IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 November 2023, accepted 28 November 2023, date of publication 1 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338566

==l RESEARCH ARTICLE

A Hybrid Al-Based Adaptive Path Planning for
Intelligent Robot Arms

ALI ABDI"* AND JU HONG PARK", (Member, IEEE)

Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
Corresponding author: Ju Hong Park (juhpark @postech.ac.kr)
This work was supported in part by the FoodTech RnD Center Development and Support Program through the Gyeongbuk Technopark

(GBTP) funded by Gyeonsangbuk and Pohang under Grant GBTP2023129001; and in part by the National Research Foundation of Korea
(NRF) Grant funded by the Korea Government (MSIP-Ministry of Science, ICT and Future Planning) under Grant 2019R1G1A1010859.

ABSTRACT Intelligent robot arms are advanced robotic systems used in Industry 4.0 to perform complex
tasks. Unlike conventional robot arms, which perform predefined tasks, intelligent robot arms have autonomy
and can operate in changing environments, interact with other machines, and collaborate with humans.
In this regard, adaptive path planning is crucial for intelligent robot arms, involving real-time environment
monitoring and path generation to continuously update the robot’s trajectory based on changes in the
surroundings. This paper presents an adaptive path planning method for intelligent robot arms to be used
in dynamic environments. The proposed method is based on a hybrid active-passive approach and has been
tested in a dynamic workspace simulation environment. The results indicate the ability of the proposed
method to respond dynamically in a complex scenario where the target is fluctuating, and an obstacle is
intentionally placed in the robot’s path. Additionally, real-time analysis results show that the method can
be categorized as real-time path planning with less than 100 ms reaction time for grid sizes with less than
96 x 96x96 cells. This insight presents opportunities for the establishment of smart factories, smart homes,
and smart cities, where the presence of intelligent robot arms in dynamic environments becomes essential.

INDEX TERMS Adaptive path planning, target reaching, obstacle avoidance, dynamic environment,

intelligent robot arm.

I. INTRODUCTION

Intelligent robot arms are advanced robotic systems designed
to perform complex tasks in various industrial settings. These
robot arms are typically equipped with sensors, cameras, and
other technologies that enable them to “see’” and “‘feel” their
surroundings, as well as to communicate with other machines
and systems. In the context of Industry 4.0, intelligent robot
arms play a critical role in the ““smart factory’ concept, which
involves the use of advanced technologies such as the Internet
of Things (IoT), Artificial Intelligence (AI), and big data
analytics to create more efficient and connected industrial
systems. By integrating intelligent robot arms into these sys-
tems, businesses can achieve greater flexibility, adaptability,
and efficiency, enabling them to better meet customers’ needs
and respond to marketplace changes. Intelligent robot arms

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu

are also a key component of automation, which involves using
technology to streamline and optimize industrial processes.
By automating certain tasks, businesses can increase their
productivity, reduce costs, and improve the quality and con-
sistency of their products.

Conventional robot arms are typically pre-programmed to
perform specific tasks in a controlled environment with fixed
locations of objects. These robots have a limited ability to
adapt to changes in their environment and require human
intervention to reprogram them if the task or environment
changes. In contrast, intelligent robot arms have a higher
level of autonomy and are designed to operate in dynamic
and unstructured environments with changing locations of
objects. They are equipped with advanced sensors, cam-
eras, and machine learning algorithms that enable them to
perceive their environment, make decisions based on that per-
ception, and adjust their movements accordingly. Intelligent
robot arms can also interact with other machines, systems,

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

137837


https://orcid.org/0000-0002-9920-5246
https://orcid.org/0000-0003-4818-0365
https://orcid.org/0000-0003-1072-0792

IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

and humans in a collaborative manner. For example, they
can work with humans to perform tasks that require both
manual dexterity and cognitive skills, such as assembling
complex products. They can also communicate with other
machines and systems in the factory to optimize production
processes and reduce downtime. In this regard, path plan-
ning for intelligent robot arms is entirely different from that
for conventional robot arms. In the conventional robot arm
workspace, if a collision-free path is generated, the robot can
track it without any concern for collision with obstacles or
loss of targets because their locations are fixed during the
time. Conversely, in an intelligent robot arm workspace, even
though a collision-free path is generated at the initial time, the
safety of the path for the next moment cannot be guaranteed
because the location of the objects may change in a fraction of
a second. Therefore, for intelligent robot arms, the generated
path must be updated continuously based on the environment
changes, which is called adaptive path planning.

Adaptive path planning typically involves two main com-
ponents: real-time environment monitoring and real-time
path generation. Real-time environment monitoring involves
continuously sensing and monitoring the environment around
the robot arm, using sensors such as cameras, lidar sensors,
or other types of sensors. This allows the robot arm to detect
changes in the environment, such as the presence of new
obstacles, and to adjust its trajectory accordingly. Real-time
path generation involves dynamically generating a new path
for the robot arm based on the current state of the environ-
ment and the robot arm’s feedback. This can involve using
algorithms such as motion planning, trajectory optimization,
or Reinforcement Learning (RL) to generate a new path that
optimizes the robot arm’s performance, minimizes energy
consumption, and avoids collisions with obstacles. By com-
bining real-time environment monitoring with real-time path
generation, adaptive path planning enables the robot arm
to navigate through complex, dynamic environments while
adapting to changes in the environment in real time.

Considering the preceding discussion, the primary purpose
of this paper is to develop an adaptive path planning method
for intelligent robot arms which typically work in dynamic
environments. To this end, we first examine related works
toward path planning in the next section.

Il. RELATED WORKS

In this section, a review of path planning methods is pre-
sented. The review is split into two subsections, including
conventional path planning, which is mainly in static envi-
ronments where robot arms perform predefined tasks, and
adaptive path planning, which is mainly in dynamic environ-
ments where robot arms must be able to update the path in real
time. Finally, the contribution of our work to existing papers
is explained in detail.

A. CONVENTIONAL PATH PLANNING
In recent decades, researchers have introduced numerous
techniques to enhance the path planning of robot arms. These

137838

techniques encompass various algorithms such as Artifi-
cial Potential Field (APF), Probabilistic Road Maps (PRM),
Rapidly Exploring Random Trees (RRT), polynomial-based
approaches, Machine Learning-based methods, and Hybrid
methods.

Several scholars have employed the Artificial Potential
Field method for robot arm path planning. Xinkai Xia et al.
have devised a proficient and secure algorithm for the path
planning of medical robot arms. They utilized the veloc-
ity potential field (VPF) algorithm, a modified version of
the APF method. This innovation ensures both safety and
efficiency in the functioning of the medical robot arms
[1]. Sun-Oh Park et al. introduced an advanced numeri-
cal technique based on Jacobian calculations. Their method
seamlessly integrated the modified APF approach, enabling
efficient real-time computations of inverse kinematics and
collision-free path planning. This approach catered to both
redundant and non-redundant scenarios, further enhancing
its versatility and applicability [2]. Gai et al. developed a
comprehensive path planning algorithm for a 6-degree-of-
freedom (DOF) industrial robot. Their approach relied on the
APF technique, enabling effective navigation and trajectory
planning for the entire robotic arm. This algorithm offers a
practical solution for optimizing the movement of the indus-
trial robot and enhancing its overall performance [3]. Lin
et al. put forth a novel approach for the path planning of
robot arms by introducing a three-dimensional APF method.
Their research offered valuable insights and strategies for
effectively navigating and avoiding collisions in complex
environments [4].

Other scholars utilized the Probabilistic Road Maps and
Grid Roadmap (GRM) methods for robot arm path planning.
Igbal and his team presented a path planning algorithm that
utilizes the PRM technique [5]. Bahar et al. introduced a novel
approach centered around the GRM technique, which stands
out for its edgeless roadmap design [6]. In a separate publica-
tion, Bahar et al. also suggested a technique for reducing the
desired time required for path planning. Their method relied
on the utilization of a GRM [7].

