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ABSTRACT To address the issue of low predictive accuracy in complex trajectory forecasting for civilian
rotorcraft unmanned aerial vehicles (UAVs), this paper presents a method that utilizes the SVM-BTS tech-
nique for recognizing and predicting these intricate trajectories. Initially, the Support VectorMachine-Binary
Tree Support Vector Machine model (SVM-BTS) is employed to segmentally recognize the complex
trajectories of civilian UAVs. Based on this identification, five distinct flight states are identified: vertical,
pitch, transverse, roll, and transitional. To assess the predictive performance of these states, a combination
of Sliding Window Polynomial Least Squares, Unscented Kalman Filtering, and Long Short-Term Memory
neural network methods is utilized. Consequently, the most suitable prediction algorithm is determined for
each flight state. Experimental results demonstrate that the SVM-BTS recognition method, compared to
SVM, achieves a 10.4% increase in recognition accuracy. Across different flight datasets, this prediction
method exhibits the lowest mean squared error values compared to SWPLS, UKF, and LSTM. Therefore, this
study accurately predicts the complex flight trajectories of civilian rotorcraft UAVs, enhancing the precision
and efficiency of UAV flight prediction.

INDEX TERMS Trajectory classification, binary tree SVM, motion state identification, joint prediction.

I. INTRODUCTION
In the 1920s, the inaugural development of the first unmanned
aerial vehicle (UAV) marked the advent of the unmanned
era [1]. Subsequently, from the 1940s onward, drones were
primarily employed as military assets within the realm of
aerial warfare [2]. It wasn’t until the 1980s and 1990s that
UAVs ventured into the civilian domain, gaining prevalence
due to their compact design, convenience, and user-friendly
operation as time progressed. Currently, most civilian UAVs
are consumer-grade or industrial models. They are used
for a wide range of tasks, including aerial photography,
farm management, weather sensing, and inspections of
power grids [3], [4], [5], [6], [7]. The increasing prevalence
of UAVs has brought about the simultaneous appearance
of associated risks and dangers. In the period spanning
2015 to 2020, the global UAV landscape witnessed a total
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of 1,296 incidents, predominantly characterized by drone-
related mishaps. A noteworthy revelation, as reported by the
Federal Aviation Administration (FAA) in the United States,
denotes a total of 583 UAV accidents transpiring during the
timeframe extending from August 2015 to January 2016 [8].
These unfortunate occurrences wrought numerous casual-
ties and incurred substantial property losses. Consequently,
NASA has proffered the conceptual framework of Unmanned
Aircraft System Traffic Management (UTM) [9]. However,
there are still a lot of unanswered technological questions
about low-altitude UAVs that operate under the control of the
traffic management system. This paper aims to investigate
intricate trajectory prediction methods tailored for civilian
UAVs, with applications intended to address critical issues
related to civilian UAV flight safety, motion state identifica-
tion, and resource optimization.

The trajectory prediction of UAVs constitutes an integral
facet of UAV flight oversight. UAV trajectory prediction
involves using mathematical computing methods based on
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past UAV motion data to anticipate the future flight route
of UAVs [10]. The prediction of UAV trajectories allows
for advanced knowledge of UAV flight paths, facilitating the
adoption of appropriate measures in exigent circumstances
to ensure flight safety. However, when dealing with civil-
ian UAVs, characterized by their diminutive scale, agility,
and human-operated nature, their flight trajectories exhibit
considerable variability and diversity, posing formidable
challenges to trajectory prediction. Due to the complex nature
of civilian UAV flight paths, researchers have lately started
to concentrate on identifying patterns in UAV flight motion.
The ability to accurately identify the motion patterns of UAVs
allows for the quick change of model parameters, resulting
in more accurate forecasts of their trajectories [11]. Clearly,
the accurate prediction of complex UAV trajectories now
heavily depends on the determination of UAV motion states,
which is more crucial than traditional trajectory prediction
approaches. However, there is a lack of study in the field of
categorizing and identifying the flying conditions of UAVs,
which hinders progress in creating accurate prediction algo-
rithms that can be used for many types of movements.

This paper focuses on the study of complex trajectories
formed by various motion states. It introduces a Support
VectorMachine-Binary Tree Support VectorMachine (SVM-
BTS) model for recognizing different motion states within
complex trajectories. Subsequently, the most suitable pre-
diction algorithms are determined for each flight state,
resulting in the development of a comprehensive method
for predicting the complex trajectories of civilian rotor-
craft UAVs. The organization of this article is as follows:
Section II reviews prior research on UAV trajectory pre-
diction. Section III presents trajectory prediction algorithms
based on UAV state identification. Section IV includes a
classification identification study based on historical UAV
flight data and comparative experiments with trajectory pre-
diction algorithms. Section V provides a summary of the
research conducted in this paper and outlines future research
directions.

II. RELATED WORK
Trajectory prediction for UAVs serves as the foundation for
air traffic management. It has always been a critical aspect
of traffic management, with precise trajectory prediction
playing a vital role in preventing collisions and reducing
unnecessary losses. In the past, numerous scholars have
proposed various trajectory prediction methods, as shown
in Table 1, primarily including state estimation models and
machine learning models [12].
(1) State estimation models: State estimation models

are established based on attributes such as latitude, longi-
tude, altitude, and velocity of UAVs to formulate motion
equations for trajectory estimation. These primarily encom-
pass the Kalman Filtering algorithm (KF), Particle Filter-
ing algorithm, Hidden Markov Models (HMM), and their
improved iterations [13], [14], [15]. Zhang and Yu [16] uti-
lized domestic civil aviation trajectory data to construct a

