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ABSTRACT Aiming at the shortcomings of the path generated by the artificial potential field (APF) method,
such as local minimum, target unreachability, and low path smoothness, an improved artificial potential field
method is proposed. First, to reduce the collision risk and planning difficulty, based on known environmental
information such as the location of obstacles and targets, the area with fewer obstacles is selected as the
priority area for path planning. Second, to improve the path smoothness and reduce the computation amount,
an adaptive step-size adjustment method based on the distance and angle relationship with obstacles within
the prediction range is proposed. Third, in view of the effect on each other between obstacle, local minimum,
and unsmooth path, a multi-target model considering the size and influence range of obstacles and an
improved potential field function are proposed on the basis of the identified planning priority area. Finally,
in order that the path is smooth enough to be tracked by autonomous mobile robots, a safe driving corridor
without collision with obstacles is constructed on the planned path, and a trajectory fully constrained to
the safe driving corridor is generated using the quadratic programming method. The simulation comparison
experiments are carried out on matlab simulation software and the smoothness of IAPF is improved by
an average of 97.3% as compared to traditional APF and 45.19% as compared to DWA. The sum of the
proposed IAPF path planning and optimization time is improved by 45.1% on average compared to DWA
path planning time.

INDEX TERMS Improved APF, multi-target, trajectory optimization.

I. INTRODUCTION
With the development of intelligent technology, autonomous
mobile robots (AMRs) have penetrated many industries and
are having a significant impact on our lives. For example,
unmanned vehicles in factories take over dangerous and
repetitive handling tasks for humans. Although AMR can
currently complete work according to pre-planned routes in
some set scenarios, its development is greatly challenged
as the complexity and diversity of tasks and environments
increase. Among them, improper path planningmay cause the
AMR to travel too long and even fail to reach the target, and
the complexity of algorithm will also prolong the calculation
cycle. In addition, if the size and shape of the AMR and
the obstacle are neglected during path planning, the AMR
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may not be able to adjust its direction in some narrow
environments, which increases the risk of collision with
the obstacle. Therefore, path planning, as one of the main
technologies of AMR, has received great attention from both
academia and industry.

The purpose of path planning is to plan a collision-free safe
path based on known information, which is mainly divided
into global and local path planning. There are different
requirements for the planned path, according to different
usage scenarios and applications. Global path planning
includes Dijkstra, A∗, ant colony, genetic algorithm, rapid-
exploration random tree (RRT) algorithm and reinforcement
learning, etc. It is a path planning in a static global
environment that has been known, and has poor adaptability
to unknown environments. Local path planning includes
dynamic window algorithm, artificial potential field (APF)
method, etc., which is suitable for path planning in real-time
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environments where the environment is unknown or partially
unknown. As a popular path planning algorithm proposed
by Khatib [1] in 1985, APF has many advantages, such as
a mathematical model that is simple and easy to implement,
good adaptability to unknown or dynamic environments and
so on. It is widely used in active and real-time avoidance of
collision [2], [3] and path planning [4], [5], [6] of AMRs.

