However, the authors’ proposed model
therein is designed for individual household electric data,
which may pose challenges when applying it to large-scale
power plant scenarios. Recently, emerging deep learning
methods such as Generative Adversarial Network (GAN)
[25] and Transformer have been applied [26] to forecast the
multi-step power consumption. Tian et al. [27] presented a
parallel prediction scheme with GANs for forecasting power
consumption patterns at 30-minute intervals. Initially, a GAN
model generates parallel data based on the original data.
Then, data mixed with original data and parallel data are
used to train the prediction models such as Back-Propagation
Neural Network (BPNN) [28], Extreme Learning Machine
(ELM) [29], and SVR. According to their evaluations,
prediction models trained with mixed data from GAN
achieved smaller MAE than those trained with original data
alone. Rao et al. [30] proposed using Transformer with
multi-head attention and position encoding mechanisms for
total power predictions at 15-minute intervals. Evaluation
results showed that Transformer achieved smaller MAPE
than LSTM, BP, and ARIMA, with a shorter training time.

The primary goal of the aforementioned studies is to
learn and forecast the total power consumption. While
understanding and forecasting the total power consumption
is essential, peak power prediction also deserves attention
for the following reasons. Reducing the peak power can
be an effective strategy to reduce the OpEx. For example,
in South Korea, in the case of the industrial sector customers,
electric rates for the coming year are determined by the
peak power of the current year. That is, even without
reducing the total power use, lowering the peak power
can reduce the electric rates. In addition, it can effectively
prevent power outages especially during the peak seasons
such as summer when nationwide power usage surges.

1Convolutional Neural Network.
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Companies can redistribute their workload based on peak
power prediction to prevent outages and reduce electric
charges. However, such an intelligent redistribution cannot
be implemented without any peak power prediction scheme
which has received less attention compared to the prediction
of the total power consumption.

There are a few studies that paid attention to the peak
power forecasting. Liu et al. [31] compared the peak
prediction performance of the several classical methods,
including Naive Bayes, SVMs and Random Forests, to the
deep learning models, e.g., CNN and LSTM. These models
predict the daily peak power demand for the next 24 hours
using total power demand, weather and date. Among the
several methods considered therein, LSTM achieved the best
performance in terms of precision, recall, and accuracy.
Despite its noteworthy performance, the LSTMmodel in their
paper primarily focuses on predicting peak time accurately.
In addition to predicting accurate peak time, predicting the
peak power levels with high precision is also important, and
in this work we propose to predict both the peak power and
the peak hour at the same time accurately.

Zhang et al. [32] attempted to simultaneously predict
long-term energy consumption and peak power demand
with a single model. To achieve this goal, the authors pro-
posed sequential-XGBoost, which uses the XGBoost algo-
rithm with different configurations in a sequential manner.
Sequential-XGBoost predicts monthly energy consumption
and peak power demand for the next 1-3 years timespan.
According to the authors, the proposed model achieved the
lowest MAE compared to the widely used methods such
as ARIMA and LSTM. However, such long-term monthly
predictions may not immediately help redistribute power
usage based on predictions. Therefore, in this paper we
proposes a hourly and daily-basis peak power prediction
method so that the plant operator can make short-term
operation plan and to quickly respond to the power peak to
be happening within a few hours from now.

The aforementioned studies have achieved outstanding
performance under the assumed configurations, but they have
some inherent limitations at the same time. The research
presented in this paper seeks to address these limitations and
to make the following enhancements. Firstly, There is a lim-
ited number of studies aiming to predict peak power levels,
despite the importance and potential of peak forecasting. This
paper proposes multi-step peak power forecasting, which is
crucial for reducing OpEx and preventing power outages that
is especially important during the peak seasons. Secondly,
Many of the previous studies have treated the time series
prediction problem as an auto-regression problem. However,
depending on the available dataset, a better approach can be
taken to achieve higher accuracy. In this paper, we propose to
combine both multi-regression and auto-regression to further
enhance the prediction accuracy. In a nutshell, the prediction
from the former is passed to the latter as a conditional input
to improve accuracy. Thirdly, We propose two data sampling
and ensemble strategies to enhance prediction accuracy,

increase the dataset size, and increase the generalization
performance of the trained model. As a result, we propose
an enhancement to the state-of-the-art Transformer model
to improve multi-step time series forecasting accuracy by
introducing a conditional input and an additional constraint;
details will be introduced in the following Section III.