flight motion model and applied the KF algorithm for trajec-
tory prediction, further underscoring the significance of the
Kalman filter in trajectory prediction. Lin et al. [15] predicted
the 4D trajectory of aircraft before takeoff based on the HMM
model and optimized HMM model parameters using the
Expectation-Maximization (EM) algorithm, reducing com-
putational complexity. However, since trajectory prediction is
contingent on flight plan routes, deviation from the planned
route significantly reduces prediction accuracy. In fact, tra-
jectory prediction constitutes a complex stochastic estimation
problem, and the aforementioned single-state models fail to
capture state variations. In cases where aircraft operate in
multiple flight states, multi-state estimationmodels should be
employed. The Interacting Multiple Model (IMM) algorithm
serves as a multi-state estimation model. IMM concurrently
employs multiple motion models to track and predict the
trajectories of moving targets, effectively mitigating model
mismatch issues that occur when tracking and predicting
targets with a single model [17]. Dalmau et al. [18] esti-
mated aircraft guidance modes after observing flight data
fromAutomatic Dependent Surveillance-Broadcast (ADS-B)
and Mode S transponders, establishing corresponding mod-
els for aircraft guidance modes, and introducing the IMM
algorithm to enhance short-term trajectory prediction accu-
racy. When dealing with real-time aircraft prediction, Bin
et al. [19] combined the State-Dependent Transition Hybrid
Estimation (SDTHE) with the Improved Intent Inference
Algorithm (IIIA). This approach not only effectively accom-
modates real-time changes in aircraft motion modes but also
overcomes the limitation of the likelihood function being
zero in the Interacting Multiple Model (IMM) algorithm.
Although state estimation models enhance prediction accu-
racy through physical modeling, they often find application
in short-term prediction due to their inability to accurately
capture long-term target maneuver uncertainties.

(2) Machine learning models: Analyzing patterns in trajec-
tories over time using large amounts of data and using these
patterns to make predictions about positions. This methodol-
ogy basically entails analyzing extensive historical trajectory
information to identify probable patterns, and utilizing these
patterns to predict future flight positions. As a result, machine
learning methods are effective for both long-term and short-
term prediction. This primarily includes regression models
[20], neural networks [21], [22], and hybrid models [23],
[24], [25]. Kanneganti et al. [26] utilized aircraft direction
and velocity data to construct a simple regression prediction
model that accurately forecasted aircraft positions. However,
when it comes to trajectory prediction, the paths of moving
targets often exhibit nonlinearity, especially when dealing
with small civilian UAVs. To improve the accuracy of non-
linear trajectory prediction, Shi et al. [27] introduced Long
Short-Term Memory (LSTM) neural networks as a trajectory
prediction tool, enhancing prediction accuracy by computing
correlations between states within trajectory sequences. Due
to the assumed structures of machine learning models, there
may be some degree of error in the training models, and
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machine learning-based methods cannot explicitly explain
the current motion of aircraft. Therefore, machine learning
models may produce future states that violate aircraft dynam-
ics. To address this, Barratt et al. [28] integrated clustering
algorithms with machine learning techniques. They initially
clustered trajectories using K-means and then constructed
Gaussian mixture models based on these clusters, ultimately
formulating a terminal domain probability trajectory gen-
eration model. Furthermore, Choi et al. [25] combined
machine learning with estimation-based methods, designing
a Residual-Averaging Interactive Multiple Model to sig-
nificantly enhance trajectory prediction accuracy. Although
machine learning surpasses state estimation approaches in
dealing with nonlinear systems, it requires high-quality data
for optimal performance. The quality of flight data gathered
by civilian UAVs may diminish in certain settings when
climatic elements such as temperature, wind speed, and pre-
cipitation are present [29]. Therefore, machine learning and
state estimation methods should be appropriately combined
in trajectory prediction to ensure the best prediction results
under different flight conditions.

Presently, there is an increasing amount of research being
conducted in the domain of UAV regulation and trajectory
prediction. This study mostly concentrates on commercial
aircraft, with comparatively few studies pertaining to civilian
UAVs. Commercial UAVs adhere to planned flight routes;
however, civilian UAVs exhibit high flight maneuverability.
Consequently, trajectory prediction algorithms developed for
commercial UAVs may not be suitable for civilian UAVs.
It is worth noting that the trajectories of civilian UAVs are
marked by complexity and uncertainty. Sole reliance on a
single prediction model can lead to an inability to adapt
promptly to new flight patterns, resulting in diminished accu-
racy and efficiency in trajectory prediction [29]. Therefore,
to improve the precision of UAV trajectory estimation, it is
not enough to only train trajectory prediction models using
data. Instead, it is necessary to take into consideration the
present flight state of the UAV and develop predictive algo-
rithms based on the motion state. Recently, researchers have
been studying the mobility behavior of UAVs. For instance,
Wang et al. [30] used the Fuzzy Min-Max (FMR) method
to classify UAV flight data into several motion modes. The
adoption of this approach successfully overcomes the con-
straints associated with single-data-driven methods in fully
capturing flight trajectories, leading to an enhanced precision
in trajectory prediction. Notably, the method presented in
this paper surpasses conventional approaches by conducting
a comprehensive experimental evaluation, considering both
the mean square error and average delay of the prediction
results. This dual assessment not only elevates the accuracy of
predicting intricate trajectories but also ensures the real-time
efficacy of trajectory prediction.

This study presents a collaborative model that combines
Support Vector Machines (SVM) and Binary Tree Support
Vector Machines (SVM-BTS) to accurately classify and rec-
ognize the flight states of UAVs. The aim is to address the

challenge of predicting complex trajectories for these UAVs.
Firstly, initial feature extraction for UAVs is conducted,
and SVM is employed for the preliminary classification of
UAV trajectories. Subsequently, secondary feature extraction
is performed, utilizing the Binary Tree SVM classification
method to discern the motion postures of UAVs. Finally,
a comprehensive predictive model is established, integrat-
ing Sliding Window Polynomial Least Squares, Unscented
Kalman Filters, and Long Short-Term Filters, enabling trajec-
tory prediction for UAVs across five distinct motion states:
vertical, pitch, lateral, roll, and transition. This approach
begins with the classification and identification of complex
UAV trajectories, followed by the application of specific
prediction algorithms tailored to different motion states, sig-
nificantly enhancing the accuracy and reliability of complex
trajectory predictions.