However, the traditional APF also has the following major
disadvantages: (1) the path generated by the APF algorithm
may not be smooth or even oscillating; (2) when the resultant
force of the potential field forces is zero, the local minimum
occurs; (3) when there are obstacles near the target, target
unreachability occurs [7]. As path planning has developed,
many efforts have been devoted to solving these problems.
Some combined APF with other technologies, while others
improved the traditional APF [8], [9], [10], [11], [12].
Souza et al. introduced a three-dimensional vortex field
into the traditional APF, allowing the robot to automatically
and independently select the optimal direction of vortex
field rotation based on its position relative to each object
in the workspace, eliminating the local minimum problem
and oscillations in the influence threshold of the repulsive
fields [13]. Li proposed an improved APF that optimized
the angle of repulsive force and the function of attraction
field, which enabled the robot to avoid local minimum [14].
Shang et al. combined improved APF with fuzzy logic that
when the AMR falls into the local minimum, set one or more
virtual targets to guide the robot out of the dead zone, which
mitigated the occurrence of local minimum and oscillation in
the trajectory [15]. Ji et al. converted Cartesian coordinates
to ellipsoidal coordinates and converted traditional APF into
ellipsoidal two-dimensional APF by solving the Laplace
equation. They then integrated the ellipsoidal potential
field with the Gaussian velocity field (GVF) to propose
a three-dimensional potential field (TriPField) model that
simultaneously represents position and velocity. This method
solved the shortcomings in the integration algorithm of PF
potential field and AV local path planning, such as the
neglect of the geometry of the traffic agent and the possible
local minimum problem [16]. Szczepanski proposed a safe
APF method that the repulsive potential field was replaced
by a vortex potential field or a superimposed potential
field of the two according to the environment, which could
avoid relatively simple situations of local minimum, keep
a safe distance from obstacles and pass through narrow
corridors [17]. Li et al. proposed an APF method using
dynamic enhanced fireworks algorithm (dynEFWA), which
used the random explosion of dynEFWA to jump out of
local minimum traps and found feasible paths in safe driving
areas [18]. In order to consider the influence of positioning
accuracy on navigation ability and collision avoidance in
path planning, Shin and Kim proposed to mix potential
energy and position risk field to generate a hybrid directional
flow to guide an UV in a safe and efficient path [19].
Sfeir et al. redefined a form of repulsion potential field based
on APF method to reduce trajectory oscillations when the

robot approached obstacles [20]. Zheng et al. proposed a new
minimum criterion and designed an improved virtual obstacle
method for local path planning to overcome the drawback
[21]. Matoui et al. used the non-minimum speed algorithm
to solve the local minimum problem [22]. Duan et al. added
the interference factor of the second virtual target in the
improved APF based on the safe distance model (SDM),
so as to break the equilibrium state when falling into a
local minimum [23]. Szczepanski proposed a novel APF
supported by augmented reality that could extend robot
perception, detect upcoming local minimum, and generate a
virtual wall to bypass it, which relatively reduced the driving
path, but failed to consider the smoothness of the path [24].
Yao et al. proposed a method named black-hole potential
field(BHPF) to reduce the occurrence of local minimum,
then combined BHPF and reinforcement learning to solve
the problems which are scenarios of local-stable-points.
This adaptation mechanism enabled the robot to reach the
destination in real time in environments with novel obstacles
and dynamic targets, but the size of the black hole domain
must be defined for different environments. Moreover, the
algorithm was not adaptable enough, and the smoothness
of movement was not improved [25]. Szczepanski proposed
a novel APF improved by application of the prediction of
future movements, to detect AMR’s stagnation in the local
minimum. In such a case, the virtual obstacles, called top
quarks, were created to force the AMR to select goal-
reaching path. However, when placing a virtual top quark, the
procedure of prediction of future path was repeated until the
local minimum point no longer appears, which undoubtedly
greatly increased the amount of calculation, but also led to
poor real-time performance [26]. Azzabi et al. proposed a
novel of repulsive potential function by activating a virtual
escaping force when a local minimum was detected. This
force behaved as a rotational force allowing the robot to
escape from the deadlock positions and turn smoothly away
from obstacles in the direction of the target. And a stronger
attractive function was proposed to ensure that the robot
reaches the target successfully. The combination of the new
attractive force and the novel repulsive force could solve
the local minimum and the unreachable target problem [27].
Guo et al. proposed an adaptive step size adjustment method
based on the number of obstacles, the distance between
the robot and the obstacles, and the number of iterations
to improve the efficiency of path planning and obstacle
avoidance; proposed triangulation navigation method to get
out of the stagnant situation when falling into the local
minimum; improved the potential field function so that the
closer the robot was to the target, the smaller its repulsive
component and the greater the attractive component, thereby
solving the problem of target unreachability [28]. Li et al.
introduced the invasive weed method to help solve the
local minimum problem and added a distance adjustment
factor on the basis of the original repulsive potential field
to solve the unreachable target problem [29]. Zhai et al.
proposed to improve the potential field environment and
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potential field force to solve the two problems, but themethod
was less adaptable in a complex environment with multiple
obstacles [30]. Song et al. added a predicted potential
field to the original APF that If it predicted the risk of
collision, the direction of movement would be corrected
to avoid the obstacle in advance. However, the algorithm
was only applicable to single-obstacle environment, for in
multi-obstacle environment the modified direction might
collide with other obstacles. Moreover, it did not contain
local minimum avoidance mechanism [31]. Batista et al.
proposed a virtual obstacle model and modified the repulsion
function to solve the unreachable target problem. However,
the algorithm used the equal-step path method and the overall
planning efficiency was not high [32].
The most well-known and concerned problem in most of