Some scholars focused on the Rapidly Exploring Ran-
dom Tree algorithm for robot arm path planning. Wei et al.
introduced an autonomous obstacle avoidance method for
robotic manipulators, which involved dynamic path plan-
ning. The proposed approach incorporated an enhanced RRT
algorithm [8]. Liu et al. presented an enhanced version of
the RRT algorithm by introducing a random point genera-
tion mechanism based on probability. However, this method
faces several challenges, such as generating cubic graphs,
producing irregular paths, and resulting in non-optimal
paths [9].

Polynomial-based methods were employed by some schol-
ars for robot arm path planning. Lai et al. introduced
a collision avoidance path planning method that utilizes
non-uniform rational B-splines (NURBS) and a continuous
polynomial function [10].

VOLUME 11, 2023



A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

IEEE Access

Machine Learning-based methods were also utilized for
robot arm path planning. Ionescu attempted to tackle the
challenge of employing dynamic path planning with obsta-
cle avoidance through the utilization of machine learning
techniques [11]. Khan et al. devised a technique enabling a
robot with redundant manipulation capabilities to accurately
track its real-time movement without relying on a model. This
method employs a controller that utilizes the Zeroing Neural
Network with Beetle Antennae Search (ZNNBAS) algorithm
to guide the robot’s motion [12]. Wen et al. introduced a
novel obstacle avoidance algorithm that builds upon the deep
deterministic policy gradient (DDPG) framework, an estab-
lished deep reinforcement learning approach [13]. Prianto
et al. team put forward a path planning algorithm based on the
Soft Actor-Critic (SAC) approach. This algorithm was specif-
ically designed to address the challenges associated with
reinforcement learning in path planning [14]. Zhang et al.
introduced a modular approach aimed at effectively acquiring
and transferring visuomotor policies from simulation to real-
world scenarios. This method was developed to enhance the
efficiency of learning and deployment processes [15]. Ji et al.
employed approximate regions rather than precise measure-
ments to define a new state space and joint actions within the
Q-learning method [16].

Hybrid methods combining different techniques were
employed by some scholars for robot arm path planning.
Qingni Yuan et al. presented a hybrid algorithm, APF-
RRT (Artificial Potential Field - Rapid Expansion Random
Tree), as an improved robot arm path planning method. This
algorithm combines the strengths of an enhanced artificial
potential field and the rapid expansion random tree technique
[17]. Abdi et al. employed a hybrid path planning approach
for a 2D workspace, integrating both Q-learning and neural
networks [18]. Furthermore, they expanded their research to
encompass more intricate scenarios, such as a 3D workspace
[19]. This approach encompasses a two-phase path planning
process: active and passive. During the active phase, the
Q-learning algorithm is utilized to determine a series of basic
actions (such as up, down, left, and right) required to navigate
through a gridded workspace and reach the target cell. In the
passive phase, the trained neural network is employed to
determine the joint angles of the robot arm based on the
identified actions.

B. ADAPTIVE PATH PLANNING
In contrast to conventional path planning methods, adap-
tive path planning requires real-time capabilities due to
the dynamic nature of the robot’s environment, where
object positions may change. Researchers have made efforts
to develop real-time path planning by enhancing existing
methods and introducing new algorithms. Various real-time
algorithms based on Artificial Potential Field, Probabilistic
Road Maps, polynomial functions, and Machine Learning
have been explored.

Some scholars have utilized improved APF methods for
adaptive path planning of robot arms. Lufeng Luo et al.

VOLUME 11, 2023

introduced a path planning method for six-degree-of-freedom
harvesting robot arms operating in dynamic, uncertain envi-
ronments. They utilized energy optimization techniques and
APF to devise an efficient approach [20]. Chen et al.
employed the APF approach to enable real-time path planning
for manoeuvring manipulators while avoiding obstacles [21].

Improved PRM methods have also been utilized for adap-
tive path planning. Kunz et al. proposed a method for
real-time movement planning of robot arms in dynamic envi-
ronments. They utilized data from 3D sensors and a technique
known as a Dynamic Roadmaps (DRM) to enable the arms to
navigate through changing surroundings [22].

Additionally, researchers have investigated enhanced
approaches that utilize polynomial-based for adaptive path
planning. Lim et al. presented a novel polynomial-time
approximation algorithm called Recursive Adaptive Identifi-
cation (RAId) for adaptive informative path planning. This
algorithm enables efficient and effective determination of
paths in real-time [23]. Guanglei et al. devised a real-time
movement planning approach for robots that involves the
utilization of polynomial curves and non-uniform rational
B-spline (NURBS) curves. This method enables the design
of precise trajectories for the robot’s movement [24]. Hameed
et al. introduced an innovative real-time path planning tech-
nique for a stationary robot arm aimed at collision avoidance
with obstacles. This method effectively combines the advan-
tages of both global and local techniques. It revolves around
the concept of configuring the robot arm to manipulate
its joints based on a specific polynomial selection, thereby
addressing the inverse kinematics problem [25].

Furthermore, scholars have explored improved Machine
Learning-based methods for adaptive path planning. Li et al.
put forth an enhanced autonomous learning algorithm based
on Q-Learning. The algorithm was specifically developed
to tackle the challenge of adaptive path planning for space
manipulators operating in unknown environments [26]. Wang
et al. devised an adaptive path planning approach for a weld-
ing robot system. This method utilizes a discrete genetic
algorithm that operates on an inverted pyramid structure
(GA-IPS). The algorithm enables efficient and effective path
planning tailored to the specific requirements of the weld-
ing tasks [27]. Aoughellanet et al. introduced a trajectory
planning method with real-time capabilities that incorpo-
rates obstacle avoidance. This method utilizes a recurrent
neural network with carefully constrained interconnections
to ensure efficiency and effectiveness in avoiding obstacles
during trajectory planning [28]. Kamali et al. presented an
approach known as DGDRL (Dynamic-goal Deep Reinforce-
ment Learning) for real-time movement planning of robots
engaged in telemanipulation tasks. This method utilizes
reinforcement learning techniques to adapt the robot’s move-
ments according to its defined goals, ensuring effective and
goal-oriented control [29]. Wang et al. introduced a cutting-
edge method for real-time mapping and dynamic shortest
path planning of robot arms. This method harnesses the power
of the D* algorithm and is specifically designed to be highly

137839



IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

APF
([TLI2L13)14D)

PRM Machine Learning Improved PRM
([5).L61.7D) ((11.[12),13), (22))
(141151.[16])

Improved Machine Learning
([26],[27].[28],[29].[30])

Polynomial RRT
([1on (81,191

Other new methods
(3110321033))

Improved Polynomial
(1231.[241.[25))

Hybrid Improved Hybrid
(73,0183,(19D) (Our work)

. o
. No
. s
* Ro

FIGURE 1. Conventional and adaptive path planning algorithms. The
contribution of our work (improved hybrid method) to existing papers.

efficient and responsive. It is suitable for deployment with
low-cost depth cameras and robot arms, enabling accurate
and timely path planning in dynamic environments [30].

Other approaches for adaptive path planning have been
explored as well. Hanna Berggren developed an advanced
planning system comprising three key components: human
tracking, robot path planning, and a decision algorithm.
This high-level system integrates these elements to facilitate
effective coordination between humans and robots, enabling
smooth and efficient execution of tasks [31]. Ding et al.
introduced a novel strategy for adaptive path planning in the
wire-feed additive manufacturing process. This innovative
approach utilizes medial axis transformation (MAT) to enable
effective and efficient path planning, ensuring optimal trajec-
tory generation for the additive manufacturing process [32].
Li et al. focused on Ping-Pong robotics, a well-known case
study that demands the high-speed vision to precisely control
dynamic movements. Their research specifically tackled the
challenges associated with achieving accurate motion control
in fast-paced Ping-Pong-playing scenarios [33].