III. THE PROPOSED UAV MOTION STATE IDENTIFICATION
AND PREDICTION METHOD BASED ON SVM-BTS
The method proposed in this paper comprises four main com-
ponents. The first component involves data collection and
preprocessing. The second component focuses on a two-stage
feature extraction process for trajectory characteristics. The
third component is dedicated to UAV trajectory classification
and identification based on SVM-BTS. The fourth compo-
nent involves the trajectory prediction of UAVs based on state
identification. An overview of the entire model workflow is
illustrated in Fig. 1 below.

A. TRAJECTORY DATA COLLECTION AND PROCESSING
The actual UAV flight data used in this paper is acquired by
installing an onboard terminal on the UAV, as illustrated in
Fig. 2. The UAV’s onboard terminal consistently stores UAV
data programs andUAVflight status data, employingwireless
communication technology to transmit real-time UAV flight
data to the backend database.

The positioning module, along with its integrated sensors
within the terminal, is proficient in acquiring data related
to the UAV’s longitude, latitude, altitude, speed, and head-
ing angle. The characteristics of the individual trajectory
data points collected and transmitted by the UAV’s onboard
terminal encompass ID (UAV model), lon (longitude), lat
(latitude), H (altitude), α (longitude yaw angle), β (latitude
yaw angle), γ (altitude yaw angle), v (velocity), a (accelera-
tion), and Date (timestamp), as illustrated in Table 2.

Data collection is often just the initial step in building a
model. Data collected in the real world can often present vari-
ous issues during data transmission due to signal interference,
leading to outliers, missing values, duplicate values, and other
problems.

In the case of UAV trajectory data, when certain fields or
a set of fields in the database are found to be missing, it is
necessary to address these missing values. For fields with a
low rate of missing data, imputation is performed based on
the distribution of neighboring data points. For fields with a
high rate of missing data but low importance in terms of the
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TABLE 1. Comparison of mainstream methods for trajectory prediction.

FIGURE 1. Process for UAV motion state identification and prediction based on SVM-BTS.

missing samples, direct deletion is applied. For fields with
a high rate of missing data and high importance, imputation
techniques are employed. In cases of duplicate values, this
study removes duplicated data from theUAVflight data based
on time and location features.

The UAV flight position data obtained using onboard ter-
minals in this paper are given in the geodetic coordinate
system as (lon, lat,H ), where the longitude and latitude data
are not in the same dimension as the altitude data. Therefore,
it is necessary to transform the geodetic coordinate system
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FIGURE 2. UAV onboard terminal.

TABLE 2. Characteristics of single trajectory point.

coordinates into the spatial Cartesian coordinate system as
(X ,Y ,Z ) [31].
The transformation from the geodetic coordinate system to

the spatial Cartesian coordinate system is given by Equation
(1): 

X=(R+ H )cos(lat)cos(lon)
Y=(R+ H )cos(lat)sin(lon)
Z = H

(1)

where lon, lat,H represent longitude, latitude, and altitude,
respectively. R denotes the radius of curvature of the Earth in
the geodetic coordinate system. The formula for calculating
R is as follows:

R =
m√

1− e2sin2(lat)
(2)

e =
m2
− n2

m2 (3)

where m represents the Earth’s major axis, and n represents
the Earth’s minor axis.

The transformation from geodetic coordinates (lon, lat,H )
to spatial Cartesian coordinates (X ,Y ,Z ) can be accom-
plished using Equation (1). When predicted trajectory data
is obtained, the reverse transformation from spatial Cartesian
coordinates (X ,Y ,Z ) to geodetic coordinates (lon, lat,H ) is
performed to facilitate the visualization of precise trajectory

information. The specific formula for the conversion from
spatial Cartesian coordinates (X ,Y ,Z ) to geodetic coordi-
nates (lon, lat,H ) is as follows:

tan (lat) =
Z

X2 + Y 2 (1+
Re2

Z
sin(lat))

lon = arctan
Y
X

H = Z

(4)

B. UAV TRAJECTORY FEATURE EXTRACTION
Trajectory feature extraction is the process of extracting key
features or key attributes from the trajectory data to describe
the flight behavior and patterns of the UAV. The extracted
features can be used for subsequent classification and iden-
tification tasks. In the field of machine learning algorithms,
having good data features will improve the accuracy of the
model to some extent. In this paper, two feature extrac-
tions are carried out for two flight states of UAVs, namely
transitional state feature extraction and non-transitional state
feature extraction.

1) TRANSITIONAL STATE FEATURE EXTRACTION
In this paper, a section of a complex trajectory is simulated
according to the real flight law of small civil UAVs, as shown
in Fig. 3.

FIGURE 3. Complex trajectory map of UAV flight.

The acquired trajectory sequence is shown below:

S = {s1, s2, · · · , sn} (5)

sn = [XnYnZnvnantn]T (6)

where Xn,Yn,Zn are the coordinate positions of the track point
in the spatial Cartesian coordinate system, respectively, and
vn, an, tn are the velocity, acceleration and timestamp of the
track point. A sliding window with a window length of b and
a sliding window with a step size of 1 is set to segment the
trajectory sequence data. The data in any sliding window will
be obtained as S ′:

S ′ = {si, si+1, · · · , si+b−1} (7)

where i, (i + 1), . . . (i + b − 1)∈n. Based on the trajectory
sequence data within the sliding window S ′, it is possible to
derive the speed and acceleration parameter change charac-
teristics of the UAV. Additionally, the curvature parameter
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change characteristics of the UAV can be computed based on
the beginning data:

qi =
∑2

f=1

∑i+f−1
j=i−f dj,j+1

2di−f ,i+f
(8)

