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ABSTRACT Automatic and precise segmentation of the prostate is beneficial to various diagnostic and
therapeutic procedures on magnetic resonance imaging. However, the work is very challenging because of
the heterogeneity of prostate tissue, the lack of clearly defined boundaries, and the wide variation in prostate
shape between individuals. Based on the segmentation scheme for the prostate and its lesion regions, a new
deep convolution neural network is proposed in this research. To acquire excellent segmentation performance
with consistency in both appearance and space, CRF-RNN is added on top of the network. By introducing
an attention mechanism, the network is made to focus more feature on the prostate zones in both channel
and spatial dimensions. In addition, a new dense block is created to stabilize parameter updates and prevent
gradients from disappearing as the network deepens. Finally, the model was trained and validated using the
real prostate dataset of 180 patients with four cross-validations. The proposed model achieves 95% HD,
86.82%, 93.90%, 94.11%, 93.8%, 7.84% for prostate, 79.2%, 89.51%, 88.43%, 89.31%, 8.39% for lesion
area in segmentation in terms of IOU, Dice score, accuracy, and sensitivity. Compared to the state-of-the-art
models FCN, U-Net, U-Net++ and ResU-Net, the segmentation model shows more promising results. With
an outstanding achievement in automated segmentation of prostate and lesion regions, the presented model
highlights the ability of the novel deep convolutional neural network to facilitate clinical disease intervention
and management.

INDEX TERMS Dense block, magnetic resonance imaging, convolution neural network, attention mecha-
nism, CRF-RNN.

I. INTRODUCTION
Prostate cancer (PCa) is a very frequent disease in most men,
accounting for about one in two cases and is the fifth most
common cause of death worldwide. [1]. It is a very late age of
incidence until 55 years and gradually increases with a peak
age of 70 to 80 years. The time of onset is slightly earlier in
patients with familial hereditary prostate cancer, with 43% of
patients aged less than 55 years [2]. For the diagnosis, treat-
ment and follow-up of prostate cancer, transrectal ultrasound
(TRUS), magnetic resonance imaging (MRI) and computed
tomography (CT) are the main imaging modalities available.

The associate editor coordinating the review of this manuscript and

approving it for publication was Santosh Kumar .

Conventional segmentation efforts for prostate or lesion
areas have involved outline and appearance, geographic, and
some mixed methodologies. Prostate margins or borders are
enforced on prostate segmentation. For example, by fully
exploiting the additional knowledge encoded in the different
layers of a convolutional neural network (CNN) to improve
prostate segmentation in the TRUS. Wang et al. [3] built a
deep neural network fitted with a depth attention function
module. Brosch et al. [4] reformulated boundary recognition
as a regression problem, in which we can set a convolution
neural network to estimate distribution of distances between
surface meshes and their associated boundary points.

For accurate segmentation of the prostate and its lesion
regions, manual segmentation continues to be the most
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widely used method. This is an extremely time-consuming
task, which varies from company to company. This may
result in poor repeatability and increased observer variability.
Reliable automated segmentation of the prostate and its lesion
regions is therefore urgently needed in daily clinical practice.

Today, CNN is gaining ground in medical imaging, having
achieved results in many image classification and segmen-
tation works [5], [6], [7]. One of the distinguished flagship
works, Ranneberger et al. [8], suggested the U-Net and fully
exploited the scarce and precious feature to improve the
estimation performance. Instead of a simple binary classi-
fication, the U-shaped structure enables precise detection
of medical images. The entire U-Net process consists of
encryption and decryption, only a convolution layer without
a full connection layer. U-Net is probably the hottest seg-
mented network. Isensee et al. [9] argued that a common
U-Net can meet the needs of all segmentation problems and
only one image pre-processing and post-processing for all
segmentation problems are needed. As a result, nnUNet was
proposed to develop detailed guidelines for the entire seg-
mentation process of image pre-processing, network training
and image post-processing. Rajchl et al. [10] proposed inter-
actions based on enclosing boxes or underlining, but they
treated the results of these interactions as weak annotations
for segmentation rather than being used to guide segmenta-
tion. Top et al. [11] then further combined active learning
and interactive approaches to allow physicians to correct
for areas of uncertainty and help mold better feature selec-
tion. Wang et al. [12] improved segmentation performance
by treating user interaction information as a new channel
of the image and feeding it directly into the new model.
Geng et al. [13] showed the multiple-channel feature pyramid
structure to handle multiple-scale feature mapping, where
each layer controls the scale of the channels through the SE
module to enhance the edge features of the prostate. The
feature map output from the MFPN was fed into the region
proposal network to get the final results.