Based on the analysis in section II-A, although the hybrid
method discussed addressed complexity and slowness, it can-
not be categorized as adaptive path planning since it lacks
real-time capabilities. However, with improvements, this
hybrid method can potentially become a real-time path plan-
ning approach suitable for dynamic environments. Thus,
this study aims to enhance the hybrid method [18], [19] to
increase path-finding speed, transforming it into a real-time
method applicable to adaptive path planning.

Similar to the presented hybrid methods [18], [19], our
approach involves active and passive phases in the path gener-
ation process. However, to enhance it into a real-time method,
we will utilize a faster algorithm instead of Q-learning during
the active phase.

In this study, we will demonstrate our method’s ‘‘real-
time” performance, which is crucial for adaptive path
planning, by analyzing the overall execution time of the
path planning process, including environment monitoring and
path generation. We will validate our approach through simu-
lations conducted in dynamic environments. The contribution
of our method to existing works is depicted in Figure 1.

The structure of the paper is as follows. Section III provides
a comprehensive explanation of the theoretical foundation
of the methodology. The preparation and implementation of
the method are detailed in Section IV. Section V presents

137840

the real-time analysis, simulation results, and a discussion.
Finally, the paper is concluded in Section VI.

Ill. METHOD DESCRIPTION

In order to improve the hybrid method presented in [18], [19]
to become a real-time path planning, in the first phase, the
D* Lite algorithm is used to find a sequence of nodes to
navigate from the start cell to the target cell while avoiding
obstacles in a gridded workspace. The output of this phase is
a set of cell indexes. In the second phase, a pre-trained neural
network is used to convert these cell indexes into joint angles.
This is beneficial because, in the node-finding process, there
is no need to deal with the kinematics of the robot arm to
find joint angles since we find the angles through the neural
network in the passive section. Also, there is no need to run
a time-consuming neural network process since the neural
network’s weights have already been trained, which saves
computational time.

The first phase of hybrid path planning, which involves
finding nodes, is referred to as the active phase. During this
phase, a heuristic search is conducted to identify the best
path, which requires the robot to utilize an active section
of memory and a computer brain. The second phase, which
involves finding angles, is referred to as the passive phase.
In this phase, the neural network does not require training
each time itis used, as it has already been trained once and can
be used indefinitely. This means that the robot uses a passive
memory section during this phase without needing learning
or training processes.

Combining these two active and passive phases improves
the speed of path planning, enabling real-time path plan-
ning. The proposed approach to path planning optimizes each
phase separately, with the active phase utilizing a heuristic
search and the passive phase relying on a pre-trained neural
network. The overall approach is more efficient compared to
previous methods that involved finding joint angles during the
search process, which was time-consuming.

In this section, first, we will explain our environment mon-
itoring algorithm. Then, we will describe our real-time hybrid
path planning method thoroughly.

A. ENVIRONMENT MONITORING

As mentioned in the last section, real-time environment mon-
itoring is essential in adaptive path planning. In this regard,
in this subsection, we are going to explain our combined
computer vision algorithm for real-time monitoring. In real-
time environment monitoring, the locations of the obstacles
and the target in the 3D workspace should be continuously
measured. Consequently, the first step is determining the 3D
coordinates of the locations of the objects in the robot arm’s
workspace. To do this, we use a combination of the You Only
Look Once (YOLO) object detection algorithm, specifically
the variant called tiny-YOLOv4, and a neural network. The
YOLO algorithm [34] is used to detect the bounding boxes
and classes of objects in different views of 2D images. Then,

VOLUME 11, 2023



A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

IEEE Access

X

(b) Side View

(a) Top View (c) Perspective View

FIGURE 2. Three-dimensional workspace generated by a combination of
top and side views: (a) Top view; (b) Side view; (c) Perspective view.

a neural network is used to convert the 2D bounding boxes to
3D coordinates.

Accordingly, two cameras capture 2D images from the
top and side views. These pairs of images produce a unique
configuration of the obstacle and target in the 3D workspace.
Notably, we use two perpendicular cameras for the following
two primary reasons.

First, the precise depth of objects cannot be determined
using only one simple RGB camera as this type provides
information about planner images from which only 2D coor-
dinates can be extracted. Instead, we may need to use a depth
or stereo camera, which can also provide information about
the depth of objects, to determine the accurate depth in future
work.

Second, when objects are overlapped, and one is hidden
behind the other, detecting the hidden object would be impos-
sible with a single camera. In this case, neither a simple
RGB nor a depth camera can see the hidden object. There-
fore, we use two RGB cameras with two different views to
determine the depths of the objects as well as ensure that no
objects are not missed. However, when an object is hidden
behind the other, determining the depth is still a problem; this
case will be considered in our next study. For this case, the
solution is to use two perpendicular depth cameras, each of
which can determine the depth independently. This idea will
be discussed in the future work section.

To better understand the environment monitoring method,
we explain the process of our combined computer vision-
based environment monitoring process using simple objects
in a simple workspace. To this end, similar to our previous
study [19], we use a5 cm X 5 cm X 5 cm cube as a target
object for the robot arm. Moreover, we use a 5 cm diameter
sphere as an obstacle object with which the robot arm should
avoid a collision. Unlike the paper mentioned above, we no
longer use an object as the starting object in this study.
Instead, we use the current location of the end-effector as the
initial point since we want to update the current path instead
of planning a path. The current location of the end-effector
can be either determined using a localization method or
measured via forward kinematics using current joint angles.
Based on the above explanations, a simple schematic of the
3D workspace and objects is shown in Figure 2.

VOLUME 11, 2023

FIGURE 3. Combined computer vision algorithm comprising the YOLO
object detection algorithm and coordinate-finding neural network.

In the localization method, initially, two pairs of images are
input to the YOLO algorithm to obtain the size and location
of bounding boxes of the cube and sphere in both the top-
and side-view images. We use this information to compute
the center coordinates of objects in the images. As there
are two objects, and each object has two X and Y central
coordinates for each bounding box, each view has two central
points with four parameters (two sets of X and Y coordinates).
Consequently, a total of eight parameters can be extracted
from the top and side images. However, we need to determine
the coordinates of objects in a 3D workspace. These eight
parameters are input into the neural network in the next step to
determine the 3D coordinates of the sphere and cube. Hence,
the neural network computes six output parameters: the X,
Y, and Z coordinates of the sphere and cube (stereo depth
approach). This network contains four hidden layers with 16,
32, 64, and 16 neurons, respectively.

It is worth mentioning that the discussion of this so-called
stereo depth algorithm in our simulation is a key part of
our plan to make sure our method works well in real-life
situations with actual robots. We have intentionally included
this algorithm in our simulation to deal with the challenges
that come up when robots operate in the real world.

This is important because it is like a link between our
theoretical ideas and making them work in real situations.
We know that our method needs to handle the difficulties of
real-world robot tasks, especially when it comes to figuring
out how far things are. So, the stereo depth algorithm is a
crucial tool. It helps us fine-tune and check our method in a
simulation that closely mimics real-world conditions.

Basically, our simulation is a place where we can test how
well the stereo depth algorithm deals with the same problems
robots will face in the real world. This careful preparation
ensures that our method can handle the ups and downs of real-
world robot situations. It is not just about testing ideas on
a computer; it is about getting ready for the challenges that
our method will face in the unpredictable environments where
real robots operate.

The architecture of the combined computer vision
algorithm is depicted in Figure 3.

Once the positions of the obstacle and target in the spa-
tial workspace are determined, we can use them to update
the collision-free path from the current location of the

137841



IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

end-effector to the detected target. This process is explained
in the next section.

B. PATH GENERATION

Each path generation algorithm must cover both target
reaching and obstacle avoidance [35]. That is, the primary
objective is to determine a sequence of joint angles that
provide a path from the current location of the end-effector
to the target point while avoiding collisions with obstacles.
As already mentioned, in this paper, we use a hybrid path
generation method to find a safe sequence of joint angles,
which active and passive phases are explained in the follow-
ing subsections.