The symbol qi represents the curvature, whereas di−f ,i+f
represents the distance between two coordinate points.
Specifically, it refers to the distance from the i− f coordinate
point to the i+ f coordinate point. The variable f represents
the lag. To enhance the accuracy of calculation outcomes,
consider utilizing the lagged value f=1,2.
Within each sliding window, a total of 30 features are

extracted from the three parameters of velocity, acceleration,
and curvature. With these features are divided into six groups
based on their time-domain characteristics and four groups
based on their frequency-domain characteristics, it is possible
to obtain a feature vector with 30 dimensions for every sliding
window. The resultant dataset can be represented as:

S
′′

= {R1,R2, · · ·Rm} (9)

Each of these data Rm is a 30 dimensional feature vec-
tor, and m is the number of segments for sliding window
segmentation. However, the excessive dimensionality of the
data is a challenge as it necessitates extensive computational
resources. Hence, this study uses principal component anal-
ysis (PCA) as a means to reduce the dimensionality of the
feature vectors. The specific method can be primarily cate-
gorized into the subsequent steps:

Step 1: The segmentation acquired by the previously
mentioned sliding window segmentation method. The 30-
dimensional data can be represented as a matrix M , which
possesses a distinct structure:

M =


r11 r12
r21 r22

· · · r1,30
· · · r2,30

...
...

rm1 rm2

. . .
...

· · · rm,30

 (10)

Step 2: Zero-mean each column of the sample matrix M
to obtain a new matrix by zero-averaging each column of the
sample matrix M̄ :

ri← ri −
1
m

∑m

i=1
ri (11)

Step 3: The correlation between the dimensions of the
sample data can be calculated by utilizing the covariance
matrix, denoted as Cov:

Cov =
1
m
M̄M̄T (12)

Step 4: Calculate the covariance matrix Cov. The eigen-
values and eigenvectors of the covariance matrix are listed in
descending order of the eigenvalues:

(τ1, τ2, · · · , τ t )→ (p1, p2, · · · , pt ) (13)

Step 5: According to the requirement of dimensionality
reduction, such as down to k dimension, take the first k
vectors to construct a dimension reduction matrix P:

P = (p1, p2, · · · , pk )T (14)

Step 6: By transforming matrix transformations on matrix
P The original sample M coordinate transformation should
be modified in order to achieve the objective of reducing data
dimensionality.

Y = M · P (15)

After dimensionality reduction of all data, it is necessary to
compute the extent of information loss incurred as a conse-
quence of this reduction:

E1 =
1
k

∑k

i=1

∥∥∥r (i)
− r (i)

approx

∥∥∥2 (16)

E2 =
1
40

∑40

i=1

∥∥∥r (i)
∥∥∥2 (17)

where r (i) denotes k the data of the samples, and r (i)
approx

denotes the data after dimensionality reduction.
This is accomplished by ρ to measure the information loss

after data dimensionality reduction, according to the ρ the
size of the data to choose the appropriate k value.

ρ =
E1
E2

(18)

2) NON-TRANSITIONAL STATE FEATURE EXTRACTION
Above is the UAV trajectory classified as transitional state
feature extraction, and next will be the non-transitional state
trajectory identification feature extraction. The same sliding
window segmentation method is used to segment the UAV
trajectory data. Set a window length of n. The sliding window
with a step size of 1 is used to segment the trajectory data.
Segment the data into m segments and get the sample set as:

D = {x1, x2, · · · , xm} (19)

In each sliding window, any one-dimensional time series data
is represented as a matrix with a feature dimension of 5,
as follows:

t1
t2
...

tn


a11 a12
a21 a22

· · · a15
· · · a25

...
...

an1 an2

. . .
...

· · · an5

 (20)

[a11a12a13a14a15] = [X11Y12Z13v14a15] (21)

The variablesX11,Y12,Z13, v14 and a15 are used to indicate
the location coordinates, velocity, and acceleration of the
UAV within the spatial coordinate system.

However, the trajectory data of UAV flights exhibit strong
nonlinear properties, so the Chebyshev fitting method [32]
is employed to individually segment each one-dimensional
time series of the trajectory, denoted as {a1, a2, · · · , an}.
The data within the sliding window is seen as a collection
of two-dimensional data points, denoted as {ti, ai}, where ti
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represents the time of the trajectory sequence data for i =
(1, 2, · · · , n). The fitting of the model is done based on the
relationship between the parameters and their variation over
time.

ai =
∑k

j=1
cjTj(ti) (22)

Subsequently, the least squares method was employed to
minimize the sum of squares of the residuals in order to
achieve a better fit.

minJ =
∑n

i=1
V (ti)2 = [TC − A,TC − A] (23)

where C = [c0, c1, · · · ck ]T is the matrix of coefficients of
Chebyshev. The actual data of a specific dimension parameter
is represented by the matrix A = [a1, a2, · · · , an], which
corresponds to the Chebyshev basis functions.

T =


T0(d1) T1(d1)
T0(d2) T1(d2)

· · · Tk (d1)
· · · Tk (d2)

...
...

T0(dn) T1(dn)

. . .
...

· · · Tk (dn)

 (24)

When the coefficient matrix satisfies Equation (25), it rep-
resents the optimal solution at this point.

T TTC = T TA (25)

The identity of the parameter is determined by selecting the
quotient of the first two Chebyshev coefficients from the
solved matrix.

µ =
c1
c0

(26)

Therefore, for the above time series, the eigenvalue of the
ith dimension is denoted as µi. Arranging the eigenvalues
of the five parameters sequentially allows us to obtain the
feature vectors for each segment of the segmented trajectory.

pi = [µ1, µ2, · · · ,µ5] (27)

C. MOTION STATE CLASSIFICATION AND IDENTIFICATION
BASED ON SVM-BTS
This research presents a comprehensive model for the clas-
sification and identification of the complex trajectories of
UAVs. The proposed approach is based on the Support Vector
Machine-Binary Tree Support Vector Machine (SVM-BTS)
technology. As shown in Fig. 4, the model comprises two
main stages. The first stage involves the utilization of the sup-
port vector machine binary classification algorithm to differ-
entiate between transitional flight states and non-transitional
flight states. Subsequently, the second stage employs a Binary
Tree SVM model to identify the four fundamental flight
states (vertical motion, pitch motion, transverse motion, and
roll motion) within the non-transitional flight states. This
paper employs the SVM-BTS method to address this issue,
as it is challenging to distinguish between the trajectory data
generated by the transitional motion state and the roll motion
in the non-transitional flight state.