III. PROPOSED IDEA
In this study, the primary goal is to solve the multi-
step hourly peak power forecasting problem for large-scale
manufacturing plants.

Considering a large-scale manufacturing site consisting of
multiple factories and buildings makes the power prediction
problem becomes much more complex. However, the result-
ing solution can be scalable and robust. A manufacturing
business typically owns and operates a fixed number of
factories, docks and equipment–at least, these numbers do
not change frequently. While one might assume a certain
power consumption rate for each equipment on the shop floor
to make the problem simple. However, such assumptions
are not practical, and they still do not render the problem
deterministic. To accurately forecast the peak power of a
manufacturing site, numerous elements must be taken into
account. In practice, it is nearly impossible to consider every
element affecting the power usage. Additionally, there are
always a large degree of uncertainties influencing the power
usage such as irregular shipbuilding orders, sudden workload
drops due to deteriorating weather conditions, and more.
Thus, the problem of peak power forecasting for a large-scale
manufacturing is a complex and challenging to solve while
yielding a scalable and robust solution.

We assume that the following data set is available: 1)
daily workload and weather data, 2) daily peak power,
and 3) hourly peak power. We also assume that the daily
workload/weather data is available for the desired period
of time, and it is the same to the daily peak power data.
However, the hourly peak power time-series data is available
only for the past 12 months; which is the case for the
electric power generation company, Korea Electric Power
Corporation (KEPCO), in South Korea.

Considering themultiple variables available, the daily peak
power prediction can be cast as a multi-variable regression
problem by letting daily workload and weather be the input
features. However, hourly peak power forecasting for the
forecast horizon of n (e.g., n = 24) hours is an auto-
regression problem due to the lack of available features.

Multi-variable regression for a single-step prediction is a
well-known problem and can be solved by various techniques
[33], and one of the state-of-the-art and leading technologies
is XGBoost [34]. XGBoost is a scalable tree-boosting
system that is widely applied to various machine learning
problems, such as regression and classification [7]. XGBoost
is constructed by additionally stacking decision trees and
greedily ensemble them. This system enables XGBoost to
achieve high accuracy. Also, additional advanced features of
XGBoost, such as scalability and parallel learning, enhance
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the computational speed. Furthermore, regularized learning
objectives and sub-sampling can effectively prevent the over-
fitting problem in XGBoost.

Auto-regression multi-step forecasting is also a well-
known problem, and there exist various solutions, including
statistical approaches e.g., (S)ARIMA and ETS, machine
learning-based approaches e.g., linear/polynomial regression,
and deep learning-based models e.g., RNN (LSTM/GRU),
one-dimensional CNN (1D-CNN), and ConvLSTM (Convo-
lutional LSTM). In addition, Transformer which was initially
proposed for building a language model has shown outstand-
ing performance for auto-regression multi-step forecasting
problems [35].

Transformer [26] is a transduction model composed of
an encoder and a decoder, relying on multi-head self-
attention without any recurrent or convolutional layers. Self-
attention is used instead of additional layers to reduce
computational complexity and the number of parameters,
and to create tighter dependencies between inputs and
outputs. Transformer has shown outstanding performance
in language translation tasks and is also applicable to
other tasks, including time series prediction. In addition to
its performance, Transformer offers faster training speeds
compared to the models that rely on recurrence or convolu-
tion. In general, multi-variable regression can achieve high
accuracy if the available features are highly correlated with
the output to predict. On the other hand, auto-regression
model learns solely from the historical data of a single feature.
Consequently, its accuracy may degrade, particularly when
the number of prediction steps (i.e., the forecasting horizon)
increases [36].
Considering the available dataset and the limitation of

