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ABSTRACT The topology of transportation networks such as road and rail networks determines the
efficiency and effectiveness of the corresponding transport systems. Quantifying the relative importance of
nodes of such networks is vital to understand their dynamics. Centrality metrics which are used in network
science often make the assumption that only the shortest paths contribute to the importance of the nodes.
In traffic scenarios however, while most traffic would preferentially go though paths of least cost, paths
which are costlier are not omitted entirely. In this work, we introduce a new centrality metric, transportation
centrality, which considers all paths that go through a node, and uses Logit functions and path lengths to
compute the traffic which goes through each path, which in turn is used in centrality calculation. Therefore,
this metric can be calculated based on topology alone, while it can also utilise traffic data if this is available.
We demonstrate the utility of this new centrality metric by considering the suburban transportation networks
of Seoul and Delhi. We also analyse the influence of the sensitivity parameter of the Logit function in the
calculation of transportation centrality. We demonstrate that the introduced centrality metric is useful in
understanding the relative importance of nodes in transportation networks, including networks for which no
traffic data is available.

INDEX TERMS Transportation centrality, transportation networks, centrality, traffic modelling.

I. INTRODUCTION
Designing, modelling and understanding transportation net-
works is an aspect of great practical importance in urban
planning and design [1], [2], [3]. In designing a transportation
network, the efficiency of travel, minimisation of travel
time, minimisation of travel cost, optimisation of safety,
security and comfort, as well as the reliability and robustness
of the network against failures and targeted attacks are
important considerations. Transportation network topologies
need to be designed in such a way that they are reliable
and robust against natural and man-made disasters (such
as bushfires, floods, earth quakes, and terrorist attacks),
because during such events, transportation networks are the
conduits of aid, including emergency services and relief
supplies, as well as the conduits of escape for the affected
population [4], [5], [6]. Therefore it is vital that they are
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designed to perform well during such disasters. On the
other hand, transportation network topologies may need to
face pressure due to deliberate choices in urban design. For
example, road space reallocation [7], [8] is currently being
undertaken in many cities, as these cities make a choice
to move away from motor traffic and put more emphasis
on public transport, pedestrian traffic and cycling, as well
as sustainability initiatives such as parklands. When these
processes happen, road space re-allocation takes place, yet the
road network should have been designed in such a way that
such reallocation does not critically impair the functioning
of the road network. Therefore, designing road networks
is a challenge which needs to take into account not only
considerations of efficiency and cost, but also long term
design imperatives and atypical scenarios such as disasters
and extreme loads.

Modelling a transportation network at a level of abstraction
which is amenable to topological analysis can be challenging
due to many reasons. Complex network science often
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considers large networks where there are a limited number
of node types or link types, or the attributes of nodes and
links which are modelled are limited [9], [10]. In particular,
a certain level of uniformity among the links is assumed,
so that the topological aspects can be focussed upon. In real
world transportation networks however, each link is different
from others in some way, and it is often difficult to even
define a particular link. Indeed, network reliability of real
world transportation network has two dimensions [1], [2]:
one is connectivity, or the ability for any node to be reached
from any other node in the network, which is more amenable
to topological analysis from a complex network science
perspective. The second one is performance reliability, which
measures the ability of a traveller to travel to their destination
on schedule, within cost etc, which needs to consider a
number of characteristics of nodes and links to be modelled,
designed, or measured. Despite these difficulties, complex
network science offers some powerful tools to the analysis
of large-scale transportation networks, due to its simplicity
and rigour.

Complex network science has traditionally used the
concept of centrality to capture the relative importance
of nodes and links in a system that can be represented
as a complex network [9], [11], [12], [13]. A host of
centrality measures exist [13], beginning from the classical
betweenness centrality [14] (which measures the importance
of a node in terms of the relative number of shortest paths
which pass through that node) and closeness centrality [14],
[15] (which measures the importance of a node in terms of
its average geodesic distance form other nodes), to more
recent measures such as eigen-vector centrality [16] and
percolation centrality [17], which have more mathematically
complex definitions, and often take into account quantities
such as node attributes or states, link weights, importance of
neighboring nodes etc. Nevertheless, it can be observed that
those ‘medial’ centrality measures [18] where the concept of
‘path’ or ‘route’ is inherent (namely, betweenness centrality
and its many variants), typically only consider shortest paths.
Yet, it is obvious that in transportation networks, a passenger
has the choice of using all routes, shortest or otherwise, and
while passengers do tend to use routes which are less costly,
the probability of other routes being used cannot be deemed
zero without careful analysis.

Indeed, the concept of ‘modal split’ [19] in transport
modelling is relevant here.Modal split refers to the proportion
of traffic from a particular place A to another particular place
B which chooses mode i when i = 1, 2 . . .M modes are
available. Classical modal split models use Logit functions,
and the underlying assumption is that the more costly a mode
is, the less likely for a passenger to use it. However, when
the cost of a mode increases, the corresponding probability
of it being used decreases exponentially, rather than linearly.
The underlying assumption is that people are sensitive to cost
variations, and even a slight difference in cost will result in
many people choosing the relatively cheaper mode. The same

argument could be made for a person choosing between a
number of routes, if the costs related to each route is known.
This is a more realistic assumption than assuming people
only travel through shortest paths, i.e paths which have the
lowest cost in terms of distance. Therefore, if route costs
are estimated from path lengths, then a centrality measure
which captures the likelihood of a passenger travelling
through a node based on these path costs is more realistic
than a centrality measure which assumes that passengers
use only the shortest path. The goal of this paper is to
introduce and define such a centrality measure, which we
name ‘transportation centrality’, and demonstrate its utility
using a number of real-world road networks.

The contribution of this paper can be clearly elucidated
in terms of novelty, necessity, and utility. The novelty will
be self-evident because we present a new centrality measure
with a clear and straightforward mathematical definition
which has not been proposed or defined before. It is also
dissimilar to any existing centrality measure, in that it uses
Logit functions to estimate traffic flow and uses it in turn
in centrality calculation - no other centrality measure has
done something similar in any context. The necessity arises
from the fact that in transport networks, users use all possible
paths between origin and destination, though they are more
likely to use the paths which cost less or are quicker. The
existing centrality measures i) either focus on shortest paths
alone (such as betweenness centrality [14], [20], [21] and its
many variants) or ii) need transport data to be computed, such
as mobility centrality [41] and DelayFlow centrality [42],
[43], and similar transport specific measures which will be
discussed in section II-B. Both have limitations because i) it is
unrealistic to consider shortest paths alone, when real-world
users will consider alternative paths ii) it is not realistic to
have accurate transport data available for many cities, and it
is impossible in the cases where we are modelling traffic in a
new proposed city or suburb. Therefore, there is necessity for
a centrality metric which considers all paths, and avoids the
need for network data by reasonably estimating traffic based
on topological structure and well-known traffic behaviour
alone. Finally, the utility of the proposed centrality measure
will be demonstrated by applying the metric to a set of real
world transport networks.

It is important to note here that the scope of this paper
is limited to the introduction of this key concept and
preliminary analysis. While we do use topological data
from real world transportation networks to illustrate the
utility of transportation centrality, we have by no means
presented an exhaustive analysis covering an extensive range
of real world networks, nor have we focussed on very large
transportation networks, deeming these to be beyond the
scope of an introductory paper. These are the topics of future
work.