the above studies is the case of falling into local minimum,
but no study addresses all of the three main flaws of APF
in the meantime and considers their effect on each other.
The above studies have the following problems: (1) Most do
not consider the size of obstacles, but only regard obstacles
and the robot as a particle, which is inconsistent with the
actual situation. In this paper, square obstacles of different
sizes will be introduced for study, because sharp corners
and boundaries of squares make it more difficult to do
path planning than circles. (2) Most only solve the problem
of local minimum or target unreachability, but ignore the
influence of unsmooth path on the entire motion process.
(3) Most only propose separate solutions for individual
problems, without considering multiple problems together
while reducing the complexity of the algorithm. (4) There
are two main mechanisms for avoiding local minimum. One
begins to work after the robot has fallen into the local
minimum, so that the smoothness of the path cannot be
guaranteed; Another is to repeatedly detect all locations
where local minimum may occur throughout the whole
planning process, and then add virtual obstacles or modify
potential field functions, which greatly increases the amount
of calculation.

Therefore, this paper considers the three problems of
traditional APF together, and proposes an improved APF
algorithm to solve the problems of local minimum and target
unreachability when obtain relatively short and smooth tra-
jectories. The structure of this paper is as follows: Section II
describes the traditional APF algorithm, especially the draw-
backs; Section III presents the proposed approach, including
the selection of the planning area and the construction of
multi-target planning based on environmental information,
the improvement of repulsive force field and attraction
function, the adaptive adjustment of step size according to
the distance and angle relationship with obstacles within
a certain prediction range, the construction of safe driving
corridors based on path points generated by multi-target,
and the generation of smooth trajectories using safe driving
corridors as boundary constraints. Section IV presents and
analyzes the simulation results solving the three problems.
Section V summarizes the paper and discusses future work.

II. TRADITIONAL ARTIFICIAL POTENTIAL FIELD
ALGORITHM
The well-known APF proposed by Khatib in 1986 has devel-
oped over decades with different modifications. It is widely
used in path planning, consisting of repulsive potential field
and attractive potential field, which are similar in principle
to the positive and negative electric fields respectively. The
repulsive potential field is like a positive electric field, whose
potential field force is dispersed from the center to the outside
and is repulsive to the AMR, while the attractive potential
field is like a negative electric field, whose potential field
force is converged from the outside to the center and is
attractive to the AMR. The two work together to guide the
AMR away from the obstacle and toward the target.

FIGURE 1. Force diagram of AMR in APF.

The AMR is subject to both attractive and repulsive forces
in the APF with target and obstacle. The attractive force
guides the AMR to travel toward the target point, while
the obstacle exerts repulsive force after the AMR enters the
influence range of its repulsive field, which makes the AMR
move away from it to avoid collision, as shown in Fig. 1.
When an AMR is in an APF containing a target, it will be

attracted by the target until the AMR reaches it. The attractive
potential field function of the traditional APF is:

Uatt =
1
2
katt

(
P− Ptarget

)
(1)

where katt is the attractive coefficient, P is the position of the
AMR, Ptarget is the position of the target.
The negative gradient of the attractive potential field is the

gravity:

Fatt = −grad(Uatt) = katt
(
Ptarget − P

)
(2)

The repulsive potential field function of an obstacle is:

Urep =


1
2
krep

(
1
P

−
1
R0

)2

, 0 ≤ P ≤ R0

0, R0 ≤ P
(3)

where, krep is the repulsive factor, P is the distance
between the AMR and the obstacle, and R0 is the maximum
influence range of the repulsive potential field belonging to
the obstacle. When there is an obstacle in the APF and the
AMR is under the influence range of the obstacle’s repulsive
field, the AMR will be subjected to the repulsive force. After
leaving the influence area, it will not be affected by the
obstacle.
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The negative gradient of the repulsive potential field is:

Frep =

 krep

(
1
P

−
1
R0

)
P⃗
P2

, 0 ≤ P ≤ R0

0, R0 ≤ P
(4)

So, the final resultant force on the AMR in the APF is:

Ftotal =

∑
Frep+ Fatt (5)

where
∑
Frep denotes the total repulsive force that the AMR

is subjected to when under the influence of multiple obstacle
repulsive fields, and the attractive and repulsive forces are
superimposed to form the resultant force that the AMR is
subjected to in the APF.

FIGURE 2. Traditional artificial potential field diagram.

From the traditional APF repulsive force function, it can
be seen that its derivative is not 0 at the boundary of
the obstacle’s repulsive field influence area, because the
repulsive field is not tangent to the 0-potential energy surface.
At the same time, it can be seen from (b) that the gradient
of the obstacle’s repulsive field decreases very fast, which
can bring some problems. If the step of the traditional APF
is not properly selected, it is easy for the situation that in the
previous step the AMR is outside the repulsive field of an
obstacle, but in the next step it is deep inside the repulsive
field, which will make the AMR be subject to a suddenly
increasing repulsive force, so as to be directly ejected from
the repulsive field. Such a sudden change in the path point is
very inconsistent with the actual situation.

III. IMPROVED APF AND TRAJECTORY GENERATION
For the collision-free path planning problem, firstly, analyze
the known map information to restrict the path planning to
the area with fewer obstacles, and then evaluate the obstacles
that must be avoided when traveling from the starting point
to the target point. Secondly, construct a multi-target model
by setting up sub-target points within a certain range near the
obstacles in which the resultant force of the target ahead and
the next target can guide the AMR away from the obstacles.
In this way, the AMR will travel toward the point that must
be passed by avoiding the obstacles and the next target with a
variable stride length, until it reaches the final target. Thirdly,
the safe driving corridor is constructed according to the path
points generated by the front-end processing. Finally, the safe
driving corridor is used as a boundary constraint to generate

a smooth trajectory that is contained in the safe driving
corridor.

The algorithm effectively avoids local minimum, while
planning relatively short and smooth paths, and also provides
a large improvement in target unreachability case.

Planning path in unstructured scenarios is more challeng-
ing compared to highway cruising because 1) there is no
longer a navigational reference line, 2) the planned path
usually contains cusps instead of smooth curves, and 3)
obstacles are more irregular than those on structured roads.
Due to these factors, very little research has been done to
generate smooth trajectories in unstructured scenarios con-
sidering obstacle size. This study focuses on the generation
of collision-free smooth trajectory in complex scenarios with
irregularly placed static obstacles.

A. PRIORITY AREA SELECTION AND MULTIPLE TARGETS
CREATION
1) PSFO-BASED PRIORITY AREA SELECTION
Since the risk of collision and the difficulty of path planning
are directly proportional to the number of obstacles, the
selection of an appropriate area is extremely important for
planning a safe collision-free smooth path. In this paper,
a priority area strategy for path planning based on the
principle of side with fewer obstacles (PSFO) is proposed,
which can determine the path planning area based on the
positional relationship between the robot, obstacles, and
targets. First, before the path planning starts, connect the
starting position of the robot and the final target with a straight
line, and the number of obstacles on each side of this line is
analyzed and calculated. Then the side with less obstacles is
selected as the path planning priority area.

2) MULTIPLE TARGETS CREATION
In the traditional APF method, the robot moves in the whole
potential field according to the resultant force of the attractive
force of the final target and the repulsive force of obstacles.
Since the final target is a single-point model and its attractive
force is related to the distance: the larger the distance is, the
larger its attractive force is; the smaller the distance is, the
smaller its attractive force is. When the robot is far away
from the final target, its attractive force is very large, and
it may appear that the attractive force on the robot is much
larger than the repulsive force of the obstacle on the robot in
some positions, which greatly increases the risk of collision
in traveling. Besides, it makes the robot avoid collision only
when it enters into the influence range of the repulsive field
of the obstacle, which greatly increases the traveling distance
and reduces the smoothness of the path.