The utilization of SVM-BTS to achieve the classifi-
cation of trajectories formed by UAV transitional and
non-transitional motion states is specified as follows:

Step 1: Training the SVM binary classification model.
Train a binary classification SVM model using transitional
state feature vectors as the input.

Step 2: Training Binary Tree SVM classification model.
There are four distinct types ofmotion states observed inUAV
non-transitional motion states, including vertical motion,
pitch motion, transverse motion, and roll motion.

In this study, the samples are labeled as Y = {0, 1, 2, 3, 4},
representing the vertical motion, pitch motion, traverse
motion, roll motion, and transitional motion states.

For a given data,M = {x1, x2,· · · , xm,· · · , y1, y2,· · · , yn},
where there are n1 training samples, denoted as x1, x2,· · ·, xn1 ,
for a given class i. Additionally, there are n2 training samples,
denoted as y1, y2, · · · , yn2 , for a certain category j.

The sample centers of concentration are respectively:

x̄1 =
1
n1

∑n1

i=1
xi, ȳ1 =

1
n2

∑n2

j=1
yj (28)

The variable d(x, y) denotes the Euclidean distance
between class i and j.

d (x, y) =
√∑n1,n2

i,j=1
(xi, yj) (29)

The distance between sample centers is:

d ′ (x, y) = x̄1 − ȳ1 (30)

By calculating the sample set M , classify the classes i
and j with the maximum sample-to-sample distance d (x, y),
then place classes i and j into sets X1 and X2, respectively.
Update the sample set M as M = X − (X1 ∪ X2). Next,
compute the minimum distance d ′ (x, y) from the remaining
classes in the sample set to the sample centers of classes i
and j, and compare the minimum distances d′ (x, y) from
other classes to classes i and j, respectively. If the distance
from other classes to class i is smaller than the distance from
other classes to class j, then place the other classes into setX1;
otherwise, place them into set X2. Continue this process until
set M becomes empty. Then, proceed to construct a binary
classifier for training on these two sets. Subsequently, repeat
the above steps for classification training on each subset until
all five UAV motion states are completely classified and
recognized. In each SVM, the kernel function is set to RBF.

D. UAV TRAJECTORY PREDICTION MODEL
There are three main types of single prediction algo-
rithms, namely, Sliding Window Polynomial Least Squares
(SWPLS), Untraced Kalman Filter (UKF), and Long
Short-Term Memory Neural Network (LSTM). SWPLS is
more suitable for time series data with obvious trends and
periodic changes. UKF is more suitable for systems dealing
with linear or Gaussian noise. LSTM is suitable for the pre-
diction of nonlinearly varying time series data. It can be seen
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FIGURE 4. Classification and identification model.

that different prediction algorithms are suitable for differ-
ent situations, and different prediction algorithms should be
adopted for civil UAVs with complex trajectories according
to different motion states so as to improve the accuracy and
efficiency of prediction.

1) SLIDING WINDOW POLYNOMIAL LEAST SQUARES
PREDICTION OF UAV TRAJECTORIES
Define a Sliding Window Polynomial Least Squares
(SWPLS) is a polynomial least squares method for fitting
long sequence data. The sliding window polynomial least
squares method is used to fit long time series data into mul-
tiple short time series by setting a sliding window. This can
avoid the problems of traditional polynomial least squares,
such as excessive fitting errors caused by too much data
in the antecedent. Specifically, the process of predicting
UAV trajectories by SWPLS involves advancing the UAV’s
longitude, latitude, and altitude data outward over time.

Suppose that the UAV flight trajectory over a short period
of time is a set of polynomial time functions s(ti) :

s(ti) =
∑m

j=0
ajt

j
i ti = i that m < n− 1 (31)

By minimizing the
∑n

i=1 (s (ti)− xi)
2 with respect to the

coefficient aj through least squares estimation, âj is obtained:

A = (PT · P)
−1
· PT · X (32)

A = (̂a0̂a1 · · · âm−1̂am)T (33)

P =


1 t1
1 t2

· · ·
tm−11 tm1
tm−12 tm2

...
. . .

...

1 tn−1
1 tn

· · ·
tm−1n−1 tmn−1
tm−1n tmn

 (34)

X = (x1x2 · · · xn−1xn)T (35)

The optimal estimate of s(t) is:

s (t) = âjt j (36)

The trajectory prediction at time (tn + dt) is:

ŝ (tn + dt) =
∑m

j=0
âj(n+ dt)j (37)

The highest power of the polynomial set in the prediction
of the UAV trajectory is 2. The polynomial function of the
trajectory of the UAV moving in the three directions of X-
axis, Y-axis, and Z-axis is:

sx (ti) =
∑2

j=0
axj · ij

sy (ti) =
∑2

j=0
ayj · ij

sz (ti) =
∑2

j=0
azj · ij

(38)

Finally, we can refer to Equation (33) to obtain
the least-squares estimated coefficients for axj, ayj, azj
as âxj, âyj, âzj. Subsequently, we can utilize Equation (38) to
predict the UAV’s position at time tn.