For the prostate and its diseased regions, it is very demand-
ing to obtain a high-performance automatic segmentation
model. The blurring of tissue boundaries within the image
renders it impossible to discriminate them from the surround-
ing dissimilar prostate tissue, further leading to under or
over-segmentation [14]. Finally, the fact that diverse individ-
uals typically come in various sizes and shapes of prostate
gland poses a problem for modeling universal learning. The
above-mentioned factors contribute to the difficulty of resect-
ing regions of prostate cancer. A new network is suggested in
this work for the efficient segmentation of the prostate and
prostate cancer region. The stem of the network is informed
by the U-Net. We increase a straightforward but powerful
attention module that can be applied extensively to improve
the representational power of CNNs. The attention network
is responsible for concentrating attention on some important
features of the image, thus improving the quality of the seg-
mentation. To mitigate the disappearance of gradients and to
increase the prevalence of characteristics in the model, a new

dense block is also used. The dense block allows the network
to be characterized by the more abstract features that are of
interest to us. Data augmentation is used to address overfitting
of the model due to a lack of data during the data preparation
phase. The principal components of this work are as follows:

1) To achieve pixel-wise detection, a new CNN model is
presented in the work. The network utilizes lengthy and
skips connections between the opposing stages.

2) To raise the semantic level of segmentation, a mean-
field approximation as a recurrent neural network is
embedded into our model.

3) To maintain more efficient prostate features by
stabilizing parameter updates, a new dense block is
added, using short-hop connections between different
convolution layers.

4) CBAM allows for a better model focus on prostate and
lesional characteristics, both spatial and canalicular.
By learning which information to emphasise and which
to suppress, the model supports the flow of information
within the network.

5) The final step is the evaluation of the validity of the
proposed model on a real-world dataset. For several
evaluation metrics, the performance of the model is
superior to the advanced segmentation model.

II. MATERIALS AND METHODS
A. DATASETS
Data was centrally collected between January 2018 and
May 2021. A total of 180 patients (122 healthy and
58 prostate cancer patients) were scanned on the GE 3.0T
750 MR. All patients gave informed consent for data col-
lection. The DWI format was used as input in our model.
To ensure the accuracy of the annotated data, we invited six
experienced urologists to participate in data collation and
annotation before and after. The specific division of labor was
that three clinicians with 5 years of experience spent 3months
annotating the segmented region. The other three specialists
examined and corrected the annotated regions.

B. DATA PRE-PROCESSING
Due to the small amount of data, data enhancement was used
during the experiment. Data enhancement was performed
by rotating an image to 4 angles (0,30,60, 90); randomly
merging the central regions of 3 images into one image; and
zooming in or out. The data preprocessing stage also contains
a normalization operation of the data to converge the data
to a point as soon as possible. Linear scaling, also known
as minimum-maximum scaling, is a linear variation of the
original data, scaling the data between [0,1].

X ′
=

x − min(x)
max(x) − min(x)

(1)

This preserves the relationships present in the original
data and is the easiest method for eliminating magnitude and
scatter effects.

VOLUME 11, 2023 145945



C. Ren, H. Ren: Prostate Segmentation on Magnetic Resonance Imaging

FIGURE 1. Structure of the proposed (our) method. The model is coloured yellow for the CBAM module, dark blue for the new dense block
(NDB), with CRF-RNN at the end of the model.