If directly plan a point that the robot must pass through to
avoid the obstacle, we can solve the problem of unsmooth
path, greatly reduce the risk of collision, shorten the driving
distance, and also avoid possible local minimum. Sang et al.
proposed an improved APF algorithm, which generates a
globally optimal path by improving the A∗ algorithm and
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divides the optimal path into a sequence of sub-target points
[33]. Although it can reduce the probability of falling into
local minimum, it increases the algorithm complexity and
computation amount. This paper proposes a lateral safety
target generation method based on the radius of the influence
range of obstacles’ repulsive field to create multiple targets,
which can consider collision avoidance, path smoothness and
local minimum avoidance simultaneously without increasing
the algorithm complexity. The specific approach is as follows:

1) Based on the line connecting the start point to the
final target, the distance of all obstacles to this line is
calculated;

2) If the distance from a certain obstacle to the link is
less than its repulsive field influence range, the obstacle
should be avoided during the actual traveling of the
robot. As for the lateral safe distance for the robot to
avoid the obstacle, it is related to the repulsive field
influence range of the obstacle. To select the lateral
safety target point, a straight line perpendicular to the
line connecting the starting point to the final target
should be made through the center coordinates of the
obstacle. And along this straight line in the direction
of the selected path planning area, a point where the
distance to the line is equal to the lateral safety distance
should be found, which will be used as a lateral safe
sub-target of the path. The lateral safe distance is
selected as dsafe = k1R0, where k1 is a certain scale
factor and R0 is the influence range of the repulsive
field corresponding to a certain obstacle. The lateral
safe distance should be chosen so that the AMR is far
away from the obstacle, but not completely out of the
influence of its repulsive field.

The lateral safe target strategy can effectively solve
two typical local minimum cases. The first one is when
the obstacle is at a point on the line between the AMR
and the final target, the traditional APF method will lead
to the resultant force of attractive and repulsive forces
on the robot zero, producing a local minimum. Shahidian
and Soltanizadeh defined an additional collision avoidance
condition and introduced an improved algorithm to avoid this
case [34]. The second case is when there are two or more
obstacles between the AMR and the final target, and they are
distributed near the line connecting the AMR and the final
target. In this case, the produced repulsive forces can offset
the attractive force of the target point, so that the resultant
force on the AMR is zero and falls into a local minimum.

For the first case, the obstacle is located on the line
connecting the AMR and the final target, andmust be avoided
by the AMR in the multi-target strategy, as shown in Fig. 3(a).
The second case is a little bit more complicated because

the obstacles are distributed on both sides of the line. Firstly,
if the distance of two obstacles on both sides of the line is
larger than the AMR size, the local minimum will definitely
appear between the two obstacles. Based on that, sub-target
points between the two obstacles will be generated to guide
the AMR to pass through these obstacles without collision,

FIGURE 3. Typical local minimum cases and multi-target point setting.

as shown in Fig. 3(b). Secondly, if the distance of the two
obstacles on both sides of the line is smaller than the AMR
size, the repulsive potential fields of these obstacles will
overlap with each other. In this case, these obstacles will be
regarded as a large obstacle to be avoided. Similar to the first
case, multiple targets are generated in the priority planning
area to guide the AMR to avoid them collision-free, as shown
in Fig. 3(c).