The rest of this paper is organised as follows. In section II,
we briefly discuss the existing centrality measures and
their usage, highlighting that they are unsuitable to be
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used in the context of transportation network and traffic
analysis, which needs to consider all available routes (not
merely the shortest paths), volume of traffic and other
factors. In section III we introduce and define the concept
of ‘transportation centrality’, and consider some simple
examples to illustrate its usage. In section IV we present
results of detailed simulation experiments, using data from
real world transportation networks from the cities of Seoul
and Delhi. Finally, in section V we summarise and present
our conclusions, and discuss ways in which this work could
be advanced in the future.

II. BACKGROUND
Table 1 summarises the symbols used in this paper to denote
various quantities.

TABLE 1. Table of symbols and notations.

A. REVIEW OF CENTRALITY MEASURES
Let us first define some fundamental concepts in network
science. A network (graph) has N nodes (vertices) connected
by L links (edges). The connection structure is called the
topology of the network. Each node i has a number of links,
ki, attached to it, which is called the degree of the node i.
A shortest path from node s to node t is any minimal set
of links which connects s and t . That is, a shortest path is
a path between two nodes that has the fewest links if the
cost of traveling along each link is the same. If links have
varying travel costs, then the shortest path can be defined as
a path between s and t for which the associated travel cost is
minimal.

A host of centrality measures have been proposed to
analyze generic complex networks, especially in the domain
of social network analysis. The simplest of these perhaps is
the degree centrality, sometimes just called degree, of a node.
A node’s degree is simply the number of links it has with other
nodes in the network, and therefore gives some indication
about how important that node is to the network.

A family of betweenness measures have been pro-
posed [14], [20], [21], [22], [23], [24], [25] to measure a
node’s importance as a conduit of information or traffic flow
in a network. The first and perhaps most well-knownmeasure
of these is the classical betweenness centrality measure
proposed by Freeman [20]. Betweenness centrality measures
the fraction of shortest paths that pass through a given node,
averaged over all pairs of nodes in a network. It is formally
defined, for a directed graph, as

BC(v) =
1

(N − 1)(N − 2)

∑
s̸=v̸=r

σs,r (v)
σs,r

(1)

where σs,r is the number of shortest paths between source
node s and target node r , while σs,r (v) is the number of
shortest paths between source node s and target node r that
pass through node v. N is the number of nodes (vertices) in
the network. A number of weighted betweenness measures,
such as the one presented by Wang et al. [25], where weights
are given to links, have also been proposed recently.

Closeness centrality [14], [15] is a measure of how close
a node is, on average, to the rest of the nodes in the network
in terms of shortest paths. It essentially measures the average
geodesic distance between a given node and all other nodes
in the network. It is defined as

CC(v) =
1∑

i̸=v dg(v, i)
(2)

where dg(v, i) is the shortest path (geodesic) distance between
nodes v and i. Note that the average is ‘inverted’ so that the
node which is ‘closest’ to all other nodes will have the highest
measure of closeness centrality. There is also the information
centrality measure [24] based on closeness centrality, which
measures the harmonic mean length of paths ending at a
vertex v.

The eigen-vector centrality measure [16] is based on the
assumption that a node’s centrality is influenced by the
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centrality scores of its neighbours - that the centrality score of
a node is proportional to the sum of the centrality scores of the
neighbours. As such, it is defined iteratively. If the centrality
scores of nodes are given by the matrix X and the adjacency
matrix of the network is A, then we can define x iteratively
as

x ∝ Ax (3)

i.e

λx = Ax (4)

The centrality scores are obtained by solving this matrix
equation. It can be shown that, while there can bemany values
for λ, only the largest value will result in positive scores for
all nodes [26].

Straightness centrality [27], [28]measures the efficiency of
the routes that begin at a particular node. The efficiency of a
route is measured as the ratio between the Euclidian distance
and the shortest path distance (along the path) between two
nodes. It is assumed that if the Euclidean distance is much
shorter than the distance along the path, then that path is less
efficient. Therefore, the straightness centrality is defined as

SC(v) =
1

N − 1

∑
u̸=v

dE (u, v)
d(u, v)

(5)

whereby dE (u, v) is the Euclidian distance and d(u, v) is the
the shortest path distance between nodes u and v.
The classical betweenness centrality measure assumes that

information flow is through the shortest paths in a network.
This is, in many instances, not a realistic assumption [21],
[23], [24]. For example, rumours or infections in social
networks are likely to follow random paths. Water in a
network of canals and electricity in electric circuits will flow
through paths of least resistance, not necessarily the shortest
ones. A number of centrality measures based on betweenness
address this. The flow centrality measure [20] measures the
proportion of the ‘flow’ that goes through a given node,
when maximum flow is ‘pumped through’ a pair of nodes.
A random walk-based betweenness measure proposed by
Newman [23] considers a network to be like an electric circuit
with unit resistance at any link, and measures the ‘current’
that goes through a node when unit current passes through a
pair of nodes. There are a number of other centrality measures
based on random walks as well, such as those described in
Noh and Rieger [29] or Bonacich [30]. The random-walk
centrality introduced by Noh and Rieger [29] measures the
average speed with which, a randomly walking message from
a node reaches the target node v, averaged over all source
nodes. The power centrality [23], [30] of a node v is the
number of times a random walk is expected to pass through
the node v, averaged over all possible starting points of the
random walk.

Percolation centrality (PC) specifically measures the
importance of nodes in terms of aiding the percolation
through the network [17]. Percolation centrality for a given

node, at a given time, is the proportion of ‘percolated paths’
that go through that node. A ‘percolated path’ is a shortest
path between a pair of nodes, where the source node is fully
or partially percolated (e.g., infected). The target node can
be percolated or non-percolated, or in a partially percolated
state. Formally, percolation centrality of node v at time t is:

PC t (v) =
1

(N − 2)

∑
s̸=v̸=r

σs,r (v)
σs,r

x ts
[
∑
x ti ] − x tv

(6)

where σs,r and σs,r (v) are defined as they are in the definition
of betweenness centrality, and the percolation state of node i
at time t is denoted by x ti . Specifically, x

t
i = 0 indicates

a non-percolated state at time t , x ti = 1 indicates a fully
percolated state at time t , while a partially percolated state
means 0 < x ti < 1 (e.g., for a network of townships
used to model infectious disease dynamics, this would
be the percentage of people infected in that town). The
percolation state associated with a source determines how
much importance is given to the potential percolated paths
that originate from it. The centrality measure proposed
by Berahmand et al. [31], [32] is in this sense similar
to percolation centrality, in that it also aims to identify
influential spreaders - that is, nodes which are important for
the percolation or diffusion of some quantity. Other studies
such as Berahmand et al. [33] have looked at the relationship
between topological structure and diffusion.

Borgatti and Everett [18] classified the existing centrality
measures into radial and medial measures. Radial centralities
count walks which start/end from the given vertex. Degree
centrality, closeness centrality, eigen-vector centrality, and
straightness centrality are examples of this. Meanwhile,
medial centralities count walks which pass through the given
vertex. Betweenness centrality and its many variants, as well
as percolation centrality are examples of this. Centrality
measures can also be classified as volume-based or length-
based measures. In volume-based centrality measures, the
number of paths through / to a particular node is counted.
Degree centrality and betweenness centrality are examples of
this. In length-based centrality measures, the length of paths
through / to a particular node is counted. Closeness centrality
is a classical example.