1) DETERMINING NODES (ACTIVE PHASE)

In order to find a path from the end-effector’s current location
to the target’s location while avoiding obstacles, we split the
workspace into identical grids called cells. The main aim is to
determine a sequence of collision-free cell indexes from the
current cell to the target cell, where the center of the target
object is located. In our last two papers [18], [19], we used
the Q-learning algorithm, which is a kind of reinforcement
learning algorithm, for this purpose. It determined a sequence
of actions, including up, down, left, right, backward, and
forward from the initial cell to the target cell. An end-effector
could reach the target following this sequence of actions.

Although this method has several advantages, it still suffers
from non-real-time path generation because reinforcement
learning algorithms are uninformed algorithms that work with
no information about the search space. In contrast, informed
algorithms aid in path generation with certain available infor-
mation about the target and obstacle. In this study, to take
advantage of informed algorithms for real-time path genera-
tion, we substitute an informed algorithm with Q-learning to
increase the speed of path generation, which leads to real-time
path planning.

To achieve the desired results, we use D* Lite, one of the
fast algorithms among informed-type algorithms [36]. It is a
sophisticated algorithm for calculating the optimal path while
considering a variety of situations, particularly in the field of
robotics. The algorithm is able to find the shortest route and
can also adjust the path if needed. One of the key features of
D* Lite is its ability to handle dynamic environments, which
is particularly useful in situations where objects or obstacles
may be constantly moving. This can be especially significant
when dealing with fast-moving objects that require a quick
response.

D* Lite tends to be more efficient in known environments
as it utilizes existing information about the map or terrain,
reducing redundant exploration and focusing on the most
promising paths. Additionally, as D* Lite utilizes a heuristic
based on prior information, it often converges to optimal
paths swiftly in environments where the map is known.
Q-learning, on the other hand, may take longer to converge
and may not guarantee optimality. Furthermore, D* Lite’s

137842

informed approach allows it to use resources more effectively
by focusing on areas of interest or changes in the environ-
ment, optimizing path updates and recalculations. Moreover,
Q-learning requires exploration to learn optimal paths, which
can be time-consuming and resource-intensive, especially in
complex or large environments. D* Lite, by using known
information, reduces the need for extensive exploration.

Unlike Q-learning, which is used to determine a sequence
of actions, D* Lite is used to determine a sequence of nodes
(cell center indexes) from the current cell to the target cell.
First, the cost of each edge connecting the current node to
its neighboring nodes is calculated to determine the shortest
path from the starting node to the target node. If an obstacle
is encountered, the most cost-effective route is recalculated,
and a revised list of nodes is created [37]. At the end of the
node-finding process, we have a sequence of cell indexes that
begin from the current cell and terminate at the target cell. The
algorithm finds cells that are not in the obstacles category,
implying that the path is collision-free.

To understand this method, as an example, imagine that
the current positions of the end-effector, desired target, and
obstacle are in cells with indexes (ic, jc, kc), (iT, jT, k), and
(io,jo, ko), respectively. A sequence of nodes is determined
to connect the current cell to the target cell, while the obstacle
cell is not among the path set elements. The path set has “‘n +
2”7 elements, including the current cell at the beginning, the
target cell at the end, and “‘n” other elements between them,

[T

where “n” is a natural number. This is expressed as follows:

(i, jo. ko) & {(ic.jc. kc), (i1, j1, k1), (2, j2, k2) .
«--(invjnvkn), (iT9jT7kT)} (1)

Notably, the target index at the end of the path sequence
illustrates the target-reaching concept, and the absence of the
obstacle index in the path sequence illustrates the obstacle-
avoidance concept, which are the two essential requirements
in robot arm path generation in dynamic industrial environ-
ments where intelligent robot arms work.

Apart from the difference in the type of elements in the path
sequences, there is another difference between path-finding
using the Q-learning and D* Lite algorithms: their speed.
D* Lite, as an informed algorithm, is significantly faster
than Q-learning. As Q-learning is uninformed, the grid size
significantly influences the running time. Conversely, in D*
Lite, the grid size has fewer effects on the running time. That
is because, in an uninformed algorithm, all cells should be
considered during the path search. In contrast, in an informed
algorithm, only the cells related to the potential path, that is,
the cells between the initial and target cells, are considered.

2) FINDING ANGLES (PASSIVE PHASE)

After determining the sequence of nodes for the new path,
these must be converted into joint angles to be implemented
in the robot arm. Similar to our previous studies, we use a
trained neural network as a passive phase. Indeed, utilizing
the neural network depicted in Figure 4, we map each point

VOLUME 11, 2023



A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

IEEE Access

Z (k)

(a) (b)

FIGURE 4. (a) Three-dimensional gridded workspace; (b) Structure of the
angle-finding neural network.

TABLE 1. Overview of algorithms.

Stage Algorithm Input Output

YOLO Two images Four 2D points

Environment

monitoring Neural Networks 1~ Four 2D points Two 3D points
Path D* Lite Two 3D points Sequf:nce of

. path indexes
generation

Neural Networks 2 Path indexes Joint angles

of the 3D workspace to the corresponding joint angles in a
particular orientation. This method splits the path generation
task into two different functions: node-finding (active) and
angle-finding (passive) processes. As explained in the last
section and our previous papers, this approach significantly
increases the speed of path planning.

The structure of the angle-finding neural network used in
this study is marginally different than that in the previous
paper, as shown in Figure 4. This is because, unlike the
last article in which we used action and cell indexes as
inputs, here, we use only cell indexes because D* Lite, unlike
Q-learning, does not have action indexes. Therefore, three
inputs are used, cell indexes i, j, and k, representing the X, Y,
and Z axes, respectively, and six outputs are obtained (joint
angles one to six) as the robot arm has six degrees of freedom.
The neural network also includes three hidden layers with
four, ten, and six neurons, respectively. A rectified linear unit
(ReLU) is the activation function for the input and output
neurons.

At the end of the angle-finding process, we have a sequence
of joint angles (a path) that guides the end-effector from the
current to the target position. The robot follows a path that is
continuously updated. This path does not change so long as
the locations of the objects are the same concerning the last
moment. Once the locations change, the path is updated, and
the robot follows the new path. Therefore, we can implement
the determined joint angles to the robot arm and test it in the
simulation environment.

In Table 1 we summarized each algorithm used in both
environment monitoring and path generation stages, includ-
ing YOLO, first neural network, D* Lite, and second neural
network.

In Figure 5, the block diagram of the proposed method is
presented as an overview of the algorithm, too. In each step,
the input and output of each block are shown and mentioned,
trying to make the details clearer. As it shows, the algorithm

VOLUME 11, 2023

Environment Monitoring

1 Cameras
image T =5

2D Images

[Objects Detection via
YOLO
InogeT T

3D Coordimates

Neural Networks 1

g Vi
D* Lite

Neural Networks 2

Joint Angles

Implementation

I

]

FIGURE 5. Block diagram of the proposed robot arm path planning.

monitors the workspace and finds the location of objects.
Given the locations of the objects, a new path is generated
and implemented in the robot. This process will continuously
work until the robot reaches the target.

Implementing the method in the simulation environment is
explained thoroughly in Section IV.

IV. PREPARATION AND IMPLEMENTATION OF THE
METHOD

This section describes the steps to prepare the dataset, train
the algorithms, and implement the method in a simula-
tion environment. Furthermore, the simulation environment
framework is explained in detail.

A. DATA GENERATION AND TRAINING

Before the implementation, we need to train the three learning
parts of the algorithm: the YOLO and coordinate-finding
neural network from the environment monitoring section,
as well as the angle-finding neural network from the passive
path generation section. Appropriate datasets are required for
training these parts.

To train the YOLO, we need a dataset of images from the
top and side views of the workspace. The dataset should cover
the possible object arrangements to ensure that the object
detection algorithm will be generalized. With respect to this,
we randomly locate the sphere and box in the workspace.