III. THE PROPOSED MODEL
Our model is supported by the classic U-Net framework
[8], [15] and is known as encoder-decoder concept. Some
modules are introduced in the model, including a new dense
block (NDB), convolution block attention module (CBAM),
and conditional random fields as recurrent neural networks
(CRF-RNN) [16] to capture more feature representation in
segmentation. Characteristics from the shrinkage path have
been combined into the expansion path at the symmetry and
asymmetry levels to exploit the flat information. Figure 1
shows the detailed design of the proposed scheme. Input
of the model is a DWI image of the prostate. Convolving
operations within the model are all performed using the
3 × 3 shown in red. The model comprises a contractile
(left) and expansive (right) path. The contractile pathway
produces contextual information, and the expansive path-
way provides precise positioning. The entire architecture
supports continuous parameter tuning with short jump links
between the various convolution layers in every step. Long
and short skip connections are combined to increase overall
network efficiency [17]. The contraction path, which is the
stage where the downsampling takes place, raises the total
to 1024 channels, up from 64. Convolution, ReLU, dense
block and 2 × 2 max-pooling are used in each step of the
contraction path. By upsampling and reducing the number
of channels from 1024 to 64, the expansion path gradually
regains its original size. Each increment in the growth path
consists of an up-convolution of the featured prostate map,
then a 2 × 2 convolution that halves the number of feature

points, a linking with the tailored prostate feature from the
same level’s contraction path, and two 3 × 3 convolutions,
each positing a ReLU, a CBAM. To obtain the number of
classes, three convolutions and a spatial pyramid pooling at
different rates (6, 12, 18) are performed in the latter layer.
Since border pixels are dropped in each convolution. The
NDB [18], which comprises batch normalization, the ReLU
layer, and the convolution layer, is a dense concatenation
of numerous composite functions. It is designed to mitigate
gradient disappearance and improve the spreading of the
prostate and its lesion features for recycling in the following
network layer.

A. THE NEW DENSE BLOCK
The suggested dense block is built on the concept of dense,
residual and transition blocks. The skip connection is called
a new dense block. (NDB), Figure.2. Thus, these com-
bined nonlinearities in the two subsequent blocks undergo
transformations, which are walked around by a skipped con-
nection [19]. bi is the input of the network, then the output is
defined as:

x0 = A(bl) + F(bl) (2)

where F(xi) is used as a skip connection to allow an unhin-
dered flow of information through the network. A(bi) can be
shown as:

A(bl) : AT (AD([bl, bl+1, . . . , bl+m])) (3)
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FIGURE 2. (a) New dense block (NDB); (b) operations in each layer of dense block; (c) operations in
transition block; concatenation.

AT stands for the nonlinear function in the transition.
b0−1 represents a nonlinear transformation of the outputs of
the follow-up stacking layers in DBN.

b0−1 = AD([bl, bl+1, . . . , bl+m]) (4)

AD(.) is a layer shown in (b), which consists of batch
normalization, ReLU, 1×1 convolution, batch normalization,
ReLU, and 3× 3 convolution. The DBN contains four layers
in (a).

AT(.) is used in the transition operation with batch normal-
ization, ReLU, 1×1 convolution, and pooling operation in (c).
The space size of the output is reduced by a factor of 2 in
each operation. Therefore. The addition of the elements of (3)
applies a further downsampling operation during the skip.
The feed to the second block includes a downsampled version
of the raw data. It is already modified by a nonlinear function.