2) UNTRACED KALMAN FILTER PREDICTION OF UAV
TRAJECTORIES
Untraced Kalman Filter (UKF) is formed based on the
untraced transform (UT) technique, which propagates the
mean and covariance by means of nonlinear transformations.
UKF utilizes the UT technique to apply the Kalman filter
under linear conditions to a nonlinear system and then com-
pletes the nonlinear computation of the system by means of a
set of sampling points for themean and variance distributions.
The design of the UKF algorithm consists of the following

six steps:
(1) Modeling the state of the system:

Xt = f (Xt−1,Ut−1,Wt−1) (39)

Xt−1 is L-dimensional state matrix at time t − 1, Ut−1 is
the L-dimensional input matrix at time t − 1, and Wt−1 is
the L-dimensional process noise matrix at time t − 1. For a
nonlinear system, the system equation is:{

xk+1 = f (xk ,wk )
yk = h(xk , vk )

(40)
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where wk ∈ N (0,Qk) , vk ∈ N (0,Rk), xk is L-dimensional
state matrix at time k , wk is the L-dimensional process noise
matrix at time k , and vk is the L-dimensional measurement
noise matrix at time k .

Next, the state variables are expanded to obtain the aug-
mented state matrix as well as to compute the mean of the
augmented states:

x̂a,k = [xk00]T (41)

The variance of the augmented state is:

Pk =

Pa,k 0 0
0 Q 0
0 0 R

 (42)

(2) Initialization parameters.
Initialize process noise variance Q, measurement noise R,

expected value x̂a,k , and covariance matrix Pk .
(3) Acquire sigma test points.
Construct augmented sigma points based on the expected

value and covariance.
x0a,k−1 = x̂a,k−1
x ja,k−1 = x̂a,k−1 +

√
(N + k)Pa,k−1j(j = 1, 2, . . . ,N )

x ja,k−1 = x̂a,k−1 −
√

(N + k)Pa,k−1j(j = N + 1, . . . , 2N )

(43)

where N is the dimension of the augmented state.
(4) Solve the time update equation to find the sampling

point state estimate:

X jx,k|k−1 = f (X jx,k−1,X
j
w,k−1) (44)

(5) Solve the observation update equation for the observed
estimate:

r jk|k−1 = h(X jx,k−1,X
j
w,k−1) (45)

(6) Kalman filter update to get K , x̂k , Px,k :

K = Pxy,kP
−1
y,k (46)

x̂k = ˆ̄xk + K (ŷk − ˆ̄yk ) (47)

Px,k = P_x,k − KPy,kK
T (48)

3) LONG SHORT-TERM MEMORY NEURAL NETWORK
PREDICTION OF UAV TRAJECTORIES
Long Short-Term Memory Neural Network (LSTM) is a
special variant of Recurrent Neural Network (RNN), which
is a neural network specialized in processing time series. The
only defect of the RNN model is that it cannot deal with
dependency on long time series, which led to the creation of
LSTM. The structure of LSTM is shown in Fig. 5.
An LSTM consists of three gates: the forgetting gate, the

input gate, and the output gate. The forgetting gate is used
to forget redundant information, the input gate is used to
transmit the input information, and the output gate is used
to receive the information from the forgetting gate and the
output gate of the previous moment, filter it, and then forward

FIGURE 5. LSTM structure.

it to the next LSTM unit. The specific calculations are as
follows:

f t = σ
(
W f · [ht−1, xt ]+ bf

)
(49)

it = σ (W i · [ht−1, xt ]+ bi) (50)

C̃t = tan h (W c· [ht−1, xt ]+ bc) (51)

C t = f t ·C t−1 + it ·C̃t (52)

ot = σ (Wo · [ht−1, xt ]+ bo) (53)

ht = ot · tan h (C t) (54)

where f t represents the forgetting gate, and it represents the
input gate, and C̃t and C t represent the current input and
cell states, respectively. σ uses the sigmoid function, where
W f , W i, Wo, and W c represent the weight matrices for the
forgetting gate, input gate, output gate, and the current input
unit state, respectively. [ht−1, xt ] denotes the interconnec-
tions between two vectors, and bf , bi, bo and bc represent the
bias terms for the forgetting gate, input gate, output gate, and
the current input unit state, respectively.

The specific steps are as follows:
Step 1: Assume that the track point data parameters are

sr = [X ,Y ,Z , v, a, t], normalize the data:

M∗ =
M −Mmin

Mmax −Mmin
(55)

where Mmax is the maximum value of the track point param-
eter, and Mmin is the minimum value of the track point
parameter, and M is the original training parameter, and M∗

is the data after parameter normalization.
Step 2: Establish the LSTM deep neural network training

model, take the normalized UAV trajectory dataset as an
input into the hidden layer of the neural network, and finally
compute the data through the fully connected layer to output
the UAV trajectory position at a future moment.

4) HYBRID ATTITUDE JOINT PREDICTION ALGORITHM
The simulated complex UAV trajectories, encompassing five
distinct motion states, including vertical, pitch, transverse,
roll, and transitional motions, are subjected to classification
and identification using the SVM-BTS algorithm. Subse-
quently, three prediction algorithms, namely SWPLS, UKF,
and LSTM, are deployed to forecast the trajectory data orig-
inating from a particular UAV motion state. By contrasting
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prediction data errors and average time delays among tra-
jectories associated with various motion states, the optimal
trajectory prediction algorithm for a given UAV motion state
is chosen.

The training parameters for these trajectory points com-
prise longitude, latitude, altitude, velocity, acceleration, and
time. The algorithm parameters are determined by comparing
the Root Mean Square Error (RMSE) of the trajectory predic-
tion results, defined as:

RMSE =

√
1
N

∑N

t=1

(
observedt − predictedt

)2 (56)

The parameters exhibiting fewer RMSE values are chosen,
and the algorithm parameters are presented in Table 3.

TABLE 3. Parameters of trajectory of UAV predicted by LSTM.