the auto-regression model, we propose an enhancement
to the Transformer model that incorporates the prediction
from the multi-variable regression model. The proposed
multi-step hourly peak power prediction method operates
as follows. Given the daily workload and the weather
forecast, the daily peak power is predicted by a multi-
variable model such as XGBoost for a certain date. Given
the predicted daily peak power and k number of past peak
power measured each hour, the enhanced Transformer model
generates peak power predictions for n hours for the date.
By providing the high-accuracy daily peak power as an
input to the auto-regression Transformer model, the accuracy
of the time-series forecasting can be enhanced. Fig. 2
illustrates the overall system composition of our proposed
model.

The proposed Transformer model is called Constrained,
Conditional Transformer (or C2Transformer), and it is
specifically designed for enhancing the accuracy of the multi-
step peak power forecasting. To be specific, the proposed
enhancements to the Transformer model is twofold. We first
provide the predicted daily peak power as a conditional
input to the Transformer model to improve the accuracy of
hourly peak power series forecasting. In addition, we add
a constraint to the model, to ensure that the maximum

value in the generated time-series data matches the provided
conditional input. The formal mathematical representation of
the proposed enhancements is described as follows.

Let (yh)h=1,2,...,n be the sequence of actual hourly peak
power series for a specific date, and we assume n = 24 hours
for simplicity in this section. Given the daily peak p =

max{yh|∀h} for that date, the objective of this study is to 1)
predict the hourly peak power series ŷ = (ŷ1, ŷ2, . . . , ŷn) for
the given timespan in such a way that the generated sequence
is highly accurate (i.e., yh = ŷh, ∀h), 2) the maximum value
among the predictions closely matches the given p (i.e., p =

max{ŷh|∀h}), and 3) the time of the peak matches between the
actual and the predicted peak series (i.e., argmax{yh|∀h} =

argmax{ŷh|∀h}). To accomplish this goal, we propose to
enhance the Transformer model by re-defining the objective
of the model as follows. Given y = (y1, y2, . . . , yn) and
p, we solve the following equations to obtain the optimal
ŷ = (ŷ1, ŷ2, . . . , ŷn):

min
ŷ

. α
1
n

∑
∀h

(yh − ŷh|p)2

+ (1 − α) × (p− max{ŷh|∀h})2, (1)

where h = 1, 2, · · · , n and α ∈ [0, 1] is a design
parameter assigning a weight to the first term in the objective
function. It can be interpreted as an importance given to
the corresponding term. The yh represents the actual peak
power at hour h for a specific date, while ŷh represents the
predicted peak power at hour h, given the daily peak power
p for the same date. The first term calculates MSE of the
predicted peak sequence. On the other hand, the second term
calculates the squared error of the daily peak by computing
the difference between the daily peak and the maximum
value among the predicted hourly peak series. The problem
addressed above includes the proposed enhancement to the
vanilla Transformer whose objective function can be written
as follows: minŷ

1
n

∑
∀h(yh − ŷh)2.

Furthermore, to enhance both learning efficiency and pre-
diction accuracy, we have employed two sampling methods
and ensemble approaches, as illustrated in Fig. 3. Assuming
n = 24, the objective is to accurately forecast the peak
power series for a day, covering the hours from 1 am
to 24 pm, ensuring both the predicted sequence and its
maximum value are accurate. To train the auto-regressive
time series forecastingmodel, the available dataset consists of
hourly peak power series for the past 12 month (or 365 days
approximately), resulting in 365 × 24 = 8760 hourly peaks.
We also have excluded the weekend data for prediction
accuracy [37]. The overall of the proposed approach is shown
in Fig. 4.