It is also worth to note here briefly that there are
avenues of research in complex network science which do
not directly measure centrality, but are useful to quantify
diffusion, spreading, and traffic in complex networks in a
generic sense. For example, Berahmand et al. [34] propose a
community detectionmethodwhich hinges on detecting ‘core
nodes’, which are, in essence, nodes which are important
for sustaining community structure. Similarly, Liu et al. [35]
discuss the detection of ‘controlling nodes’ which can exert
disproportional influence on the dynamics of the network.
In that sense, these nodes also have high importance.
However, such methods of quantifying node importance have
rarely been used in transportation networks so far, and wewill
not discuss them further.
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B. APPLICATION OF CENTRALITY MEASURES IN
TRANSPORTATION NETWORKS
There is indeed a number of research papers which have
focussed on using network centrality measures for the
purposes of analysing transportation networks. These can
be grouped into two categories: 1) papers which use or
apply existing generic centrality measures in transportation
networks (including papers that review such efforts) 2) papers
that introduce a new centrality measure with the express
purpose of using it in transportation networks, usually to
identify the relative topological importance of nodes in such
networks.

Examples of the first category include Jayasinghe et al.
[36], who use existing centrality measures to study the
importance of nodes in a transportation network in Colombo,
Sri Lanka. They use topological metrices such as ‘connectiv-
ity’ (node degree), global intergration and local integration
(versions of closeness centrality), and ‘choice’ (a version
of betweenness centrality) in their analysis. Stamos [37]
reviews the utility of 17 existing centrality measures,
such as betweenness centrality, closeness centrality, and
percolation centrality, in transportation networks, particularly
in the context of quantifying the importance of nodes
during extreme whether events and climate-related disasters.
Napitupulu et al. [38] use existing centrality measures
such as degree centrality, closeness centrality, betweenness
centrality and eigenvector centrality to determine the rel-
ative importance of nodes in the road network within the
University of Padjadjaran, Jatinangor campus, Indonesia.
Wang et al. [39] study the correlation between street (edge)
centrality in road networks and land use in Baton Rouge,
Louisiana, United States, and they use a combination of
existing centrality measures, such as closeness centrality,
betweenness centrality and straightness centrality [27],
[28] to measure the importance of streets in this town.
Finally, Chakrabarti et al. [40] study the correlation between
transportation centrality and housing prices in Kolkatta,
India, and they consider neighbourhoods as nodes and
intra-neighbourhood roads as links in their transportation
network. They use betweenness centrality, closeness cen-
trality, and eigenvector centrality to determine the relative
importance of these neigbourhoods in intra-neighbourhood
road networks. In all these works, well known generic
centrality measures are applied on road networks at varying
levels of abstraction.

Examples of the second category include Tsiotas and
Polizos [41] which introduce ‘mobility centrality’, a metric
that measures the amount of kinetic energy flows through
nodes to estimate their related importance. To do so, they
need the ‘average velocity’ of traffic through each link, which
they estimate from empirical data from Greece. Hence it is
not a measure that can be calculated from topology alone,
and needs traffic data in its computation. Cheng et al. [42],
[43] introduce ‘DelayFlow centrality’ which similarly used
travel time delay and commuter flow data to quantify the
importance of a node in a transportation network. They use

data from Singapore in their analysis. Meanwhile, Li et al.
[44] propose ‘PageRank Algorithm Modified by the Gravity
Model (APAMGM)’, a measure based on pagerank algorithm
and adapted to multiplex networks, and apply it to analyse the
urban transportation network of Shenzhen, China, modelled
as a multiplex network. Zadeh and Rajabi [45] propose a new
centrality measure, which is named as targeted constrained
betweenness (TCB) centrality, which, as the name implies,
is a version of betweenness centrality, and implemented
via an iterative algorithm which computes the Wardrop
equilibrium [46] in the considered network and uses flows
calculated from it to iteratively calculate edge betweenness
of each link in the network. The process terminates when
the improvement in edge betweenness calculations become
negligible compared to the previous iteration (presumably
based on a pre-defined threshold). It could be noted that
this centrality measure, which considered edge importance
rather than node importance, is computationally expensive to
calculate for all but the smallest networks due to its iterative
nature.

Even though papers in the second category introduce
centrality measures specifically to analyse transportation
networks, one key limitation can be observed in all of them.
They need traffic data pertaining to a particular network
to be computed, or they assume all traffic flows through
the shortest paths. These metrics have not proposed a way
to consider all possible paths on principle, unless there is
pre-existing data that can be used with regards to all paths.
In this paper, we propose a relatively simple topology-based
centrality measure, which can be computed without traffic
data and thus can be applied to any given network, which
nevertheless considers all possible paths in a network,
and calculates (rather than simulates, or uses pre-existing
observations of) the possible traffic flow on all paths. The key
novelty is that the proposed centrality measure is defined and
calculated in a way that is relevant to transportation networks.

III. METHODOLOGY
A. TRANSPORTATION CENTRALITY—MOTIVATION AND
DEFINITION
Betweenness centrality, being a purely topological measure,
quantifies the importance of nodes only in terms of their
relative placement. However, in road or other transportation
networks, the importance of a node (a junction, station,
suburb, or region, according to what that transportation
network represents) depends not only on its positioning in
the network, but also how much traffic, on average, flows
through it. If data about traffic through different routes is
available, it would be easy to calculate the relative importance
of junctions from it, as has been done in several works [41],
[42], [43], [45] discussed in section II. However, such data
is not always available. What is usually available instead is
an estimation of ‘costs’ related to using a route or mode of
transport.

Indeed, in transport science, such costs are often used
to calculate ‘modal split’ - the amount of traffic through
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different modes [19], [47]. Specifically, if we consider two
nodes i, j in a transportation network, and if we assume that
a total number of M modes are available for traffic between
these pair of nodes, and each of these modes µ is associated
with a cost Cµ

i,j, then the proportion of traffic between i and

j that would use the mode µ can be estimated by [47], [48],
and [49]:

Pµ
i,j =

Tµ
i,j

Ti,j
=

e−βCµ
i,j∑M

µ=1 e
−βCµ

i,j
(7)

where M is the number of modes present. Here, β is a
parameter of the model which quantifies the sensitivity of the
model to mode costs. If β = 0, the model is insensitive to
mode costs, and the traffic would be equally divided between
all the available modes. On the other hand, β = ∞, the model
will become ‘infinitely’ sensitive to mode cost, that is, all
traffic will flow through the mode which has the least cost
associated to it. Therefore, any realistic model will have a
positive finite number as β, which falls within these extremes.
The value ofβ could be calibrated from real world traffic data.
The modal split model assumes that there will not be a

linear relationship between the mode costs and the proportion
of traffic choosing those modes. Obviously, the smaller the
cost of themode, themore trafficwill flow through that mode,
but even a small difference in costs may result in a significant
portion of traffic switching modes. Therefore, the modal split
model uses a Fermi function [50], [51] to model the split of
traffic.