For the coordinate-finding neural network, we need a
dataset of image pairs in which the objects are located ran-
domly, but their locations are known. That is because these
locations are indeed the labels of the neural network, whereas
the bonding boxes’ information is the input. In this part,

137843



IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

the dataset should also cover most possibilities of object
arrangements to ensure that the neural network is generalized.

We need a dataset of cell indexes and their corresponding
joint angles to train the angle-finding neural network. The cell
indexes are the network inputs, and the joint angles are the
labels of the data points. As the number of cells increases (in
fine grid sizes), the number of data points increases as well.
Again, the dataset should also cover most possibilities of cell
indexes and joint angles to generalize the neural network.

To collect datasets for the first two parts (YOLO and the
coordinate-finding neural network), we use the Rhinoceros
3D software (Rhino). Rhino is a software program, devel-
oped by Robert McNeel and associates in 1998, used for
various purposes, including computer-based designing and
manufacturing products, creating prototypes, 3D printing,
and analyzing existing products to understand their design
and construction. To generate the dataset, we import the
IRB 1600 ABB model, the model we use in our lab, into
Rhino software. After that, with the help of the Python script
inside the Rhino, we generate random locations of the sphere
and box in the robot arm workspace and save the images of
the top and side views.

For the angle-finding neural network, we use the RoboDK
simulation software for robot arms that can convert the
coordinates to corresponding joint angles and vice versa.
In RoboDK, like Rhino, we import the IRB 1600 ABB model
to collect the data points in a 3D gridded workspace. We can
read the corresponding joint angles using Python script for
random locations of the end-effector. By training the neu-
ral network exclusively on data from the robot’s physically
accessible workspace, we guarantee that any paths generated
by the network will always be feasible and attainable.

Once the dataset is ready, we can train the different net-
works in the learning algorithm to use it in the path planning
method. Well-trained YOLO and neural networks can achieve
high accuracy in path planning results. In contrast, improper
training can result in a collision and the inability to reach the
target. For example, YOLO may not be able to detect objects
well, the coordinate-finding neural network may not obtain
the coordinates of objects, and the angles-finding neural net-
work may not find appropriate joint angles.

Table 2 presents the training protocols for each training
algorithm to show the data generators, algorithms’ architec-
ture, as well as other training information such as number
of iterations, absolute errors, etc. Notice that the D* Lite
algorithm is an incremental heuristic search algorithm, not
a training algorithm, so we do not present it in this table.

After training each Al algorithm separately, they are com-
bined with working in a synchronized manner in a simulation
environment to update a collision-free path for reaching the
target. The framework of this simulation environment is elab-
orately discussed in the next section.

B. SIMULATION ENVIRONMENT FRAMEWORK
In this section, we develop a simulated dynamic workspace
environment for testing and evaluating our adaptive path

137844

TABLE 2. Training protocol for each algorithm.

. Data . Training
Algorithm Generator Architecture Information
. . -Iterations: 6000
YOLO Rhino 3D -Tiny_YOLOv4 Labeled via
model) structure « e
labelimg” library
-Input layer: 8 neurons
Neural . -Four “hidden layers: -Iterations: 1500
Rhino 16, 32, 64, 16 neurons
Networks 1 -Absolute error: 0.03
-Output  layer: 6
neurons
-Input layer: 3 neurons
Neural RoboDK ATI;B%() glei?zr:ls layers: -Iterations: 150
Networks 2 o -Absolute error: 0.01

-Output  layer: 6
neurons

Camera

Continuously Running

 ——

Images o

——

Path Planning

. Object detection by YOLO

. Coordinates finding by Neural Networks

Python

Path Generation

. Nodes finding by D* Lite

1 Continuously Running

{ (65,65, 65, 65, 65, 6],

(67,67, 65,676,671}

1
Robot Control i

Continuously Running

FIGURE 6. Flowchart of the simulation environment framework organized
via multi-software synchronization.

planning method. We design the simulation environment
framework via multi-software synchronization, which is sub-
sequently explained in detail.

In fact, we need a framework to use trained algorithms,
explained in Section I'V-A, to work together as an integrated

VOLUME 11, 2023



A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

IEEE Access

system, independently and synchronised. The flowchart of
this simulation environment is illustrated in Figure 6. In this
framework, the results from units 1 to 3, which are contin-
uously running, are updated and displayed in unit 4. The
continuously running units are shown by the arrows in a loop
in Figure 6 and are listed below:

o Python script in Rhino.

« External Python code.

o Grasshopper in Rhino.

According to the flowchart, four software programs in four
different units are simultaneously running to simulate the
proposed adaptive path planning method. The first unit is the
camera component that simulates the functions of the top
and side cameras. In this part, the Python script in Rhino
is continuously run to capture images from the top and side
views of the robot arm workspace. These images are updated
constantly to ensure that any change in the locations of objects
is identified in real time.

The second unit is the path planning component, which
simulates the function of our proposed path planning method
and is typically performed using a computer. This section
includes the YOLO object detection, the coordinate-finding
neural network for environment monitoring purposes, as well
as D* Lite algorithm, and the angle-finding neural network
for path generation purposes. Based on the images generated
in the previous unit, Python code is used to identify the
positions of the objects and generate a collision-free path
for reaching the target. The updated path, which includes a
sequence of nodes, is input to the angle-finding neural net-
work to convert the nodes to the corresponding joint angles.
Then, these joint angles of the updated path are saved as a
comma-separated values (CSV) file. This file is continuously
updated as the code constantly runs and repeats the process.

The third unit is the robot control component, which simu-
lates the function of the robot arm control device. In this part,
a Grasshopper block diagram uses the updated data from the
CSV file, which contains the joint angles of the robot arm, and
applies them to the robot in Rhino. Grasshopper is a visual
programming language that runs within the Rhino software.
Programs are created by dragging components onto a canvas.
The outputs of these units are then connected to the inputs of
subsequent pieces. Our Grasshopper block diagram consists
of several parts containing blocks to perform specific tasks.

The fourth unit is the visualization component, where the
motion of the robot arm is visualized. The Rhino software is
used for displaying the simulated results of this part. Notably,
each unit works independently, yet they are interlinked and
use the results of other units.

V. ANALYSIS, SIMULATION, AND DISCUSSION

In this section, we present a real-time analysis of the proposed
method. Thereafter, we describe its testing in the simulation
environment and discuss the results. Using a simulation-
based testbed helps us to perform robot arm tests in a dynamic
site in a cost-effective, safe, and fast manner resulting in
repeatable, controllable, measurable, and scalable effects.

VOLUME 11, 2023

Execution Time

Critical Grid Size 96x96x96

FIGURE 7. Total execution time for different grid sizes. Critical grid size
for 100 ms reaction time is shown. Contribution of each section in the
path planning method to the total time.

A. REAL-TIME ANALYSIS

We analyze the execution time of the flowchart’s adap-
tive path planning unit, which is elaborately described in
Section III, to determine if the method is real-time. Since
the execution time is different for different grid sizes, the
analysis should be conducted for different sizes. The total
execution time is the summation of the execution times for
the two sections, including environment monitoring and path
generation. The environment monitoring section contains the
YOLO object detection algorithm and the first coordinate-
finding neural network. The path generation section contains
the D* Lite algorithm for node finding and the second neural
network for angle finding. Figure 7 shows the execution
time required for the adaptive path planning by the different
sections for different grid sizes.

Figure 7 also depicts the contribution of each section,
including environment monitoring and path generation, to the
total execution time. YOLO object detection, the first neural
network for coordinate finding, D* Lite for node-finding, and
the second neural network for angle-finding are represented
by light blue, blue, light orange, and orange, respectively.
For small grid sizes, YOLO and the first neural network
have major contributions to total execution time. However,
for large grid sizes, D* Lite and the second neural network
majorly contribute to total execution time.