The hourly peak data set is first divided into 365 sets of
24 hourly peaks so that each set includes peaks from 1am
to 24pm, which is called periodic sampling. By letting k ,
i.e., lookback window size as shown in Fig. 2, be the integer
multiple q of 24 (i.e., k = q × 24, q ∈ Z++), we get
periodic samples for training and testing, where Z++ is the
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FIGURE 2. Proposed hourly peak power forecasting framework, including the proposed enhancements to the Transformer model: i) providing a daily
peak as a conditional input to the decoder, and ii) forcing the daily max to be as close as the maximum value in the predicted hourly peak series,
where k and n is the lookback window size and the forecasting horizon, respectively, in the unit of hours.

FIGURE 3. The proposed two sample construction methods, i.e., continuous sampling and periodic sampling, and two-level ensemble
strategies, i.e., lower-level max-combine and upper-level mean-combine ensemble.

strongly positive integer set. To be specific, for given q, we get
365 − (q − 1) samples. This periodic sampling results in
the samples, where each sample has q set of hours peaks

from 1 am to 24 pm. This approach prepares the dataset
in the same period as that of the model output. Such data
preparation method may enhance the accuracy of prediction,
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FIGURE 4. Illustration of the overall workflow of both training and inference stages focusing on the input dataset and predicted output.

but the number of samples becomes small which may result
in under- or over-fitting [38].

For effective learning, we augmented the data set to
increase the number of samples. The other data sample
preparation approach we used is called continuous sampling,
and it does not follow daily-based sample construction. To be
specific, in continuous sampling, hourly peak data is not
divided into sets of 1pm-24pm peaks. For a given lookback
window size k , it draws k data from the beginning without
requiring the hour of the first data to be 1am. Consequently,
this approach yields a total of 8760− (k− 1) samples. To put
it shortly, The periodic sampling approach prepares data set
in a way to further enhance the prediction accuracy, while the
continuous sampling increases the number of samples and it
prevents under-/over-fitting.

The two datasets are then used to train the enhanced
Transformer model. Additionally, we have used different
sets of hyper-parameters, such as model complexity and
learning rate, to make different models have different
capability as marked by hyper-parameter profile #m in Fig. 3.
From the empirical studies we have performed, models
trained with different hyper-parameter profiles have different
characteristics. For example, large-capacity models trained
with large learning rates are good at capturing sudden changes
in the power peaks, while low-capacity models with small

learning rates can capture the overall trend. To leverage
such models all together, we propose two-level ensemble
approaches. First, we apply amax-combine ensemblemethod
among the predictions generated by the models trained with
the same dataset, i.e., either periodic or continuous samples.
In particular, the max-combine rule is applied among the
models since the goal is to predict peak powers. Subsequently,
the ensemble result from the models trained with continuous
sampling and the one from those trained with periodic
sampling are combined using a mean operation to enhance
generalization performance.

IV. EVALUATION
To validate the effectiveness of the proposed C2Transformer
in terms of prediction accuracy, we have carried out extensive
evaluation and comparison studies. For comparison, we have
implemented the following approaches that are widely
adopted for multi-step power forecasting: ARIMA, LSTM,
1D CNN, ConvLSTM and vanilla Transformer. We have
implemented the proposed C2Transformer along with others
in Keras with TensorFlow backend. In addition, the proposed
solution in this paper utilizes the XGBoost which is the state-
of-the-art multi-variable regressor [39] as a multi-variable
regressor to acquire the daily peak prediction to be used
as a conditional input. All the evaluations are carried out

136698 VOLUME 11, 2023



N. Kim et al.: Multi-Step Peak Power Forecasting With Constrained Conditional Transformer

on a high-performance desktop computer with the following
specifications: Intel
 Core™ i7-12700K processor, NVIDIA
RTX™ 3080 graphics card and 32GB RAM.