Indeed, the modal split method could equally well be
applied to estimate the split of traffic between different routes
within the same mode. The understanding that people are
more likely to choose less costly modes, and this relationship
between mode cost and probability of choice is not linear,
is applicable when traffic chooses between different routes
with varying route costs as well. Our motivation in this work
is to use this observation to calculate the importance of nodes
to traffic, if costs related to different paths can be estimated.
Clearly, if there is more than one route / path between a pair
of nodes, then the split of traffic between these nodes will
depend on the costs of the paths. Therefore, it makes sense
to use the modal split model to estimate the traffic along
multiple routes, which may exist between a pair of nodes.
Therefore, we propose a centrality measure where each path
has a cost associated to it, and the centrality of the nodes
depend on path costs in an exponential manner governed
by a Fermi function. Therefore, we define ‘transportation
centrality’ of a given node v as:

TC(v) =
1

(N − 1)(N − 2)
[

∑
s̸=v̸=t

∑
i∈Pvs,t

e−βC is,t∑
j∈Ps,t e

−βC js,t
] (8)

where C i
s,t is the cost of path i which goes from source

node s to target node t , Pvs,t is the set of all simple paths
from source node s to target node t which go through the
considered node v, and Ps,t is the set of all simple paths

from source node s to target node t . β is a tunable parameter
of transportation centrality, which represents the sensitivity
of transportation centrality to cost differences of paths.
A ‘simple path’ here is defined as ‘a path that repeats no
vertex’ [52].

For simplicity, we may also write

TC(v) =
1

(N − 1)(N − 2)
[

∑
s̸=v̸=t

Qvs,t ] (9)

where Qvs,t represents the proportion of traffic between
nodes s and t that pass through node v. That is,

Qvs,t =

∑
i∈Pvs,t

e−βC is,t∑
j∈Ps,t e

−βC js,t
(10)

In general, path costs are needed to calculate transportation
centrality. The ‘cost’ can be modelled explicitly if data about
path costs is available, but in the absence of such data, the
costs can be estimated simply by the path length, or weighted
path length. Therefore, transportation centrality in its basic
form is a purely topological measure: nevertheless, unlike
betweenness centrality, it explicitly captures the behaviour of
traffic flow. Indeed, the strength of transportation centrality
is that it is able to consider estimated traffic flows through
links, even when path costs are not available, while remaining
a purely topological measure. It achieves this uniqueness by
using Fermi functions to estimate traffic flow through all
paths (not just shortest paths) in a realistic manner, and using
path lengths as input in these Fermi functions. This is quite
realistic as any driver is likely to use the distance involved in
each route as an estimate for the cost involved in choosing
that route. Therefore, we will use this purely topological
interpretation of transportation centrality in the rest of the
paper, with the understanding that if more direct estimates of
path costs are available, these can be used in the calculation
of transportation centrality as well.

If β = ∞, this means that traffic is infinitely sensitive
to path costs, and thus will use only the shortest paths: thus
transportation centrality reduces to betweenness centrality.
Furthermore, in this case the path costs are immaterial
and are not needed for the calculation of transportation
centrality. Therefore, transportation centrality is essentially
a generic form of betweenness centrality where the cost of
paths is explicitly taken into account. On the other hand,
if β = 0 again path costs are immaterial, but transportation
centrality reduces to another interesting centrality measure
in its own right, one where the proportion of paths going
through a particular node is calculated and aggregated for
all source-target node pairs, like in the case of betweenness
centrality, except that all simple paths are taken into account.
Indeed, this centrality measure is relevant to topological
analysis of networks from all domains, and we name it ‘All-
path Betweenness Centrality (ABC)’. However, we will not
focus on it specifically in this paper. Finally, let us note
that due to the negative exponential function having a range
of [0,1], it could be derived from Eq. 8 that for any finite
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positive value of β, the transportation centrality value of a
nodewill be greater than or equal to its betweenness centrality
value. Therefore, the ‘raw’ values of transportation centrality
are not as informative as the rankings of nodes belonging
to a particular network which are obtained by sorting them
according to the transportation centrality values.

Note here that according to the classification of Borgatti
and Everett [18], transportation centrality is a medial
centrality: it counts the paths that pass through the considered
node, rather than paths that originate or end in the considered
node. It is also a volume-based centrality measure, in that
it counts the number of paths that pass through a node.
Indeed the phrase ‘volume’ has a very direct interpretation
in transportation centrality, as the traffic volume, because
essentially, with or without traffic data, the transportation
centrality estimates the traffic volume that passes through a
given node. What is interesting however is that transportation
centrality can also be a length-based centrality measure.
If we do not have data for link costs, and estimate route
costs by path lengths, then we essentially also count the
lengths of the paths that pass trough a given node, though
this counting is not done linearly, as would be the case
with most other length-based centrality measures such as
closeness centrality. Rather, path lengths are used as inputs to
Fermi functions which are then used to estimate path costs.
Therefore, transportation centrality is an interesting hybrid of
volume-based and length-based centrality measures.

B. TRANSPORTATION CENTRALITY—A SIMPLE EXAMPLE
To provide an extremely simple example of the calculation of
transportation centrality, let us consider the network shown
in Fig. 1. Suppose we want to calculate the transportation
centrality of node V3 in this network. Since V3 is the node
under consideration, the possible source-target pairs not
involving this node are [1, 2], [1, 4], [2, 4]. If we consider
the pair [1, 2], there are two ‘simple paths’ between these
pairs, namely [1, 2] and [1, 3, 2]. The path [1, 2] has a cost
of ‘1 hop’ and does not pass through node V3, while the
path [1, 3, 2] has a cost of ‘two hops’ and does pass through
node V3. Therefore, the transportation centrality contribution
from this pair to node V3, which is also the estimated
proportion of traffic from V1 to V2 that passes through V3,
could be calculated as:

Q3
1,2 =

e(−2β)

e(−1β) + e(−2β) (11)

FIGURE 1. An example network for calculating transportation centrality.

FIGURE 2. A simple example for calculating transportation centrality. The
list of all simple paths for the network shown in Fig. 1.

Similarly, if we consider the source-target pair [1, 4],
there are two simple paths between this pair: [1, 3, 4] and
[1, 2, 3, 4]. One of them has a cost of two hops, while the
other has a cost of three hops. Therefore, the contribution
from the pair [1, 4] to V3 could be written as:

Q3
1,4 =

e(−2β)
+ e(−3β)

e(−2β) + e(−3β) = 1 (12)

which is of course, equal to one as every path which is
between this pair of nodes goes through node V3.

Similarly, if we take the pair of nodes [2, 4], we may
also see that there are two simple paths [2, 3, 4], [2, 1, 3, 4],
both of which go through node V3. Therefore, Q3

2,4 = 1,
trivially.

Since the network is non-directed in this example, it is
sufficient to consider each pair of nodes once and we
may ignore the reverse direction, and simply multiply the
summation we obtain by two. The number of nodes N = 4.
Therefore, the transportation centrality of node V3 would be
given by:

TC(3) =
1

(4 − 1)(4 − 2)
2[

e(−2β)

e(−1β) + e(−2β) + 1 + 1] (13)

=
1
3
[
3e(−2β)

+ 2e(−1β)

e(−1β) + e(−2β) ] (14)

therefore:

TC(3) =
3e(−2β)

+ 2e(−1β)

3 e(−2β) + 3 e(−1β) (15)

=
3e(−1β)

+ 2
3 e(−1β) + 3

(16)

Note well that the transportation centrality of a node will
always depend on parameter β. If β = ∞, then TC(3) =

2
3 ,

which, it can be verified, is the betweenness centrality of
node V3 in this simple network. As the value of β increases
towards infinity, the transportation centrality of node V3 will
converge (from above) towards 2/3, since this node provides
a ‘shortcut’ to two out of three pairs of other nodes in it’s
network, and as trafficwhich becomesmore sensitive towards
cost (as the increase of β represents), would prefer to go
through this node for traffic from / to these two pairs, and
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TABLE 2. TC and BC values for nodes of the network in Fig. 1.

avoid this node for the third pair. On the other hand, when
β = 0, this represents people randomly choosing routes
without consideration for cost, and in this case it can be seen
that TC(3) =

5
6 = 0.83.