From Figure 7, we can also infer that the execution time of
YOLO and the first neural network is independent of the grid
size and is almost constant as the grid size increases. This
is because YOLO first identifies objects from an image by
dividing the image into regions. Then, it predicts bounding
boxes and probabilities for each region. This implies that its
operation is not based on grid cells. Moreover, the first neural
network only converts the indexes of the obstacle and target
cells to 3D coordinates, which is unrelated to grid cells.

In contrast, the execution time of D* Lite and the second
neural network depends on the grid size. This is because the
D* Lite algorithm identifies the nodes by searching for the
closest collision-free cells in the path from the current cell to
the target cell. Therefore, as the number of cells increases, the
search process lengthens too. Furthermore, the second neural
network converts the nodes to the corresponding joint angles.
Thus, as the cells increase, the number of selected nodes from
the starting cell to the target also increases. Consequently,
the number of times the second neural network performs the

137845



IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

angle-finding process increases, resulting in an increase in the
execution time.

It is also worth mentioning that since the structure of
the first neural network is significantly more complex than
that of the second neural network, the execution time of the
first neural network is more than that of the second one in
small grid sizes. Yet, as the number of cells increases, the
execution time of the second neural network increases until it
becomes more than that of the first because the first network
is independent of the grid size, whereas the second network
is dependent on it.

Overall, it is a general fact that as the number of cells
increases, the amount of computing increases; therefore, the
execution time increases too. Since some of the parts are
dependent on the grid size, as the grid size increases, the
total execution time increases as well. In other words, coarse
motions (small grid size) need less execution time, and fine
motions (large grid size) require more execution time.

Therefore, to achieve real-time path planning in our hybrid
method, there is a tradeoff between the grid size and the path
planning time. This implies that if the grid size increases
beyond a critical size, the execution time (that is, the reaction
time of the robot arm) will be too high for the process to be
considered real-time path planning.

The reaction time of a robot arm varies for different
applications, which implies that the definition of real-time
performance is relative. In this regard, several workers may
be in a dynamic industrial environment; therefore, we defined
the reaction time based on human behavior. As human reac-
tion time is approximately 180 ms [38], the robot should
respond at least as fast or faster. Hence, if the execution time
is less than 100 ms, we may successfully apply the algorithm
for real-time response in a dynamic industrial environment
where intelligent robot arms collaborate with humans. Con-
sequently, for an execution time of 100 ms, the critical grid
size is equal to 96 x 96x96 cells. Thus, our proposed method
for the industrial environment functions in real time for grid
sizes up to 96 x 96 x 96 cells, in which the total execution time
does not exceed more than 100 ms.

B. SIMULATION RESULTS AND DISCUSSION
We design a complex scenario to evaluate the quickness of
the real-time response of our adaptive path planning method.
This scenario is based on changing the target and obstacle
locations in the developed simulation environment to make
the workspace highly dynamic. In this scenario, we are trying
to test the target-reaching and obstacle-avoidance tasks in a
very critical and complicated condition in terms of dynamics.
Therefore, to simulate target movements in the industrial
environment, we consider that the location of the target
changes randomly in a limited area. The curve created by
random locations of the target is represented by green color
in Figure 8. This scenario can help check the real-time target-
reaching capability of the method in a dynamic industrial
environment. By changing the target location, we can force

137846

Static paths

FIGURE 8. Verification of the path planning process in a complex scenario
with dynamic target and obstacle locations. Orange: complete
collision-free updated path (dynamic path); Green: target locations; Red
dots: obstacle locations; Gray: updated path in each time step (static
path).

the robot to update its path at each time step with respect to
the target’s new location.

The scenario is more complicated for the obstacles.
To check the capability of real-time collision avoidance,
we intentionally positioned the obstacle a few cells ahead of
the current position of the end-effector in the current path.
The red marks show the locations of the obstacle in each time
step in Figure 8. In fact, owing to the intersection of the robot
arm’s current path with the obstacle, we force the robot to
update its path at each time step. Otherwise, it will collide
with the obstacle.

Given this scenario, the robot must update its path when-
ever a target or obstacle changes. The updated path is with
respect to the new locations of the target and obstacle. The
overall path is a combination of the paths generated in each
update. This implies that there are two types of paths:

1. Static path (at each time step): The path at each time
step from the end-effector to the current location of the target
with respect to the current location of the obstacle. That is,
if the locations of the target and obstacle were not changed,
the robot would continue following this path.

2. Dynamic path (overall): A portion of each static path
that the robot has passed so far. That is, a dynamic path is a
collision-free path that the robot has passed at each time step
to reach the target’s new location at that time.

In Figure 8, the static and dynamic paths are shown in gray
and orange curves, respectively. From subfigures (1) to (9),
we can observe that the path is constantly updated to avoid
collision with the obstacle that is intentionally placed in the
way, as well as to reach the target whose location changes
randomly. Thus, from the early stage of tracking (subfigure
(1)) to the end of the process (subfigure (9)), the robot updates
its path with respect to the new positions of the target and
obstacle until it reaches the final destination.

VOLUME 11, 2023



A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

IEEE Access

TABLE 3. Comparative analysis of results.

Path Execution Including the time of
Author Planning Time: t Environment Path
Algorithm  (millisecond) Monitoring Generation

Our method Hybrid 38 <t Yes Yes

Kunz [22] DRM 75<t<100 Yes Yes

Leven [39] PRM tens of ms X Yes

Silva [40] A* min <t <40 X Yes
Schumann- Parallel

Olsen [41] DRM 10<t<20 X Yes

To make the simulation results more understandable and
the paths more visible, we have removed the sphere (obstacle)
and box (target) in Figure 8.

In order to evaluate our method, we compare it with other
real-time path planning studies. Table 3 provides a com-
prehensive comparison, including algorithm types, execution
times, and reported times.

The total execution time including the time of environment
monitoring, as well as path generation for our method, begins
from 38 milliseconds in small grid sizes and has an open-
end maximum time for large grid sizes. For some of the
mentioned methods, the reported execution time was only for
path generation. That is, their total execution time for whole
process, which includes the time for environment monitoring
and path generation, is more than what is reported.

C. FUTURE WORK

Besides the advantages of our presented adaptive path plan-
ning method, this study exhibits certain limitations, which
should be considered for future work. Some of the restrictions
are listed below.

e As mentioned in Section II-A, obtaining depth infor-
mation using simple cameras is impossible when an
object is hidden behind another in the 3D workspace.
The solution is to use two depth or stereo cameras for
two perpendicular views to guarantee at least one image
that can detect the depth. Also, in case that the objects
cannot be detected by any cameras, other methods like
thermal image-based method can be used [42].

e After testing in the simulation environment, the method
must be tested in an experimental setup. However,
to avoid a lengthy paper, our next paper will present
the test results of an experimental setup.

e The algorithm is suitable for a single obstacle; however,
a robot arm may simultaneously encounter multiple
obstacles in real industrial environments. Thus, the next
study should focus on developing a multi-obstacle path
planning method.

VI. CONCLUSION

An adaptive path planning method was developed for intelli-
gent robot arms, which typically work in dynamic environ-
ments. In the proposed method, the locations of the target

VOLUME 11, 2023

and obstacle were detected through a combined computer
vision approach for environment monitoring purposes. The
YOLO algorithm was used to detect objects, and a neural
network converted the output of YOLO to 3D coordinates.
Then, the D* Lite algorithm was used to identify a sequence
of collision-free nodes in a 3D gridded workspace forming
a path from the current cell of the end-effector to the target
cell (a so-called active process of path generation). Finally,
another neural network was used to convert the path nodes to
joint angles (a so-called passive process of path generation).
A simulation environment framework was designed to test
the method in a dynamic workspace. In this environment,
an experimental test was conducted based on a complex
scenario to evaluate the speed of the target-reaching and
obstacle-avoidance tasks. The results demonstrated the quick
reaction of the robot arm in path planning. Real-time analysis
was also performed to determine the critical grid size; as far
as the grid size is less than the critical grid size, the method
was considered to function in real time. The analysis showed
that the critical grid size was 96 x 96x96 cells for a 100 ms
reaction time.