A. DATASET, PERFORMANCE METRIC AND PARAMETER
CONFIGURATION
The dataset we have used for evaluation is a combination of
multiple actual data from three different sources:
1. Daily workload record from Apr. 2016 to June

2023 acquired from a large-scale manufacturing site
owned by one of the largest manufacturing companies in
South Korea as well as worldwide. The particular site we
have considered in this work is 4 million m2-wide with
three dry docks and five floating docks, and its berthing
capacity is 24 vessels per year. The data is acquired by
directly downloading it from the company’s integrated
Enterprise Resource Planning (ERP) andManufacturing
Execution System (MES).

2. Daily weather record from Apr. 2016 to June 2023; the
daily average temperature and precipitation of the city
where the manufacturing site of our interest is located.
The data is acquired and downloaded from the publicly-
accessible Open MET Data Portal, operated by Korea
Meteorological Administration.2

3. Daily peak power history of the plant from Apr. 2016 to
June 2023, and hourly peak power history of the plant
for the past 12 months (i.e., July 2022 to June 2023).
Both are acquired and downloaded from the publicly-
accessible KEPCO’s portal, and due to their policy, the
hourly peaks are provided only for the recent 12 months.

The daily workload record is entered by the manager at
scheduled intervals and stored in the company’s integrated
ERP-MES. Cumulative workload records for a given period
(e.g., yearly reports for 2016-2022) can be downloaded
from the same system, encompassing both planned and
actual workloads. While the workload dataset is managed
and accessible internally within the corporate entity, other
datasets are controlled by external sources, such as MET
Data Portal for the weather history and KEPCO for peak
power measurements. The internal/external nature of the
data can affect the granularity of the data. For instance,
the raw workload records are collected and managed by
the corporate, which allows easy computation for various
periods such as weekly, monthly, quarterly, semiannually,
annually, etc. Conversely, external data often lacks such
fine granularity. In other words, one may not guarantee
sufficient data granularity of the external dataset which can
significantly impact the accuracy of the prediction model.

In addition to internal/external nature of the data, the
fluctuations in the data can pose challenges when training
a highly accurate model. Fluctuations in the data (or in the
sensed readings, in general) may appear as a result from
underlying physical status changes or additive undesired
noise. In this work, the effect of the former is precisely

2https://data.kma.go.kr/resources/html/en/aowdp.html

captured by the proposed approach which will be discussed
shortly. Additionally, the effect of noise is minimized for
several reasons. Firstly, the amount of workload and the
peak power usage is assumed to be precisely measured
by the corporation and KEPCO, respectively. Temperature
and precipitation are the values sensed by the dedicated
sensors, and they may occasionally be erroneous. However,
the proposed approach in this work uses the mean value of
each over a certain time horizon, and thus the effect of noise
can be cancelled.

The overall illustration of the workflow for both training
and inference stages focusing on the aforementioned dataset
is depicted in Fig. 4. As a reminder, the hourly peak
power series is fed to the proposed C2Transformer auto-
regressor, which also takes a conditional input of the daily
peak power predicted by the state-of-the-art multi-variable
regressor, XGBoost. The proposed C2Transformer then
generates hourly peak power series with high accuracy. The
generated power series is then used to compute 1) the accurate
peak power of the day by taking maximum value among the
series, and 2) the time (hour) of the day the peak occurs.

In this paper, the evaluation and comparison studies are
preceded by the following data pre-processing techniques.
After pre-processing the hourly peak power data, there
remains a total of 4344 hourly samples amounting to the
181 days of time span. The training and test dataset are
divided into 171 days and 10 days of samples each. The pre-
processing includes creating periodic dataset and continuous
dataset, replacing the null values with zeros, excluding
weekend data [37], unifying the date format among the data
from multiple sources, etc. For multi-variable daily peak
power prediction which is to be provided as a conditional
input to the C2Transformer, a dataset composed of daily
peak power series and daily workload/weather logs consisting
of nine features are used, excluding the weekend data. Out
of the nine features, seven are related to workload (e.g.,
processing, assembly, painting, etc.), and the remaining two
are the average temperature and precipitation.

The multi-step peak power prediction errors are measured
by the widely-used error functions such as MAE, MAPE,
MSE and RMSE with their standard formulae being as
follows, where yi and ŷi is the actual value (or called original
value) and prediction, respectively.