Therefore the value of TC(3) ranges from 0.83 to 2/3 =

0.67, depending on β. As we will state later, studies
calibrating the sensitivity parameter β to real-world data have
shown that β tends to be between 0.1 and 0.2 [53], however in
this simple example let us use β = 2.0. For this value, TC(3)
is given by:

TC t (3) =
3e(−4)

+ 2e(−2)

3 e(−4) + 3 e(−2) = 0.706 (17)

Table 2 shows the betweenness centrality and transporta-
tion centrality values of all nodes in Fig. 1. It can be seen
that the TC and BC for node V4 are trivially zero, since this
node has only one link and is a peripheral node. For the other
three nodes, there are varying TC values. It can be noted
that for node V2, the BC is zero since no shortest path goes
though it, though the TC is not zero since some paths do go
through it. It can be imagined that in a transportation network
of similar topology, some traffic will indeed go through node
V2 especially if there is heavy traffic through all other nodes,
since while this is not a short cut to any destination, the
travel times might be smaller since most traffic avoids this
node. This is what the non-zero value of the TC for this
node captures and BC fails to capture. That is, TC makes
a distinction between nodes such as V4 which are strictly
peripheral, and nodes such as V1 and V2 which are not, while
BC fails to make this distinction.

The above-described canonical example demonstrates the
utility of transportation centrality, and how it subsumes
betweenness centrality as well as how it can be calibrated
(by adjusting the parameter β) for real world applications.
What is also important to note is that, for all finite values
of β, transportation centrality will return a more ‘realistic’
assessment about the relative importance of nodes by
considering non-shortest paths, while we retain the ability to
model the sensitivity of traffic to path costs by calibrating β.

C. SOFTWARE AND TOOLS
The simulation experiments were done using software
code developed in-house, using the Python language. The
NetworkX library was extensively used [54], [55]. Code used

in the simulations is made available in GitHub [56]. The
Cytoscape software tool [57] was also used to generate the
network figures.

IV. SIMULATION RESULTS
A. EXPERIMENTAL SETUP
To provide some real-world examples of the transportation
centrality metric, we applied it on two metropolitan trans-
portation networks. The network data was obtained from the
data made available by Karduni et al. [58] and the cities of
Seoul and Delhi were chosen for the analysis, since these
cities had suitable well-defined subnetworks belonging to
individual suburbs which are well-suited to transportation
centrality analysis. The complete road network of each city
is shown in Fig. 3 [58]. We can see from this figure that each
city has suburbs where the road network is dense as well as
suburbs where the road network is sparse. Each city also has
waterways which divide the road network into sections which
have relatively very little connectivity with each other. The
nodes in this dataset represent junctions where roads actually
intersect, and edges represent sections of road which connect
these junctions. A crossing of two roads in three-dimensional
space where there is no actual intersection, such as when a
fly-over, bridge, or tunnel passes over or under another road,
is not represented as a node.

In this work we choose transportation networks belonging
to four suburbs from each city: For Seoul, we choose (i)
Yeomgok (ii) Gwancheol (iii) Jongno2i (iv) Jongno6yuk (it
appears that some suburb names are alphanumeral). From
Delhi, we choose (i) DevNagar (ii) Kucha Pandit (iii) Sangam
Vihar East (iv) Sundar Nagari. As figures 4 and 5 show, this
choice from several possible suburbs was made so that the
selected subnetworks have varying topologies. For example,
in Seoul, Jongno2i and Jongno6yuk have road networks
which have more or less scale-free topologies [9], [59],
while Gwancheol has a grid-like subnetwork, and Yeomgok’s
subnetwork is dominated by a ring (representing a ring-
road). Similarly, in the Delhi road network, Kucha Pandit and
Sangam Vihar East have topologies resembling a scale-free
structure, Sunder Nagari seems to have a section of a ring
attached to a scale-free like structure, while Dev Nagar has
a grid-like structure. The deliberate choice of suburbs with
prominent topological classes including scale-free, grid, and
ring structures was to illustrate how transportation centrality
values for nodes differ from other centrality (particularly
betweenness) values for them depending on network type.
Thus we are able to look at different suburban road network
topologies through these sample networks. Thus we could
use these to analyse the utility of transportation centrality on
differing topologies.

B. RANKING NODES BASED ON BETWEENNESS
CENTRALITY AND TRANSPORTATION CENTRALITY
We computed the betweenness centrality and transportation
centrality values for all nodes (road intersections or junctions)
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FIGURE 3. Delhi and Seoul Road networks, produced from publicly available data by Karduni et al. [58].

FIGURE 4. Sample subnetworks from Seoul.

in the eight above-mentioned suburbs. Betweenness central-
ity was chosen for this comparative analysis with transporta-
tion centrality because it is computed based on paths, like
transportation centrality is, and not based on proximity to
other nodes like closeness centrality or eigenvector centrality
are. Obviously, the transportation centrality (TC) values are
a function of β, and we computed TC for a range of one
hundred β values from 0.1 to 10 (thus the step increase
was 0.1). It is clear that β = 0 does not make sense,
because this represents no sensitivity to cost, and thus the
TC values will reduce to another centrality metric which
we have earlier named as ‘All-path Betweenness centrality’.
This measure is similar to betweenness centrality in that it

considers the proportion of paths through a node summed
over all possible pairs of nodes, but unlike BC it considers
all paths, not shortest paths alone. However, such a measure
does not make sense in the transportation context since it has
no sensitivity to path lengths, so we do not study this special
case ( β = 0) in this paper. Similarly, we also do not focus on
the scenario where β value is very high. As wewill show, β ≥

10 tends to result in extreme sensitivity to cost, and beyond
this value, the actual change in value of β has negligible
effect in the corresponding TC values, and the difference
between TC and BC values are minimal. Therefore, we focus
on the range where the sensitivity parameter β is from
0.1 to 10.
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FIGURE 5. Sample subnetworks from Delhi.

It should be mentioned here that several studies have
attempted to ‘calibrate’ the value of β (the sensitivity of users
to differences in cost) in terms of mode choice. For example,
Khan et al. [53] models observed travelled behaviour and
mode choices in South Eastern Queensland, Australia, and
the use a calibrated sensitivity parameter value of β =

0.1234. Other studies [60], [61] have also suggested a similar
low value for β which corresponds to real-world mode choice
behaviours of passengers. Here, the sensitivity parameter is
used for route (path) choice rather than mode choice, but
it is reasonable to assume that real-world β values will be
typically low in this scenario too. Therefore, without loss of
generality, we choose to focus on β = 0.1 to illustrate the
following example, while emphasising that the transportation
centrality metric is relevant for a broad range of β values,
as we will show later.