B. CONVOLUTION BLOCK ATTENTION MODULE
The CBAM [20] employs an attention mechanism to selec-
tively improve multidimensional prostate features, extract
features of interest in each layer and suppress more non-
relevant features. The network allows the creation of both
channel and spatial awareness graphs through the exploitation
of the channel-to-channel and space-to-space relationships
of the characteristics respectively, which account for the ‘‘
WHAT ’’ and ‘‘ WHERE ’’ questions. The CBAM is com-
posed of channel and spatial attention. The imported DWI
is 2-channel K. CBAM specifies a one-dimensional channel
attention graph BC and spatial attention graph BS [20], [21].

BC (K ) = σ (MLP (AvgPool (K )) + MLP (MaxPool (K )))

= σ
(
W1

(
W0 (K c

avg)
)

+W1
(
W0(K c

max)
))

(5)

Bs(F) = σ
(
g7×7([AvgPool(K );MaxPool(K )])

)
= σ (g7×7(K s

avg;K
s
max)) (6)

where σ shows a common sigmoid function, W0 ∈ R(c/r×c),
andW1 ∈R(c/r×c). r indicates restoration ratio. The size of the
activation layer belongs to RC/r×1×1. Considering that MLP

weights, W0 and W1 are shared for model inputs. ReLU is
followed by W0. pooling operation, kcavg and kcmax are two
spatial feature tools. g(7×7) indicates a convolution operation
and the size of the filter is 7 × 7.
The principle of attention is interpreted as follows:

K ′
= BC (K ) ⊗ K (7)

K ′′
= BS (K ′) ⊗ K ′ (8)

⊗ is the multiplication of representative elements.
K′′ refers to the model output.

C. CRF-RNN
Due to the limited capability of deep learning techniques in
depicting objects, we introduce a type of convolution neural
network. It is composed of a convolution neural network and
probabilistic graphical model based on conditional random
fields (CRF). CRF-RNN enacts a two-dimensional fully con-
nected CRF as a recurrent neural network (RNN) [22]. The
segmentation project is viewed as an optimizing task using
CRF by minimizing function:

E(Y ) =

∑M

i=1
Ø(yzi ) +

∑
∀i,j,i<j

ω(yzi , y
x
i ) (9)

where Y is the label of every pixel Ii. I is a 2D image. yzi shows
target prediction of label z to image pixel Ii. yxj is the target
prediction of label x to pixel, z, xϵL = l1 . . . , lc denotes task
labels. Allocated costs of label u to Ii are measured by ϕ(yzi ).
ω(yzi , y

x
i ) is the allocation of the cost of labels z and x to

Ii and Ij. Minimizing E(Y) to the function [20]:

F(Q) =

∑
∀i,j,i<j

∑
∀z∈L

q
z

i
qxi ω(y

z
i , y

x
i )

+

∑
∀i

∑
∀z∈L

qzi ln q
z
i (10)

where qzi is the probability for label z to pixel.

qzi ∝ exp{−∅(yzi ) −

∑
j,j̸=i

∑
∀x∈L

qxj ω(y
z
i , y

x
i )}

(11)

ω(yzi , y
x
i ) = µ(z, x)

∑K

m=1
wmkm(fi, fj) (12)
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FIGURE 3. Convolution block attention module (CBAM). Channel attention module BC, spatial attention module BS.

The number of Gaussian kernels k (m) is 2. After the calcula-
tion of (4) and (3), the probability value is obtained:

qzi ∝∅(yzi )−exp{
∑

∀x∈l
µ(z, x)

∑K

m=1
Wm

∑
m=1

km(fi, fj)qxj }

(13)

Fully connected CRF forecasts the likelihood of a label
to a pixel according to equation (13). qzi is computed with
a mean-field iteration approach, formulated as RNN in order
to allow CNNs and fully connected CRF to be incorporated
into a single network. The crucial opinion of CRF as an RNN
is that such an algorithm for inference may be composed of
a series of steps [22]. CRF as an RNN layer can improve the
quality of semantic segmentation with the gradient descent
method [23].