MAE =
1
n

n∑
i=1

|yi − ŷi| (2)

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3)

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (4)

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (5)
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TABLE 1. Configuration of the training parameters for deep learning
models considered in this study.

For evaluation, we have used different values of lookback
window sizes k and forecasting horizons n. Also, the con-
figuration of the training parameters for different prediction
models are shown in Table 1. To prevent over-fitting, both
early-stopping and restoring-best-weights are enabled during
training by using the callback functions provided by the Keras
framework.

B. EVALUATION & COMPARISON RESULTS
First of all, we have trained a XGBoost multi-variable
regressor for daily peak power prediction. The resulting
daily peak power prediction is to be given to the proposed
C2Transformer as a conditional input. To validate the model
accuracy, the prediction results are shown in Fig. 5. The
figure shows the normalized predictions after shuffling the
data.3 As it can be seen in the figure, the trained model
can successfully capture the trend in daily peak changes.
Although does not precisely detect sudden and unexpected
drops happened around the day of 60, the trained model
has achieved high generalization performance; i.e., MAE
of 4225.58, MAPE of 6.19%, MSE of 29335757.66, and
RMSE of 5416.25. In the following evaluation results, it has
been shown that the achieved accuracy level of the daily
peak prediction by XGBoost can contribute to enhancing the
prediction accuracy of the hourly peak power by the proposed
C2Transformer. Also, any further accuracy enhancement of
the daily peak prediction model can help C2Transformer
yield more accurate hourly peak prediction.

We have compared the accuracy of the hourly peak power
forecasting between the widely used deep learning models
and the proposed C2Transformer with different lookback
window sizes k = 120, 240, 360 and forecasting horizon
values n = 24, 48, 72. As a reminder, the unit of both
k and n is hour, and thus, k = 120 and n = 24, for
example, corresponds to the time span of five days and
one day, respectively. The evaluation results are summarized
in Table 2, Table 3, Table 4, and Table 5, where Table 2
and Table 3 are the experiment results using periodic
data, and Table 4 and Table 5 are the results from the
continuous data. For each evaluation configuration, the least

3Due to the Non Disclosure Agreement, the raw data cannot be presented
as it is. Thus, Fig. 5, Fig. 6 and Fig. 7 show the normalized and shuffled
results.

FIGURE 5. Normalized daily peak power prediction results by the trained
multi-variable XGBoost model.

FIGURE 6. Normalized hourly peak power estimates of various models
trained by the periodic data with the target configuration (i.e., lookback
window size k = 120 and forecasting horizon n = 24).

FIGURE 7. Normalized hourly peak power level estimates of various
models trained by the continuous data with the target configuration (i.e.,
lookback window size k = 120 and forecasting horizon n = 24).

MAEwhich is the primary performance measure in this study
is highlighted in bold.

As it can be seen in Table 2, when the considered
models are trained with periodic dataset, the proposed
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TABLE 6. Prediction accuracy of the daily peak; trained by the periodic
data with the target configuration (i.e., lookback window size
k = 120 and forecasting horizon n = 24).

TABLE 7. Prediction accuracy of the daily peak; trained by the continuous
data with the target configuration (i.e., lookback window size
k = 120 and forecasting horizon n = 24).

C2Transformer has achieved the least MAE for all k .
In particular, when k = 120, C2Transformer has shown the
least performance with MAE being 6358.84. Among the rest
deep learning models, the vanilla Transformer outperformed
on average, showing the effectiveness of using the Trans-
former model for multi-step time-series forecasting. Also,
the superiority of C2Transformer compared to the vanilla
Transformer validates the effectiveness of the proposed
enhancements, i.e., conditional input and constrained output.
One interesting finding in this evaluation is that in the case of
C2Transformer, increasing the value of k rather decreased the
MAE/MAPE/RMSE performance, meaning that providing
too much of the history data can degrade the multi-step
prediction accuracy under the assumed configuration.