1) COMPARISON BASED ON CENTRALITY VALUES AND
RANKS
As an example, Fig. 6 shows the comparison between BC
and TC for the Seoul suburb of Jongno2i, for β = 0.1.
Fig. 6 (a) simply shows the network with nodes denoted by
node IDs, whereas Fig. 6(b) shows nodes scaled according
to their TC/BC Ratio. It could be seen that there are
some nodes which have a higher TC/BC ratio compared to
others. To understand further how this occurs, in Fig. 6 (c)
and Fig. 6 (d) we show the same network where nodes
are scaled according to their TC and BC respectively.
However, recognising that the ‘raw’ TC and BC values by
themselves do not convey much information, we rank the
nodes according to their TC and BC respectively, and show
these ranks as labels in Fig. 6 (c) and Fig. 6 (d). Therefore,

the ‘larger’ nodes in the figure have the lower rank according
to the considered metric.

We observe that the same node (ID = 242279) has the
highest TC and BC Rank. However, from the second rank
onwards, this is not the case. Node 242981 is 2nd in rank
according to TC, but BC makes it 12th in rank. Similarly,
Node 242798 has 4th in rank according to TC, but BC makes
it 6th in rank, and node 242552 is 5th in rank according to
TC, but BC makes it 13th in rank. In fact, it is easy to see,
by comparing Fig. 6 (c) and Fig. 6 (d), that most nodes which
form a ‘ring’ to the left of the main hub, and several nodes
which are in the relatively dense cluster attached to this ring,
have more significance in terms of TC compared to BC.
On the other hand, nodes such as 242164 (TC Rank = 6th,
BC Rank = 2nd ) which are at topologically significant places
of the tree structures that branch from the main hub, have
relatively higher significance in terms of BC compared to TC.

It is easy to see why. BC considers only shortest paths,
therefore where ever there is a ring structure, only the
shorter section of the ring is assumed to be used to reach
nodes beyond the ring, while the longer section is ignored,
reducing the importance of the nodes in that longer section,
though what is the ‘shorter’ section and what is the ‘longer’
section changes depending on which pair of nodes are being
considered. However, traffic will typically use all available
alternative paths, therefore transportation centrality typically
gives more importance to nodes which are in such rings.
A similar argument could be made to explain why the TC
is higher than BC for nodes in dense clusters and grid-like
subnetworks. In such structures, there are many alternative
paths, and TC considers all such paths, while BC does not.
Whereas in tree-like subnetworks the TC value of nodes will
be similar to their BC values, but given that the network
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FIGURE 6. The transportation network of Jongno2i suburb of Seoul, Korea. a) Nodes are labeled with Node IDs b) Nodes are labelled with the TC/BC
Ratio, and node size is also proportional to the TC/BC Ratio c) Nodes are labelled with TC rank, and the node size is also proportional to TC d) Nodes are
labelled with BC rank, and the node size is also proportional to the BC.

also includes rings and dense clusters, the TC based rank
of the nodes in tree-like sections of the network will be less
significant (numerically higher) compared to their BC based
ranks.

2) COMPARISON BASED ON RANK DIFFERENCE
To analyse this further, we also considered the rank difference
of nodes - the difference between their TC based ranks and
their BC based ranks. Fig. 7 shows such rank differences
for the Seoul suburb of Jongno2i. Note that ‘rank difference’
heremeansRank(TC)−Rank(BC), therefore a negative value
means the node has a lower numerical value for TC rank and
thus more significant in terms of TC. Similarly a positive

value means the node is relatively more significant in terms of
BC. The nodes in the figure are also colour-coded such that
nodes which have a negative rank difference have greenish
colours, whereas nodes which have a positive rank difference
have reddish colours. We could immediately observe that
several nodes in the ring structure and the dense cluster of the
rood networks have significant minus values: that is, the TC
based rank of these nodes is numerically considerably lower
than their BC based ranks. Indeed, there are several nodes
where the rank difference is higher than 20, and this is very
significant in a network where the total number of nodes is
N = 58. These are the nodes in the road network whose
importance was very significantly underestimated by BC, and
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FIGURE 7. The comparison of TC and BC values for Jongno2i suburb, Seoul, Korea. Nodes are
labelled with the differences of rank based on TC and BC (TC Rank - BC Rank). Therefore, a positive
rank difference means the node is more important based on BC compared to TC, while a negative
rank difference means the node is more important based on TC compared to BC. Nodes are colour
coded according to rank differences.

FIGURE 8. The comparison of TC and BC values for Jongno2i suburb,
Seoul, Korea. The rank difference based on TC rank - BC rank is shown,
as a scatter plot. It can be noted that while the relative ranks of many
nodes are the same when calculated based on TC or BC, many nodes also
have a significantly lower rank (more significance) based on TC compared
to BC, and vice versa.

TC is able to give a much more accurate indication of their
relative significance in the road network. On the other hand,
there aremany nodes in the tree-like substructures which have

FIGURE 9. The comparison of TC and BC values for Jongno2i suburb,
Seoul, Korea. The TC / BC ratio for each node is shown as an ordered
scatter plot.

a positive rank difference, and many have a difference of
higher than ten. These are the nodes that the BC recognises
‘fairly’, but their BC rank is numerically lower than their TC
rank because other nodes are recognised by TC as relatively
more important.
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FIGURE 10. TC - BC rank difference scatterplots for the four considered suburbs from Seoul. The values shown are Rank(TC) − Rank(BC), so a negative
value indicates the node is more important in terms of TC, while a positive value indicates the node is more important in terms of BC. The network sizes
for each suburb are also indicated.

The overall rank-difference distribution for Jongno2 is
shown in Fig. 8, which corresponds to Fig. 7. It can be seen
that nearly half the nodes in the network have a TC rank
that is different from their BC rank. These are the nodes
whose importance is either underestimated or overestimated
by BC because BC considers only the shortest paths, while
TC considers all paths while taking into account path costs
and the sensitivity of customers to it. The other half of nodes,
where the TC rank is not different from the BC rank, are
mostly peripheral nodes, which have BC and TC both equal
to zero, as well as a few hub nodes which happen to have
the same TC and BC rank. For comparison, Fig. 9 shows the
ratio of the numerical values of TC and BC for the suburb
Jongno2i. Unsurprisingly, the ratio is always higher than 1,
since TC considers all paths while BC considers only shortest
paths, and the value ranges from 161 to 1 (we assume 0/0= 1
in this case because peripheral nodes clearly have the same
TC and BC value, though this value is zero). This figure
illustrates that while there are nodeswhich have a numerically
much higher TC than BC, comparing raw values does not

make much sense, and this is the reason we compared ranks
based on TC and BC.

We undertook a similar analysis of all the eight considered
suburbs. To be succinct, we choose not to show the relevant
values or ranks based on TC and BC, but summarise the
rank difference as calculated above for Seoul suburbs in
Fig. 10 and Delhi suburbs in Fig. 11 respectively. We can
note, in general, that the rank difference is most significant
in suburbs with a scale-free structure, such as Jongno2i,
Jongno6yuk, and Kulcha Pandit. It is comparatively less
significant in suburbs with a grid-like structure, like Dev
Nagar and Gwancheol, and the least significant in suburbs
with chain-like road networks, such as Yeomgok and Sunder
Nagari. This is despite the fact that Sunder Nagari is the
largest Delhi suburb we have considered in terms of number
of nodes, so this result it clearly not simply a product
of network size. Therefore we could conclude that the
more heterogeneity there is in terms of degree distribution,
the more useful TC is as a metric, since there are more
opportunities for significant alternative paths to the shortest
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FIGURE 11. TC - BC rank difference scatterplots for the four considered suburbs from Delhi. The values shown are Rank(TC) − Rank(BC), so a negative
value indicates the node is more important in terms of TC, while a positive value indicates the node is more important in terms of BC. The network sizes
for each suburb are also indicated.

paths. In terms of grid-like structures there are plenty of
alternative paths, but the length difference between them is
insignificant, where as in terms of networks with long chain-
like structures, alternative paths are few. However, in all
cases there are significant proportion of nodes which have a
‘negative’ rank difference, and thus their importance had been
underestimated by measures like BC which consider only the
shortest paths.