B. IMPROVEMENT OF THE POTENTIAL FIELD FUNCTION
1) IMPROVEMENT OF THE ATTRACTION FUNCTION FOR THE
CONSTRUCTION OF A MULTI-TARGET ATTRACTION FIELD
Due to the drawbacks of single-point attractive field (as
described in III-A2)), we adopt a multi-target model based
on multiple sub-target points where the attractive potential
fields of two adjacent sub-target points in front of the AMR
are superimposed in a certain proportion through hyperbolic
tangent function. It aims to consider the attractive force of
the second sub-target point when the AMR travels toward the
first sub-target point, which is conducive to further reducing
the possibility of falling into the local minimum; And lift the
guidance of the first sub-target point when the AMR is about
to arrive at the first sub-target point ahead. But the guidance
will be continued by the second and third sub-target points
ahead, and so on. The equation is as follows:

y = tanhx (6)

k2 =
drob−subtar(i)
drob−subtar(i+1)

(7)

Fatt = Fatt(i) + tanh (k2)Fatt(i+1) (8)

where drob−subtar(i) is the distance from the AMR to the ith

sub-target point ahead, drob−subtar(i+1) is the distance from the
AMR to the i+ 1th sub-target point ahead, and accordingly k2
is the ratio of the distance from the AMR to the ith sub-target
point ahead to the distance from the AMR to the i+ 1th sub-
target point ahead. Fatt (i) and Fatt (i+1) are the attractive force
of the ith and i+ 1th sub-target to the AMR, respectively.
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When the AMR reaches the front of the last sub-target
point, the guidance of the final target point to the AMR can be
increased, so the attractive function at this stage is as follows:

Fatt = k3Fatt ft + Fatt ilast (9)

where k3 is the is a coefficient(0 < k3 < 1),Fatt tt andFatt ilast
are the attractive force of the final target and last sub-target
to the AMR, respectively.

After passing the last sub-target point, the attractive force
on the AMR is supplied only by the final target point:

Fatt = Fatt ft (10)

2) IMPROVEMENT OF THE REPULSIVE FORCE FIELD
According to the repulsive force potential field diagrammade
by the repulsive force function of the traditional APFmethod,
it can be seen that the smaller the radius of the obstacle, the
larger the repulsive force field at its boundary. It is contrary to
the rule in the real environment that the larger the obstacle, the
higher the risk of collision, and the larger the needed repulsive
force. Moreover, the gradient of the repulsive force field
of a conventional APF decreases extremely fast, as shown
in Fig. 4(a). This can lead to the appearance of a point
near the obstacle that is subjected to an extremely large
repulsive force, making the generated path have mutation
points, as shown in Fig. 6(a).

FIGURE 4. Repulsive potential field before and after improvement.

Therefore, it is necessary to improve the repulsive force
function so that the gradient of the repulsive potential field
will not fall so fast, and that the tangent of the repulsive
potential field contour is also 0 when the height is 0, in order
to ensure that the repulsive potential field is in smooth
transition with the zero repulsive potential surface. Inspired
by the hypoellipse curve (Lamé curve), when the exponent
parameter of this curve is less than 1, the shape of the curve
resembles an inwardly concave four-pointed star, and the
curve is tangent to the coordinate axes, as shown in Fig. 5.
It is more in line with the rule that outside the influence range

of the field the repulsive force is 0, but within the range the
repulsive force gradually increases as closer to the obstacle,
and an upper limit is set for the force so that it will not increase
to infinity.

FIGURE 5. Lamé curves with parameters that satisfy the condition that
the curve is tangent to the coordinate axes.

Based on the above analysis, the curve
(

x
rho_0

)0.5
+(

y
Fremax

)0.5
= 1 is taken to improve the repulsive force

function, and the improved function is:

Fre = Fremax

(
1 +

rho− r
rho_0

− 2

√
rho− r
rho_0

)
(11)

where rho is the distance of the AMR from the obstacle, r is
the distance from the center of the obstacle to its boundary,
rho_0 is the radius of influence range of the repulsive field of
the obstacle, andFremax is the repulsive force on the boundary
of the obstacle, which is the same order of magnitude as the
maximum attractive force Fattmax . The improved potential
field diagram of the repulsive field is shown in Fig. 4(b).

After improving the repulsive force function, the situation
of mutation points by the sudden larger repulsive force near
the obstacle no longer appears, and the path is smoother
compared to the original one, as shown in Fig. 6.