Using the above three algorithms, trajectory prediction
is conducted separately for the vertical, pitch, transverse,
roll, and transitional motions of simulated UAV flights. Each
motion state consists of 40 sets of trajectory data. The pre-
diction errors for SWPLS, UKF, and LSTM for each motion
state are calculated. The error comparison plots are shown in
Fig. 6 (a, b, c, d, e). The average delay predicted by the three
algorithms for different motion states is shown in Table 4.
When the UAV is in vertical motion, pitch motion, and

transverse motion, the errors of the three trajectory prediction
algorithms are within the range of 0 to 0.5m, but the average
delay of SWPLS prediction is not more than 0.3s lower than
that of UKF and LSTM. So when the UAV is in the process
of recognizing vertical motion, pitch motion, and transverse
motion by using the SVM-BTSmethod, it is chosen to predict
the trajectory of the UAV using SWPLS.

When the UAV is in roll motion, the error of SWPLS
among the three trajectory prediction algorithms is more than
1.5m, and the errors of UKF and LSTM still remain in the
range of 0 to 0.5m, but the average prediction delay of UKF is
lower than that of LSTM. So, when the UAV is recognized to
be in the process of roll motion using the SVM-BTS method,
UKF is chosen to predict the UAV trajectory.

The prediction error of LSTM is minimized when the UAV
is in a transitional motion state. In this case, LSTM is chosen
to predict the trajectory of the UAV in a transitional motion
state.

Thus, the expression for the joint prediction algorithm
under mixed postures is derived as follows:

Joint Prediction Algorithm =


SWPLS mv,mp,ml
UKF mr
LSTM mg

(57)

wheremv,mp,ml,mr ,mg represent the vertical motion, pitch
motion, transverse motion, roll motion, and transitional
motion states recognized by SVM-BTS, respectively.

IV. EXPERIMENTAL COMPARISON AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
In the experiments, the TensorFlow framework is used to
build predictive models, and Pycharm is used as an integrated
development environment. The TensorFlow framework sim-
plifies the construction of neural networks and supports both
CPU and GPU environments. The experimental environment
in this study is: CPU: AMD R7 4800H@2.90 GHz, RAM:
16GB.

The parameters involved in the experiments are as follows:
C and gamma are 0.1 and 10, respectively. The number of
single training samples used in batch-size is 10, the number
of training round epochs is 50, the learning rate is 0.001,
the Adam optimizer is used, and the mean square error is
computed to indicate the cost of the training process.

A total of 864 flight trajectories were collected, each
labeled with vertical motion, pitchmotion, transverse motion,
roll motion, and transitional motion tags, denoted as 0, 1, 2,
3, and 4, respectively. Out of these 864 trajectory segments,
720 data sets were employed for training purposes, while
the remaining 144 data sets were designated for testing. The
composition of these data sets is provided in Table 5.

B. EVALUATION INDICATORS
The assessment of classification and identification employs
a confusion matrix, which is employed to depict the per-
formance of the proposed detection and classification tech-
niques. Accuracy (Acc), Precision (PRC), Recall (REC), and
F1 scores serve as performance metrics for model evaluation:

PRC =
M [i, i]∑
jM [j, i]

(58)

REC =
M [i, i]∑
jM [i, j]

(59)

F1 =
2× PRC× REC
PRC+ REC

(60)

Acc =

∑
iM [i, i]∑
i,jM [i, j]

(61)

The i ∈ {0, 1, 2, 3, 4} are represented as the UAV vertical
motion, pitch motion, transverse motion, roll motion, and
transitional motion states, respectively. M [i, j] is a 5× 5
confusion matrix where the element in the ith row and jth
column of M represents the number of samples with label i
predicted as label j.
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FIGURE 6. Comparison of prediction errors.

TABLE 4. Average delay for trajectory prediction.

TABLE 5. Data components.

In order to facilitate the comparison between predicted
values and actual values, and to analyze the predictive per-
formance of the model, mean squared error (MSE) is chosen
as the evaluation metric.

MSE =
1
N

∑N

t=1
(yt − ŷt)2 (62)

where yt represents the actual observed trajectory coordi-
nates, ŷ represents the predicted trajectory coordinates, and
N denotes the number of samples.

C. ANALYSIS OF EXPERIMENTAL RESULTS
1) ANALYSIS OF CLASSIFICATION AND IDENTIFICATION
EXPERIMENT RESULTS
The Binary Tree SVM and SVM-BTS are utilized to classify
and recognize the complex trajectories, respectively, and the
PRC, REC, and F1 values of the Binary Tree SVM and
SVM-BTS are shown in Table 6. The recognized confusion
matrix is shown in Fig. 7 (a, b).

Table 6 provides clear evidence that the SVM-BTSmethod
proposed in this study outperforms Binary Tree SVM in
the task of recognizing the motion states of civilian UAVs
with complex trajectories. All performance metrics exceed
97%, with PRC surpassing Binary Tree SVM by 3%, REC
being 8% higher than Binary Tree SVM, and the F1 score
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FIGURE 7. Comparison of confusion matrices.

outperforming SVM by 6.2%. Particularly noteworthy is the
accuracy, which is 10.4% higher than Binary Tree SVM.
Fig. 7 illustrates the confusion matrices for both Binary
Tree SVM and SVM-BTS, where the horizontal and vertical
axes represent the predicted labels and true labels of UAV
motion states, respectively. The diagonal elements represent
the number of samples correctly predicted in the respective
category. Fig. 7 clearly demonstrates that SVM-BTS exhibits
significant superiority over Binary Tree SVM in the overall
classification and identification of various motion states for
UAVs with complex trajectories.

2) ANALYSIS OF EXPERIMENTAL RESULTS FOR COMPLEX
TRAJECTORY PREDICTION
In order to investigate the predictive performance of our joint
prediction model at various time scales, experiments were
conducted with prediction time intervals set at 0.5s, 1s, 1.5s,
2s, 2.5s, as well as 5s, 10s, 15s, 20s, and 25s. Real UAV flight
data was used for prediction, and the predictive performance
is illustrated in Fig. 8 (a, b).