C. THE INFLUENCE OF THE SENSITIVITY PARAMETER ON
THE UTILITY OF TRANSPORTATION CENTRALITY
Of course, the above analysis depended, to some extent,
on the value of the sensitivity parameter β. If the value of
β is higher, then the difference between TC and BC ranks
will be less in general. However, we chose to illustrate the
case of β = 0.1 as a realistic scenario based on studies
such as Khan et al. [53] which suggest a β value around
0.1. Now let us focus on the sensitivity parameter β in more
detail, and analyse for what range of β is the transportation
centrality metric distinctly meaningful. To do so, for each

suburb mentioned above, we computed the ratio of the
average TC and average BC in that suburb for a particular
value of the sensitivity parameter β. We considered values
of β from 0.1 to 10.0 as mentioned above. The premise was
that if this ratio approaches unity, then TC is converging
towards BC and thus losing relevance. The results are shown
in Fig. 12 and Fig. 13.

From these figures, it is apparent that as the value of β

increases (that is, the sensitivity of the model to path costs
increase), the transportation centrality, as expected, quickly
converges towards betweenness centrality. This is because,
as the sensitivity to path cost increases, the paths with least
cost (in this case, the shortest paths) are increasingly chosen,
and all other simple paths are omitted, so transportation
centrality reduces to betweenness centrality. We may observe
from these figures that if β = 2.0 or higher, the ratio between
average TC and average BC converges to unity. Therefore,
wemay conclude that, even though in theory β could take any
value from zero to infinity, for real world cities, transportation
centrality is useful only when a β value between 0.0 and 2.0 is
used.
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FIGURE 12. Average TC / Average BC Ratio against sensitivity parameter β for Delhi suburbs.

However, it could be argued that the average of transporta-
tion centrality converging with the average of betweenness
centrality does not necessarily imply that the transporta-
tion centrality distribution, in general, converges with the
betweenness centrality distribution. For example, the trans-
portation centrality values could becomemore extreme, either
much higher or much lower than betweenness centrality,
while the average of TC appears to converge with the average
of BC. Therefore, we also considered the Pearson correlation
between TC distribution and BC distribution for the sets of
suburbs considered above from Delhi or Seoul. These results
are presented in Fig. 14 and Fig. 15. We could see from these
figures that the Pearson correlations between TC and BC are
always quite high for all β values for any suburb. This is not
surprising as transportation centrality gives higher weights
to paths with low costs, i.e., shortest paths, even though it
does consider other paths also, unlike BC. However, we note
that as the parameter β increases, this correlation increases
further, and converges towards unity. This indicates that the

TC and BC distributions do become identical (or shifted from
one another by a constant value), as the sensitivity to the cost,
β, increases. For all suburbs considered, β ≥ 4.0 results in
the correlation approaching unity. For some suburbs however,
the convergence happens slower than others. Consider Dev
Nagar, for example. As shown in Fig. 5, the road network of
this suburb has a grid-like structure, and a fairly homogenous
degree distribution. We could observe from Fig. 14 that the
convergence between TC and BC for this suburb happens
at a higher value of β compared to the other suburbs of
Delhi. Similarly, it could be observed from Fig. 15 that
for Gwancheol, which also has a grid-like structure, the
convergence happens at a higher value of β compared to other
Seoul suburbs. It is clear that in such a suburb which has
a grid-like road network, there would be several alternative
paths with equal path lengths with similar costs, therefore
it is comparatively more important to consider non-shortest
paths. Therefore, TC retains its relevance for a bigger range
of β values.
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FIGURE 13. Average TC / Average BC Ratio against sensitivity parameter β for Seoul suburbs.

It is also interesting to note a similarity between the
transportation centrality computation and bounded rationality
calculations made in game theory [62], [63], [64]. It is that
the sensitivity parameter β essentially functions like the
rationality parameter λ used in deriving quantal response
equilibria (QRE) solutions [62], [63], [64] for games
involving players with bounded rationality [65], [66], [67],
[68], [69]. The higher the β, the higher the sensitivity to
costs of alternative paths, so the non-shortest paths are
chosen with increasingly less likelihood. Therefore as β

increases, the TC distribution converges towards the BC
distribution for any network. However, it is only rational
that the path costs be considered in calculating available
paths, therefore, the increased sensitivity to β corresponds
to increased rationality in a system with boundedly rational
agents. However, this is exactlywhat the rationality parameter
λ captures. It is therefore no surprise that the QRE model
uses Logit (Fermi) functions similar to those that are used
in modal split in transportation science and those we have

introduced here in calculating transportation centrality. The
novelty of the transportation centrality formulation lies in the
fact that it has brought into a single framework the hitherto
unconnected concepts of centrality calculation, and sensitiv-
ity parameters and Fermi functions used in calculations of
boundedly rational equilibrium solutions such as the QRE
calculation process, to present a centrality metric suitable
for transportation that mimics the behaviour of boundedly
rational people, who stochastically and non-linearly choose
alternative paths by taking path costs into consideration.

D. DISCUSSION
Betweenness centrality and its many variants have played
a crucial role in our ability to identify important nodes
in a complex network based on the number of paths that
go through them. However, these metrics have made the
assumption that movements or traffic of whatever quantity
that traverses between nodes in such networks always
happens through the shortest paths alone. While this is a
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FIGURE 14. TC-BC Pearson correlation against sensitivity parameter β for Delhi suburbs.

perfectly valid assumption in some contexts, and a useful
starting point for estimation of node importance in others,
it is vital to recognise that in transportation networks, not all
traffic moves through the shortest paths. Despite the fact that
there is an incentive to move through shortest or less costly
paths, the path selection is stochastic. Therefore, in a city
where the rationality of drivers and commuters is bounded,
or it is difficult to calculate or predict path costs, a proportion
of traffic always moves through non-shortest paths, or non-
optimal paths in terms of cost. A centrality measure which is
applied in such a setting will be useful if it takes all paths into
account.

With this motivation, in this paper we introduced trans-
portation centrality, a centrality measure which considers
all paths that go through a node in calculating that node’s
centrality. This metric could be implemented in two ways: 1)
where path cost data is available and used directly 2) where
path cost data is not available and transportation centrality
makes an estimation of path costs based on topology,

thus becoming a purely topological measure. We primarily
focussed on the second method in this paper, since that can
be applied to any transportation network regardless of the
availability of traffic data, including newly conceptualised or
planned transportation systems for which such data cannot
possibly exist. To overcome the challenge of estimating
the relative importance of paths without directly using data
from the given city or area, transportation centrality uses a
model similar to the modal split model, parameterised by
a sensitivity parameter, which estimates the relative amount
of traffic through each alternative path between a source
and a destination, based on path costs. Though path costs,
if available, can directly be used in this estimation, in the
absence of path cost data, transportation centrality uses path
lengths as the estimator for path costs, thus becoming a purely
topological measure. Importantly, transportation centrality
does not use path lengths in a linear fashion to serve as a proxy
for pathweights. Instead, inspired by traffic flowmodelling in
transportation science, it uses Logit (Fermi) functions which
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FIGURE 15. TC-BC Pearson correlation against sensitivity parameter β for Seoul suburbs.

estimate the traffic flow through each path based on path
lengths, which in turn are used to estimate the centrality of
each node.