IV. EVALUATION OF THE PROPOSED MODEL
We evaluated the network comparison with U-Net and its
variant networks. FCN [24], U-Net [15], U-Net++ [25],
ResU-Net [26]. Cross-entropy loss was used. The used opti-
mization method was Adam since it converges faster. Each
algorithm was retrained using real data sets. The number
of iterations to reach convergence was different for each
algorithm, and finally, we selected the best weights for each
group to participate in the test comparison. Accuracy and
Iou are also the most commonly used evaluation metrics
to assess segmentation performance starting from a pixel
classification perspective. Hausdorff distance mainly mea-
sures the degree of similarity points. Using 4 cross-validation
approach, data was separated into a learning set (80%) and

FIGURE 4. Changes in the loss on training data (our network ).

a testing set (20%). The size of the image was 256 × 256.
Equipment configures included NVIDIA GTX 3090 × 8 and
Ubuntu 64.

A. RESULTS
1) MODEL PERFORMANCE COMPARISON
a: LOSS VS EPOCH
As shown in Figures 4 and 5, the training session was
recorded. These two charts show the different impact between
the area of the prostate and the lesion on the epoch time.
Epoch represents the completion of one round of training
iterations. Figure 4 shows the loss trend of the prostate and
its lesion segmentation. The loss value reduces substantially
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TABLE 1. Comparison of segmentation performance of the prostate region for five models.

TABLE 2. Comparison of segmentation performance of prostate lesion area for five models.

TABLE 3. Ablation experiments from our network for the segmentation of the prostate and its lesion regions (
√

indications to implement this technology
in the model).

FIGURE 5. Changes in IOU on training data (our network ).

at the beginning and the convergence slows down from
500 epochs. Later, as the amount of iterations grows, the
model begins to converge.

b: IoU VS EPOCH
Given a set of images, the IoU measurement gives the sim-
ilarity between the object prediction region and the ground
truth region. Figure 5 gives the IoU variation of our model
in the lesion region and the prostate region. In the beginning,
our model IoU values are highly variable and oscillate up and
down, especially between 400 epochs and 500 epochs. After
that, the fluctuations slowly become smaller.

From each dimension, four cross-validations are used to
calculate the segmentation performance of our model for the
prostate and its lesion area. Table 1, the average dice score,
Iou, accuracy, sensitivity, and 95%HD of the proposed net-
work for the prostate are 93.94%, 85.85%, 94.21%, 93.85%
and 7.80, respectively. Our network is superior to others. For
example, U-Net, FCN, U-Net++ and ResU-Net were 1.21,
1.87,0.6, and 4.71 percent points lower than our network in
accuracy for the prostate segmentation. In Table 2, the results
of the presented network are better for the segmentation per-
formance of prostate lesions in terms of Dice score 89.62%,
Iou scores 78.30%, accuracy 88.55%, sensitivity 89.39%
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FIGURE 6. Segmentation performance of our network in four different samples. The column from left to right is the raw
image, ground truth, and prediction images of our model. To make the results clearer, the non-targets (background) are
masked in black.

and 95% HD 8.28 when compared to the rest of the four
models.

The work contains ablation sets to test the influence of
each module in Table 3. NDB, CBAM, and CRF-RNN
are incrementally added to the underlying network. The

experiment was executed with the same parameters, such
as optimization strategies (Adam), batch size, learning rate,
initialization, and loss function. From this table, we can
see that each module has an important role in the seg-
mentation. Our method obtains the optimal performance
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FIGURE 7. Visualization of the final layer of our model for prostate.

to learn more robust representations from NDB, CBMA
and CRF-RNN.

2) VISUALIZATION OF SEGMENTATION RESULTS
The following images give a schematic of the segmentation
results of our model in Figure.6. The picture below provides
the segmentation outcome of our model in Figure 6. We have
randomly chosen 4 samples from the test results to visualize
the results. Consistent with the results shown in Tables 1
and Table 2, the performance of the prostate region is more

sensitive than the discrimination of the lesion region. To illus-
trate the impact of the attention mechanism in our model,
Figure 7 is presented to visualize the results of attention to the
prostate lesion region in the last layer of the model. The red
mask indicates the region of interest, i.e., the prostate lesion
region.