In Fig. 8 (a, b), the gray shaded region represents the
confidence band, with a 95% confidence level set in this
study. The lower boundary of the confidence interval repre-
sents the lowest possible value of Mean Square Error (MSE),
while the upper boundary represents the highest possible
value of MSE. The blue curve represents the average value
of MSE, approximately fitted as a curve along the confidence
interval. The black segments indicate error bars, representing
the standard deviation of MSE values. When the prediction
time interval is 0.5s, the mean square error of the trajectory
prediction method of the joint prediction algorithm in this
paper is 0.322m, the mean square error is 0.523m when
1s, and the mean square error is 4.23m when 5s. Beyond
10s, the MSE rapidly increased, exceeding 10m, resulting
in a significant decrease in prediction accuracy. To better
illustrate the predictive performance of our method for UAV
trajectories at different prediction time intervals, we selected
and displayed the predictive results for intervals of 0.5s, 1s,
5s, and 10s, as shown in Fig. 9 (a, b, c, d).

FIGURE 8. Mean square error under different prediction time intervals.

Based on Fig. 9, it is visually evident that the joint
prediction model proposed in this paper demonstrates a com-
mendable level of accuracy when the prediction time interval
does not exceed 5 seconds. However, as the prediction time
interval continues to extend, significant discrepancies arise
between the actual trajectories and the predicted trajectories.
These disparities pose a significant challenge to trajectory
prediction accuracy, making the method proposed in this
paper more superior in short-term predictions.

To emphasize the superiority of the joint prediction model
proposed in this paper compared to other prediction models,
a series of comparative analyses were conducted. Specifi-
cally, the study employed SWPLS, UKF, LSTM, and the
joint prediction algorithm proposed in this paper to predict
complex UAV flight trajectories, followed by a detailed com-
parison and evaluation of their performance. In this research,
a 0.5-second time interval was used for predicting UAV
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TABLE 6. Comparison of identification results.

FIGURE 9. Prediction effect at 0.5s, 1s, 5s, 10s prediction time intervals.

trajectories, and four different UAV flight trajectories, along
with their respective prediction results, were showcased. The
specific predictive results are illustrated in Fig. 10 (a, b, c, d).

From Fig. 10 (a, b, c, d), it is visually apparent that the pre-
dicted trajectories generated by the joint prediction algorithm
in this paper closely resemble the actual trajectories. Sub-
sequently, for the four different datasets, the Mean Square
Error (MSE) and average time delay for various models were
calculated, as shown in Fig. 11 (a, b, c, d) and Table 7.
The average time delay in this paper refers to the mean

time required to complete a prediction task within the next
prediction time interval (0.5 seconds).

Table 7 indicates that the MSE for the complex trajec-
tories predicted by the classification-based joint prediction
algorithm proposed in this paper is 0.309, 0.322, 0.431, and
0.421 for the four distinct datasets, respectively. Compared to
the prediction results of SWPLS, UKF, and LSTM, the errors
are significantly reduced, demonstrating a notable improve-
ment in the predictive performance of the model proposed
in this paper. Additionally, the average time delays on the

137260 VOLUME 11, 2023



Q. Jiao et al.: SVM-BTS Based Trajectory Identification and Prediction Method

FIGURE 10. Predicted trajectories and true trajectories.

FIGURE 11. Comparison of prediction algorithm errors across different datasets.

four different flight datasets are 0.387s, 0.457s, 0.428s, and
0.466s, all of which are below the prediction time interval
(0.5s) set in this paper. Therefore, the algorithm presented
in this paper can generally meet the real-time prediction
requirements. Although the average time delay of the joint
prediction algorithm in this paper is not the lowest, it is lower

than that of UKF and LSTM. While SWPLS has the lowest
average time delay, the MSE for this algorithm is greater
than that of the joint prediction algorithm proposed in this
paper for all four datasets. When considering both time delay
and MSE, the trajectory prediction algorithm in this paper
outperforms SWPLS, UKF, and LSTM.
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TABLE 7. Comparison of prediction algorithm results.

V. CONCLUSION
(1) Based on the experimental results of motion state iden-
tification, this paper proposes a SVM-BTS classification
and identification method to realize the vertical motion,
pitch motion, transverse motion, roll motion, and transitional
motion states. This method performs two feature extractions
on complex tracks. Comparedwith the traditional Binary Tree
SVM, the accuracy is increased by 10%. The experimental
results show the effectiveness of this method.

(2) From the trajectory prediction experiment, under the
prediction time interval of 0.5s, the mean square error of pre-
diction is 0.322m; when the prediction time interval exceeds
5s, the mean square error exceeds 4m. It can be seen that
the joint prediction algorithm in this paper has great advan-
tages for short-term trajectory prediction. Furthermore, while
considering different complex trajectories, the proposed pre-
diction approach in this paper exhibits the lowest mean square
error compared to SWPLS, UKF, and LSTM. Crucially, real-
time predictability can be ensured while preserving predictive
reliability.

(3) The joint prediction algorithm proposed in this paper
has a significant drop in prediction accuracy for prediction
times exceeding 5 seconds. To make precise long-term pre-
dictions about the UAV, it is essential to have access to the
UAV’s flight intention data. In the future, the intent informa-
tion of the UAV can be added, such as the UAV’s flight plan.
In addition, since small-sample data classification training is
used, the generalization of the model needs to be improved.
Future work will focus on large-sample data classification
training for UAV flights to achieve better results.

This study addresses the issue of low accuracy in predicting
complex UAV trajectories using a single prediction model
and proposes a joint prediction algorithm. Firstly, different
motion states in complex trajectories are classified and iden-
tified, and then SWPLS, UKF, and LSTM are respectively
employed to predict each motion state. By evaluating the
mean square error and average delay of the three prediction
algorithms under different motion states, the most suitable
prediction algorithm is selected for each motion state. The
jointly proposed prediction algorithm is particularly appli-
cable to civilian drones with complex trajectories. Through
experiments comparing with other prediction algorithms, the

proposed algorithm in this study exhibits the lowest mean
square error, significantly improves the accuracy of trajectory
prediction, and demonstrates good average delay perfor-
mance, meeting real-time prediction requirements.
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