ACKNOWLEDGMENT

The authors would like to express their gratitude to their col-
league, Saeji Park, for helping them to design the diagrams,
which provided a better overview of their method.

REFERENCES

[1] X. Xia, T. Li, S. Sang, Y. Cheng, H. Ma, Q. Zhang, and K. Yang,
“Path planning for obstacle avoidance of robot arm based on improved
potential field method,” Sensors, vol. 23, no. 7, p. 3754, Apr. 2023, doi:
10.3390/523073754.

[2] S.-O. Park, M. C. Lee, and J. Kim, “Trajectory planning with collision
avoidance for redundant robots using Jacobian and artificial potential field-
based real-time inverse kinematics,” Int. J. Control, Autom. Syst., vol. 18,
no. 8, pp. 2095-2107, Aug. 2020, doi: 10.1007/s12555-019-0076-7.

[3] S.N.Gai,R. Sun, S.J. Chen, and S. Ji, “6-DOF robotic obstacle avoidance
path planning based on artificial potential field method,” in Proc. 16th Int.
Conf. Ubiquitous Robots (UR), Jeju, South Korea, Jun. 2019, pp. 165-168,
doi: 10.1109/URAIL2019.8768792.

[4] H.-I. Lin and M.-F. Hsieh, “Robotic arm path planning based on
three-dimensional artificial potential field,” in Proc. 18th Int. Conf.
Control, Autom. Syst. (ICCAS), PyeongChang, South Korea, Oct. 2018,
pp. 740-745.

[S] Z.Igbal,J.Reis, and G. Gongalves, ‘‘Path planning for an industrial robotic
arm,” in Proc. 8th Int. Conf. Intell. Syst. Appl. (INTELLI), Rome, Italy,
Jul. 2019, p. 39.

[6] M. R. B. Bahar, H. B. Bahar, and F. Hashemzadeh, “Grid roadmap
based real time path planning,” in Proc. 17th Int. Conf. Autom. Comput.,
Sep. 2011, pp. 75-79.

[7] M.R.B.Bahar, A. R. Ghiasi, and H. B. Bahar, *“Grid roadmap based ANN
corridor search for collision free, path planning,” Scientia Iranica, vol. 19,
no. 6, pp. 1850-1855, Dec. 2012, doi: 10.1016/j.scient.2012.02.028.

[8] K. Wei and B. Ren, “A method on dynamic path planning for robotic
manipulator autonomous obstacle avoidance based on an improved
RRT algorithm,” Sensors, vol. 18, no. 2, p.571, Feb. 2018, doi:
10.3390/518020571.

[9] Y.Liuand G. Zuo, “Improved RRT path planning algorithm for humanoid
robotic arm,” in Proc. Chin. Control Decis. Conf. (CCDC), Hefei, China,
Aug. 2020, pp. 397-402, doi: 10.1109/CCDC49329.2020.9164659.

[10] T.-C. Lai, S.-R. Xiao, H. Aoyama, and C.-C. Wong, “Path planning and
obstacle avoidance approaches for robot arm,” in Proc. 56th Annu. Conf.
Soc. Instrum. Control Eng. Jpn. (SICE), Kanazawa, Japan, Sep. 2017,
pp. 334-337, doi: 10.23919/SICE.2017.8105619.

137847


http://dx.doi.org/10.3390/s23073754
http://dx.doi.org/10.1007/s12555-019-0076-7
http://dx.doi.org/10.1109/URAI.2019.8768792
http://dx.doi.org/10.1016/j.scient.2012.02.028
http://dx.doi.org/10.3390/s18020571
http://dx.doi.org/10.1109/CCDC49329.2020.9164659
http://dx.doi.org/10.23919/SICE.2017.8105619

IEEE Access

A. Abdi, J. H. Park: Hybrid Al-Based Adaptive Path Planning for Intelligent Robot Arms

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

T. B. Ionescu, “Adaptive simplex architecture for safe, real-time robot
path planning,” Sensors, vol. 21, no. 8, p.2589, Apr. 2021, doi:
10.3390/521082589.

A.T.Khan, X. Cao,Z.Li, and S. Li, “Evolutionary computation based real-
time robot arm path-planning using beetle antennae search,” EAI Endorsed
Trans. AI Robot., vol. 1, pp. 1-10, Jan. 2022, doi: 10.4108/airo.v1i.6.

S. Wen, J. Chen, S. Wang, H. Zhang, and X. Hu, “Path planning of
humanoid arm based on deep deterministic policy gradient,” in Proc.
IEEE Int. Conf. Robot. Biomimetics (ROBIO), Kuala Lumpur, Malaysia,
Dec. 2018, pp. 17551760, doi: 10.1109/ROBIO.2018.8665248.

E. Prianto, M. Kim, J.-H. Park, J.-H. Bae, and J.-S. Kim, “Path plan-
ning for multi-arm manipulators using deep reinforcement learning: Soft
actor—critic with hindsight experience replay,” Sensors, vol. 20, no. 20,
p. 5911, Oct. 2020, doi: 10.3390/s20205911.

F. Zhang, J. Leitner, M. Milford, and P. Corke, ““Sim-to-real transfer of
visuo-motor policies for reaching in clutter: Domain randomization and
adaptation with modular networks,” World, vol. 7, no. 8, pp. 1-7, 2017.
M. Ji, L. Zhang, and S. Wang, “A path planning approach based on Q-
learning for robot arm,” in Proc. 3rd Int. Conf. Robot. Autom. Sci. (ICRAS),
Wuhan, China, Jun. 2019, pp. 15-19, doi: 10.1109/ICRAS.2019.8809005.
Q. Yuan, J. Yi, R. Sun, and H. Bai, “Path planning of a mechanical arm
based on an improved artificial potential field and a rapid expansion ran-
dom tree hybrid algorithm,” Algorithms, vol. 14, no. 11, p. 321, Nov. 2021,
doi: 10.3390/a14110321.

A. Abdi, D. Adhikari, and J. H. Park, “A novel hybrid path planning
method based on Q-learning and neural network for robot arm,” Appl. Sci.,
vol. 11, no. 15, p. 6770, Jul. 2021, doi: 10.3390/app11156770.

A. Abdi, M. H. Ranjbar, and J. H. Park, “Computer vision-based path
planning for robot arms in three-dimensional workspaces using Q-learning
and neural networks,” Sensors, vol. 22, no. 5, p. 1697, Feb. 2022, doi:
10.3390/522051697.

L. Luo, H. Wen, Q. Lu, H. Huang, W. Chen, X. Zou, and C. Wang,
“Collision-free path-planning for six-DOF serial harvesting robot based
on energy optimal and artificial potential field,” Complexity, vol. 2018,
pp. 1-12, Nov. 2018, doi: 10.1155/2018/3563846.

Z. Chen, L. Ma, and Z. Shao, “Path planning for obstacle avoidance of
manipulators based on improved artificial potential field,” in Proc. Chin.
Autom. Congr. (CAC), Hangzhou, China, Nov. 2019, pp. 2991-2996, doi:
10.1109/CAC48633.2019.8996467.

T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path plan-
ning for a robot arm in changing environments,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Taipei, Taiwan, Oct. 2010, pp. 5906-5911, doi:
10.1109/IROS.2010.5653275.

Z.W.Lim, D. Hsu, and W. S. Lee, “Adaptive informative path planning in
metric spaces,” Int. J. Robot. Res., vol. 35, no. 5, pp. 585-598, Apr. 2016,
doi: 10.1177/0278364915596378.

G. Wu and S. Zhang, ‘““Real-time jerk-minimization trajectory planning of
robotic arm based on polynomial curve optimization,” Proc. Inst. Mech.
Eng., C, J. Mech. Eng. Sci., vol. 236, no. 21, pp. 10852-10864, Nov. 2022.
F. S. Hameed, H. M. Alwan, and Q. A. Ateia, “Obstacle avoidance
method for highly redundant robotic arms,” IOP Conf. Ser, Mater. Sci.
Eng., vol. 765, no. 1, Mar. 2020, Art. no. 012017, doi: 10.1088/1757-
899x/765/1/012017.