V. DISCUSSION
To boost the performance of segmentation network and to
aid in clinical management, a deep network with NDB
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(New Dense Blocks) and CBAMs, CRF-RNN, was shown
to take full advantage of the additional features encoded
in different layers of the network to segment the prostate
and the regions of disease. The performance of the model
was evaluated on an actual data set. The experiments were
designed to observe the loss and IOU variation during train-
ing, to compare the models’ performance and to visualize
the models’ performance. Finally, we show that our proposed
segmentation technique is superior to current techniques for
prostate and lesion segmentation. The proposed technique
showed excellent results, especially around the lesions, and
this was highly relevant for clinical diagnosis and therapy.

Currently, many studies show that DCNN can be used
to segment the prostate or to determine prostate cancer.
Ding et al. [27] presented a method for recalibrating mul-
tilayer feature maps using multi-scale and channel self-
attention (CSA). By embedding multi-scale features at the
jump junction of the U-Net model (called UCAnet), they
showed a consistent improvement in prostate segmentation
in Dice, IoU, and ASSD. Duran et al. [28] demonstrated
an innovative CNN model using an attention mechanism
to segment PCa. This is like what we used to investigate.
Furthermore, our model used CBAM for capturing spatial
and channel features. A large number of effective features
were extracted from this model for automatic and accurate
segmentation of prostate lesions. We believe that the network
has a few advantages.

First, our model is also devised with a synchronous struc-
ture, contracting and expanding paths, which are inspired
by the classical model U-Net. In the network, copy and
series connections are used in the same layer. The fusion of
features is also present in different layers. This network is
based on continuous in-depth feature extraction of prostate
features using a systolic network. Meanwhile, the extended
network is used to fill in the lacking images of the reduced
network. To better exploit the underlying image information,
we merge the lower sampled features with the upper layer
features.

Second, the new dense blocks are added to the down-
sampleing phase of the model to efficiently preserve and
propagate the prostate and the characteristics of the lesions.
In the symmetric up-adaptation phase, an attention mech-
anism is introduced that allows the model to focus on the
features of the prostate in two dimensions: the spatial dimen-
sion and the channel dimension. In general, the prediction
results are affected by the large number of parameters in the
DCNN model. DNB and CBAM being consolidated into the
model do not increase the parameter burden of the network
but can improve the segmentation performance [20], [23].
CRF-RNN is placed at the end of the model to improve the
semantic quality of the segmentation.

Third, several depth networks for prostate cancer identifi-
cation use a composite of image series as input [15], [29], [30]
or the model adopts a multi-transverse output [31], [32]. The
deeper the model, the more training instances are needed and
the higher the risk of overfitting. In comparison, our model

also produces good results using a simple image input and a
branch output.

There are some limitations of our study: (1) In deep learn-
ing, it is more data means more output. The data used to train
themodels was limited. (2), The running speed of the network
could also be raised. For example, considering optimizing
the algorithm or the tuning strategy, etc. (3), Initializing
the parameters will have an enormous effect on the results
of the model. For the parameter model, we use a random
initialization. For the convergence of the model, an effective
initialization is more beneficial. Clinical applications require
more demanding models, such as the requirement of robust-
ness and real-time. In the future, we will continue to expand
the prostate data, and on the other hand, the joint use of MRI
data in a variety of formats can bridge the shortcomings of
a single input and increase the segmentation outcome of the
prostate and lesion regions.

VI. CONCLUSION
In conclusion, for the segmentation of the prostate and
its diseased area, we propose a new segmentation model
which incorporates a new dense block, a convolution block
attention module and CRF-RNN techniques. Experimental
results show that this automatic segmentation model has a
better performance compared to other models, supporting
its promising potential to supplement the detection and
treatment of prostate diseases in clinical medicine.
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