C. PREDICTION-BASED ADAPTIVE STEP
In this paper, the step is adaptively adjusted according to the
distance and angle relationship of the AMR with obstacles
within a certain prediction range. In the traditional APF
method, the step length is always kept constant during the
robot’s traveling, which is not in line with the actual situation
of decelerating when encountering obstacles and accelerating
when there are no obstacles. Meanwhile, If the step size is
kept small, it is easy to cause excessive calculation and too-
curved path; if the step length is kept large, it is easy to collide
with obstacles in some complicated situations. Therefore,
in order to improve the smoothness of the planned path and
increase the safety in traveling, the length of each step in the
robot’s traveling process is set to be variable. Before each step
of movement, the robot’s current force situation and future
movement direction will be evaluated to see whether there
is an obstacle within a certain distance and a certain angle
ahead. If no obstacle is detected ahead, the path ahead can
be considered as hazard-free and the robot can advance with
maximum step length; if an obstacle is detected in front,
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the robot will automatically adjust the forward step length
according to the distance from the obstacle. The further the
distance, the smaller the risk of collision, and the forward step
length can be appropriately increased; the closer the distance,
the greater the risk of collision, and the forward step length
should be reduced, as shown in Fig. 6.
At the same time, since the AMR in this paper adopts

the step length adaptive adjustment, the combination of
the forward detection results and the forward step length
adjustment can solve the target unreachability problem in
the APF algorithm when there is an obstacle near the final
target point. In the traditional APF method, when there is
an obstacle near the final target, as the robot gets closer
to the target, the attractive force on the robot will become
smaller while the repulsive force will become larger, thus the
repulsive force is larger than the attractive force on the robot
at a certain position, which makes the robot unable to reach
the final target. However, through the adaptive adjustment of
the step length, when the robot is close to the final target, the
distance between the target and the robot within the prediction
range can be used to adjust the step length of the robot, that
is, the next step length is calculated according to a certain
proportion of this distance. This is also in line with the actual
situation that when the robot is approaching the target point,
it will gradually decelerate to reach the final target smoothly.

FIGURE 6. Path planning based on the adaptive step strategy.

D. CONSTRUCTION OF SAFE DRIVING CORRIDORS BASED
ON PATH POINTS GENERATED BY MULTI-TARGET MODEL
After obtaining n APF path points generated by multi-target
model, it is found that the improved APF is much smoother
than the path generated by traditional APF, but there is still
much room for optimization. Moreover, it is also found that
the path generated by the APFmethod has a great dependence
on environmental factors such as obstacles and target points.
At some points, problems such as turns with unsuitably large
angle may occur, which can hinder the AMR tracking. So,
further smoothing of the path is necessary. However, how
to ensure that the smoothed trajectory does not conflict with
surrounding obstacles is an issue worth pondering. The paper
draws on the fight corridor in AMR online safe trajectory
generation [35], [36], [37] and applies the idea to 2D map
for generating safe driving corridors without collision with
obstacles. In this way, the safe driving corridor is used as the

boundary constraint, which ensures that a safe and collision-
free optimized trajectory can be generated.

In this paper, the collision-free space around the path is
extracted to form a safe driving corridor for subsequent path
optimization. Here is the concrete process: From the starting
point, connect the first point and the third point (point i and
point i+2). Then, translate this line segment to the left and
right to determine the boundaries on the left and right sides
of the safe driving corridor, with a maximum offset of D.
In the process of constructing the corridor, detect whether
the generated corridor intersects with any obstacle in each
movement. If the line segment does not intersect with any
obstacle, the line with an offset of D will be taken as the
boundary line of the corridor on that side; if the line segment
intersects with an obstacle, then the offset is reduced by
one unit and the line segment returns to the position of the
previous step where it has not intersected with the obstacle.
The returned line is used as the corridor boundary line on
that side. The process is repeated until the construction of
a corridor between the n− 2th point and the nth point. The
corridors generated by each corresponding line segment are
assembled as the boundary constraints for the next step of
trajectory optimization, as shown in Fig. 7.

FIGURE 7. Construction of safe driving corridors. The path planned by the
improved APF is shown as the red curve. And the corridors is shown as
the green shadow.