The following Table 3 also shows the performance
of the considered deep learning models that are trained
with periodic dataset. For the same lookback window of
k = 120 (i.e., five days of time), the value of n was
varied in this evaluation. As shown in the table, the proposed
C2Transformer has yielded the least MAE error over all
considered values of n. In other words, C2Transformer
can successfully forecast peak power series over longer-
term spans as well. One of the interesting findings drawn
from this evaluation is that for the considered values of n,
the increase in the forecasting horizon did not affect the
MAE performance of C2Transformer much, validating the
robustness of the proposed approach. It also was the same
to 1D CNN, LSTM and vanilla Transformer, but ConvLSTM
resulted in the opposite result, i.e., MAE is proportional to n
in ConvLSTM.

TABLE 8. Prediction accuracy of the daily peak hour prediction trained by
the periodic data with the target configuration (i.e., lookback window size
k = 120 and forecasting horizon n = 24).

TABLE 9. Prediction accuracy of the daily peak hour prediction trained by
the continuous data with the target configuration (i.e., lookback window
size k = 120 and forecasting horizon n = 24).

The other two tables, Table 4 and Table 5, show the
evaluation results of the models trained with the continuous
dataset. For all different values of k and n, the proposed
C2Transformer outperformed the rest. With n = 24, the
C2Transformer yielded the least MAE error when k = 120,
whichwas the casewith periodic dataset as well. Surprisingly,
as the value of n increases, C2Transformer recorded the
better MAE performance, which shows the robustness of the
C2Transformer with respect to the forecast horizon. Exclud-
ing the C2Transformer, the vanilla Transformer outperformed
the rest as it did with the periodic data.

Overall, the C2Transformer has achieved the best perfor-
mance in terms of MAE regardless of the dataset. Although
C2Transformer resulted in a slightly better performance
when it is trained with continuous data than periodic, the
difference on average is not significant. The superiority
of the C2Transformer especially compared to the vanilla
Transformer is due to the two key advancements we propose
in this study: 1) the enhancements to the Transformer model
by adding an additional output constraint and by providing
a conditional input, and 2) two-level ensemble among the
models trained with different hyper-parameters and dataset.

Except the C2Transformer, the vanilla Transformer has
recorded the best MAE performance among the rest, showing
the effectiveness of the Transformer model for multi-step
time-series forecasting. On average, the LSTM model has
recorded the largest MAE errors. Although it has effectively
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TABLE 10. Best performance of the multi-step hourly peak series prediction of the considered approaches.

TABLE 11. Best performance of the daily peak power prediction.

TABLE 12. Best performance of daily peak time prediction of the considered approaches.

predicted the large-scale trend in peak power changes, LSTM
failed to precisely predict the small-scale variations. Among
the two deep learning models utilizing convolutional layers,
i.e., 1D CNN and ConvLSTM, 1D CNN resulted in robust
MAE performance against different values of k and n. On the
other hand, ConvLSTM performed poorly especially when
the values of n varies.

The following Fig. 6 and Fig. 7 show the time-series
forecasting results of the considered deep learning models
as well as ARIMA which is a widely-used statistical
approach that are trained with periodic and continuous data,
respectively, when lookback window size k = 120 and
forecasting horizon n = 24. This particular pair of values
(k = 120, n = 24) is called target configuration in this
study, and will be used to compare the performance among
the considered models in this study. As it can be clearly
seen from both figures, C2Transformer can precisely capture
the changes in the peak power and thus, it resulted in the
smallest MAE performance. To be specific, C2Transformer
trained with periodic data (i.e., Fig. 6) has shown less-smooth

predictions with effective capturing of sudden changes in
hourly peaks. On the other hand, C2Transformer trained with
continuous data (i.e., Fig. 7) has shown more precise fitting
to the overall trend in peak changes by making smoother
predictions, but with less effective capturing of sudden
changes. In other words, the smoother model outperformed
in capturing the large-scale changes, while the less-smoother
model predicted the sudden changes with higher accuracy.
This finding motivated us to further combine (i.e., the 2nd

level ensemble; see Fig. 3) the model trained by the periodic
data with the model trained by the continuous data so that the
ensemble model can precisely capture the large- and small-
scale changes of peaks simultaneous.