T. Li, Q. Li, W. Li, J. Xia, W. Tang, and W. Wang, “A path planning
algorithm for space manipulator based on Q-learning,” in Proc. IEEE
8th Joint Int. Inf. Technol. Artif. Intell. Conf. (ITAIC), Chongqing, China,
May 2019, pp. 1566-1571, doi: 10.1109/ITAIC.2019.8785427.

X. Wang, Z. Xie, X. Zhou, J. Gao, F. Li, and X. Gu, “Adaptive path plan-
ning for the gantry welding robot system,” J. Manuf. Processes, vol. 81,
pp. 386395, Sep. 2022, doi: 10.1016/j.jmapro.2022.07.005.

S. Aoughellanet, T. Mohammedi, and Y. Bouterfa, ‘“Neural network path
planning applied to PUMA 560 robot arm,” WSEAS Trans. Syst., vol. 4,
no. 4, pp. 446-450, 2005.

K. Kamali, I. A. Bonev, and C. Desrosiers, “Real-time motion planning for
robotic teleoperation using dynamic-goal deep reinforcement learning,”
in Proc. 17th Conf. Comput. Robot Vis. (CRV), Ottawa, ON, Canada,
May 2020, pp. 182-189, doi: 10.1109/CRV50864.2020.00032.

L. Wang, Y. Qi, W. Li, M. Liu, and Z. Zhang, “Dynamic parallel map-
ping and trajectory planning of robot arm in unknown environment,”
IEEE Sensors J., vol. 23, no. 10, pp. 10970-10982, May 2023, doi:
10.1109/JSEN.2022.3232088.

H. Berggren and F. Melvas, “Real-time tracking of human motions and
adaptive robot path planning for assembly cooperation,” Tech. Rep., 2018.

137848

[32] D. Ding, Z. Pan, D. Cuiuri, H. Li, and N. Larkin, “Adaptive path
planning for wire-feed additive manufacturing using medial axis trans-
formation,” J. Cleaner Prod., vol. 133, pp. 942-952, Oct. 2016, doi:
10.1016/j.jclepro.2016.06.036.

[33] H. Li, H. Wu, L. Lou, K. Kiihnlenz, and O. Ravn, ‘Ping-pong
robotics with high-speed vision system,” in Proc. 12th Int. Conf.
Control Autom. Robot. Vis. (ICARCV), Dec. 2012, pp. 106-111, doi:
10.1109/ICARCV.2012.6485142.

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ““You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779-788.

[35] W. Vann, T. Zhou, Q. Zhu, and E. Du, “Enabling automated facility main-
tenance from articulated robot collision-free designs,” Adv. Eng. Informat.,
vol. 55, Jan. 2023, Art. no. 101820, doi: 10.1016/j.a¢i.2022.101820.

[36] S. Koenig and M. Likhachev, “D*lite,” in Proc. AAAI, vol. 15, 2002,
pp. 476-483.

[37] K. C. Kyu, N. H. Hung, K. D. Hwan, and H. Kyeong, “Path planning for
automatic guided vehicle with multiple target points in dynamic environ-
ment,” in Proc. MATEC Web Conf., 2018, p. 2029, doi: 10.1051/matec-
conf/201815902029.

[38] J. M. Brebner, “Introduction: An historical background sketch,” in Reac-
tion times, A. T. Welford, Ed. London, U.K.: Academic, 1980, pp. 1-23.

[39] P. Leven and S. Hutchinson, “A framework for real-time path planning in
changing environments,” Int. J. Robot. Res., vol. 21, no. 12, pp. 999-1030,
Dec. 2002, doi: 10.1177/0278364902021012001.

[40] J.S.Silva, P. Costa, and J. Lima, “Manipulator path planning for pick-and-
place operations with obstacles avoidance: An A algorithm approach,” in
Robotics in Smart Manufacturing, 2013, pp. 223-234, doi: 10.1007/978-
3-642-39223-8_20.

[41] H.Schumann-Olsen, M. Bakken, @. H. Holhjem, and P. Risholm, “‘Parallel
dynamic roadmaps for real-time motion planning in complex dynamic
scenes,” in Proc. 3rd Workshop Robots Clutter, 2014, pp. 1-12.

[42] H. Wu, H. Li, H.-L. Chi, Z. Peng, S. Chang, and Y. Wu, “Thermal
image-based hand gesture recognition for worker-robot collaboration in
the construction industry: A feasible study,” Adv. Eng. Informat., vol. 56,
Apr. 2023, Art. no. 101939, doi: 10.1016/j.2i.2023.101939.

ALl ABDI received the B.Sc. and first M.Sc.
degrees in mechanical engineering, specializing
in robotic control from the University of Tehran,
Tehran, Iran, in 2016 and 2019, respectively. He is
currently pursuing the second M.Sc. degree in
artificial intelligence with the Pohang University
of Science and Technology (POSTECH), Pohang,
South Korea. His research interests include arti-
ficial intelligence-powered robots (AI), computer
vision (CV), human-robot interaction (HRI),
robotic control, virtual/augmented reality (VR/AR), and natural language
processing (NLP).

JU HONG PARK (Member, IEEE) received the
B.Eng. degree in electronic and electrical engi-
neering and architecture from Hongik University,
the M.Arch. degree from Harvard University, and
the Ph.D. degree in architecture (major in design
and computation and minor in education) from
the Harvard Graduate School of Education, MIT.
He is the Director of the Design Intelligence Lab-
oratory, Meta Maker Space, POSTECH, and the
Food Tech RnD Center. Before being appointed as
an Assistant Professor with POSTECH, he was an Assistant Professor and
the Coordinator of the M.S. Arch in Computation and Embedded Technol-
ogy Program, School of Architecture, University of Miami. He was also a
Researcher with the MIT School of Architecture and the Media Laboratory
and an Architect with the Office for Metropolitan Architecture (OMA) and
the Coop Himmelb(l)au. During the M.Arch. degree, he was nominated for
the prestigious James Templeton Kelly Thesis Prize.

VOLUME 11, 2023


http://dx.doi.org/10.3390/s21082589
http://dx.doi.org/10.4108/airo.v1i.6
http://dx.doi.org/10.1109/ROBIO.2018.8665248
http://dx.doi.org/10.3390/s20205911
http://dx.doi.org/10.1109/ICRAS.2019.8809005
http://dx.doi.org/10.3390/a14110321
http://dx.doi.org/10.3390/app11156770
http://dx.doi.org/10.3390/s22051697
http://dx.doi.org/10.1155/2018/3563846
http://dx.doi.org/10.1109/CAC48633.2019.8996467
http://dx.doi.org/10.1109/IROS.2010.5653275
http://dx.doi.org/10.1177/0278364915596378
http://dx.doi.org/10.1088/1757-899x/765/1/012017
http://dx.doi.org/10.1088/1757-899x/765/1/012017
http://dx.doi.org/10.1109/ITAIC.2019.8785427
http://dx.doi.org/10.1016/j.jmapro.2022.07.005
http://dx.doi.org/10.1109/CRV50864.2020.00032
http://dx.doi.org/10.1109/JSEN.2022.3232088
http://dx.doi.org/10.1016/j.jclepro.2016.06.036
http://dx.doi.org/10.1109/ICARCV.2012.6485142
http://dx.doi.org/10.1016/j.aei.2022.101820
http://dx.doi.org/10.1051/matecconf/201815902029
http://dx.doi.org/10.1051/matecconf/201815902029
http://dx.doi.org/10.1177/0278364902021012001
http://dx.doi.org/10.1007/978-3-642-39223-8_20
http://dx.doi.org/10.1007/978-3-642-39223-8_20
http://dx.doi.org/10.1016/j.aei.2023.101939