It is useful here, to provide a brief comparison between
transport centrality (TC) and the existing centrality metrics
that we have discussed in section II. We have compared TC
with betweenness centrality (BC) extensively in the previous
section. In short, BC takes into consideration only shortest
paths in determining the importance of nodes, while TC takes
into account all paths. Thus, it more realistically represents
the behaviour of traffic, and thus more accurately determines
the importance of junctions. However, compared to an
implementation of betweenness centrality using the Brandes
algorithm [22], which can be calculated in O(NL) time,
TC is more computationally intensive to calculate at present,
though future work may find more efficient implementations
of TC. Percolation Centrality has the same disadvantage as
betweenness centrality compared to TC. It only considers
shortest paths, though it takes into account the node states.

It also has an implementation which can be calculated in
O(NL) time [17], like BC using Brandes algorithm, so in
that sense it also can be less computationally intensive
to compute compared to TC at the moment. Closeness
centrality and eigenvector centrality are not defined in terms
of paths, instead focussing on relative location of a node
within the topology, and therefore cannot be used to compare
importance of nodes in terms of traffic, therefore TC need
not be compared with them. Straightness centrality measures
the efficiency of routes that begin at a particular node, in a
geographical sense. As the name implies, a node will have
high straightness centrality if routes originating from it are
relatively ‘straight’: while that is a useful measure, it does
not capture importance in terms of traffic flow like TC does.

On the other hand, several centrality measures discussed
in section II-B, including mobility centrality and DelayFlow
centrality, do address the importance of nodes in transport
networks directly, by considering all paths. However, they
need traffic data from a particular city as well as topological
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information to be calculated, and such data is often not
available and impossible to get for new suburbs. Compared
to these, the strength of TC is that is has a principled
way of estimating the traffic from topology alone, using
existing concepts in traffic modelling, and it then uses these
estimates in the computation of centrality. Therefore, it can
be computed using topological data alone, and therefore can
be computed on any transport network.

It should also be emphasized that the sensitivity parameter
β used in the definition of transportation centrality is a
tunable parameter, and has been used in other contexts
in transportation science previously, such as modal split.
In other words, while the transportation centrality introduced
here is a novel concept, the sensitivity parameter used in
its definition is not new. When undertaking transportation
centrality analysis, the choice of this parameter should be
based on observed behaviour of traffic in that city, where
possible, and not necessarily to obtain results which are
distinct from another centrality measure. As mentioned
earlier, several studies ([53], [60], [61]) have calibrated the
sensitivity parameter and found values less than one, and we
have used a value of 0.1234 in several examples in this paper,
following Khan et al. [53]. If a more suitable value can be
obtained by calibration to a different city, that value should
be used when applying transportation centrality analysis for
that city.

V. CONCLUSION
A. SUMMARY
In this paper, we first mathematically defined the new
transportation centrality metric. We showed that the metric
is governed by a sensitivity parameter, and when the value
of this sensitivity parameter is very large, the transportation
centrality reduces to betweenness centrality. Therefore,
betweenness centrality is a special case of transportation
centrality as far as transportation networks are concerned,
whereby all drivers / commuters display infinite rationality
in their decision regarding path / route choices. We observed
the similarity with game theory, where Nash equilibrium is a
special case of quantal response equilibrium, and is obtained
when the rationality parameter used in the quantal response
equilibrium assumes the value of infinity. On the other hand,
when the sensitivity parameter in transportation centrality
has a value of zero, we showed that transportation centrality
reduces to another centrality metric, which we have named
All-path Betweenness centrality.

We demonstrated the utility of the new transportation
centrality metric by calculating it for the nodes of a number
of transportation networks from Seoul, Korea and Delhi,
India. We showed that for each of the networks, there
were a number of nodes which had a lower numerical rank
based on transportation centrality compared to that based
on betweenness centrality. This indicated that the relative
importance of such nodes was not properly represented
by betweenness centrality, and transportation centrality

highlighted their importance better. The difference between
TC based ranks andBCbased rankswas especially significant
in heterogenous network topologies resembling scale-free
networks. We used a sensitivity parameter value of 0.1234 in
these experiments, based on the value calculated by a
previous study.

We also showed that, in general, a sensitivity parameter
value of less than 2.0 results in transportation centrality
values, and the rankings of nodes based on it, being
significantly different from betweenness centrality values,
and rankings based on them. Therefore, we showed that,
as long as the value of sensitivity parameter is less than 2.0,
transportation centrality is a better measure to quantify the
importance of nodes in transportation networks compared
to betweenness centrality. Since the observed sensitivity
parameter values for real-world transportation networks are
well-within this range (based on modal split modelling),
transportation centrality is distinctly useful in most real world
scenarios in quantifying the importance of nodes in trans-
portation networks. However, it should be acknowledged that
the value of sensitivity parameter could vary considerably in
transportation networks, especially if the level of abstraction
is ‘higher’ than junctions and roads / railways (for example,
if we analyse a transportation network where nodes are
regions or townships).

B. LIMITATIONS AND FUTURE WORK
The introduced metric has certain limitations at present,
though some of these could be overcome by further research.
The main limitation is regarding its implementation in
software, and the time complexity associated with it. It should
be noted that betweenness centrality nominally has a time
complexity of O(N 3), which makes it expensive in terms of
time. The Brandes algorithm [22] of betweenness centrality is
able to achieve a subcubic time complexity of O(NL), which
is particularly efficient for sparse networks. Percolation
centrality [17] similarly has an implementation which has a
time complexity of O(NL) [70]. Transportation centrality is
currently implemented as an algorithmwhich hasO(N 3) time
complexity. To make transportation centrality calculations
more viable for large networks, a more efficient algorithm
needs to be implemented, and this is one of the main focuses
of future research in this area. It could be noted however that
transportation networks are typically very sparse, and direct
links between far-flung nodes are extremely rare. Therefore,
the performance of any transportation centrality calculation
algorithm which is implemented with O(NL) complexity,
if this can be achieved, is expected to be quite good.

Obviously, this paper presented the concept of transporta-
tion centrality with a number of preliminary examples of
its use, though the examples used real-world transportation
network data. A lot more research needs to be done in
demonstrating the utility of transportation centrality in a
broad range of networks. These include railway networks,
airport networks and networks from other transportation
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domains. We also need to study the utility of transportation
centrality where the transportation networks are modelled
at a higher level of abstraction, for example networks of
townships or cities connected by road or railway links.
As mentioned earlier, we also need to analyse the chal-
lenges of applying transportation centrality in very large
transportation networks. Furthermore, the utility of the metric
in transportation networks with different topologies, such
as scale-free networks, small-world networks, hierarchical
networks, random networks, and grids need to be understood,
though the presented examples already give some useful
indications about this aspect. Nevertheless, the definition of
the transportation centrality metric with some preliminary
analysis is presented in this paper so that other researchers
could begin to use it, and/or pursue some of the research
directions mentioned here.

It is our expectation that transportation centrality will
provide very useful insights about the relative importance of
nodes in a range of transportation networks and systems.
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