Considering the importance of predicting the daily peak
which can be done by taking the maximum value among
the predicted hourly peak series, we have carried out a
comparison study for the daily peak accuracy among the
considered methods in this study. The Table 6 and Table 7
show the MAE of the daily peaks predicted by the considered
models trained by the periodic data and continuous data,
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respectively. Regardless of the dataset whether it is periodic
or continuous, the C2Transformer outperformed the rest by
having the least error in predicting the daily peak. Especially
when it is trained by the periodic dataset, the error becomes
1257 which is substantially less than any other approaches
considered. The vanilla Transformer has shown the second
best performance, validating its robustness against the dataset
used for training. The ARIMA and LSTM resulted in high
errors, implying their limited capacities in making multi-step
predictions with the data having complex variations.

We also have carried out an evaluation on the prediction
accuracy in forecasting the time (i.e., hour) of the day when
the peak occurs. The evaluation and comparison results with
the target configuration are summarized in Table 8 and
Table 9. The former shows the results from the models
trained with periodic data, while the latter with continuous
data. On average, ARIMA and recorded a large MAE error
in predicting the peak hour, while both ConvLSTM and
C2Transformer resulted in the least MAE error. However,
in what follows we will show that by performing an
additional ensemble between the two C2Transformer models
that are trained with periodic and continuous data each,
C2Transformer can significantly enhance the accuracy of the
peak time prediction.

Finally, we have compared the best-performing instances
of the considered approaches, and the results are summarized
in Table 10, Table 11 and Table 12. For each of the results
included in the tables, we have chosen the values of k and n
that yielded the least MAE for each approach. For example,
1D CNN recorded the least MAE when k = 240 and
n = 24. On the other hand, C2Transformer resulted in
the least MAE when k = 120 and n = 24 which is
the same as the target configuration. As it can be seen
from Table 10, C2Transformer resulted in the least MAE
errors of 5858.16 among all approaches. Similarly, for the
prediction of the peak time, C2Transformer recorded the
least error (i.e., zero hour, see Table 12) with the MAE
error of the daily peak value being 2296.38 as shown in
Table 11. This performance enhancement validates one of
the technical advancements proposed in this study, i.e.,
the two-level ensemble as shown in Fig. 3. The first-level
ensemble among the models trained with either continuous or
periodic samples enhance the accuracy of the trained model
by carrying out max-combine ensemble. Then, the proposed
approach combines the two ensemble’d models via mean-
combine rule so that the generalization performance can be
further enhanced. Such two-level ensemble with different
combine approaches can effectively enhance the prediction
performance of not only the peak series but also the time of
the peak occurs.

V. CONCLUSION
In this study, we have introduced an innovative and effective
framework for power forecasting, with a primary focus
on predicting peak power usage in a large-scale plant.
To enhance the accuracy of the multi-step peak predictions,

we have proposed a set of enhancements to the Transformer
model, i.e., incorporating a conditional input and constrained
output along with periodic/continuous sampling and two-
level ensemble. This conditional input plays a crucial role
in improving prediction accuracy, ensuring that the predicted
daily peak aligns with the maximum value among the
predicted hourly peak power levels. To generate the daily
peak prediction used as an input for enhancing the proposed
C2Transformer, the state-of-the-art XGBoost has been uti-
lized in this study. This daily prediction is subsequently fed
into the C2Transformer decoder module, enabling precise
hourly peak power predictions over n hours of time span.
Through comprehensive evaluations with the actual dataset,
we have validated the effectiveness of the proposed approach.
Furthermore, in comparison to the widely used deep learning
models for time series predictions, we have shown that the
proposed approach outperforms consistently.
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