After generating the safe driving corridor, it is noted that
trajectory optimization in this area is particularly necessary
to ensure that the generated trajectories do not exceed the
boundary of turns that are generated by the APF repulsive
force. In order to save computation cost and running time, the
number of sequences and waypoints can be set to the number
of sub-target points, but at the same time, to ensure that the
generated trajectory points are all within the safe driving
corridor, the midpoints of the adjacent target points are taken
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and inserted into the waypoint sequence. The path generated
by the APF does not completely pass through the sub-targets
selected during the planning, but deviates to a certain extent
according to the actual situation, as shown in the figure above.
Therefore, in order to carry out the next step of trajectory
optimization, it is necessary to re-select the waypoints. In this
paper, the closest points to the location of the waypoints on
the generated APF path are chosen as the reference waypoints
in the final optimization process, as shown in Fig. 7(d).

E. PATH OPTIMIZATION WITH SAFE DRIVING CORRIDOR
CONSTRAINTS
In this section, a quadratic programming approach is applied
to generate trajectories constrained in the safe driving
corridor. The trajectory consisting of segmented polynomials
is parameterized as the time variable t in x, y.

1) POLYNOMIAL TRAJECTORY GENERATION
The optimized trajectory is represented by a k-segment n-
order segmented polynomial, given the start and end time
of each segment (t0, t1, t2, . . . , tk ). Since the trajectory in
real problems is two or three dimensional, each of which
is usually solved separately. Both the horizontal and vertical
coordinates can be represented by the following equation:

p (t) =



[
1, t, t2, . . . , tn

]
· p1 t0 ≤ t < t1[

1, t, t2, . . . , tn
]

· p2 t1 ≤ t < t2

. . .[
1, t, t2, . . . , tn

]
· pk tk−1 ≤ t < tk

(12)

pi = [pi0, pi1, . . . , pin]T (13)

where k is the number of segments of the trajectory, pij is the
coefficient of the i-segment, j-order polynomial, and pi is the
parameter vector of the i-segment of the trajectory. We intend
to solve for the parameter vectors that satisfy the constraints
of the trajectory, and the cost function is the square of the N th

derivative. In this paper, the jerk will be minimized along the
trajectory, i.e., N th is taken to be 3, and the objective function
can be written as

J = min
∫ T

0

(
dN

th
p(t)

dtN
th

)2

dt (14)

The function can be simplified as minpTQp, where p =

[pT1 , pT2 , . . . , pTk ]
T is the vector of all segment trajectory

parameters, Q is the Hessian matrix of the function, and

Q =


Q1

Q2
. . .

Qk

.
2) IMPOSING CONSTRAINTS
Since the trajectories are polynomially spliced, smooth
transitions between segments should be ensured, and the

planned trajectories should be within safe driving corridors
to ensure safety.

a: POSITIONAL CONSTRAINT
Firstly, at the first and last endpoints of the whole trajectory,
mandatory constraint is used to fix the start point of the
first segment trajectory and the end point of the last segment
trajectory at the start and end points of the planning,
respectively. As for the constraints of the intermediate
connecting points, floating constraints is used to make the
adjacent two connecting points have the same position,
velocity and acceleration, rather than to fix the position of
the adjacent two connecting points at a certain place, which
is conducive to the smoothness of the whole trajectory.

b: CONTINUITY CONSTRAINT
The two adjacent end trajectories must be continuous, i.e., the
end point of the i-segment trajectory and the start point of the
i+1-segment trajectory need satisfy the M-order derivation
continuity

(
0 ≤ M ≤ N th

− 1
)

: p(M)
i (ti) = p(M)

i+1 (ti).

c: SAFE DRIVING CONSTRAINT
According to the above constraints we have been able to
solve the quadratic programming problem, but the generated
trajectory only ensures that the curve is continuous and
smoothly transitioned, and does not guarantee that the
optimized curve does not conflict with obstacles in the map.
So, it is necessary to add additional constraints to it to make
sure that the generated trajectory must be in the safe driving
corridor generated in III-D.{

pi (ti) − corridor (xi)lower ≤ pix (ti)
pi (ti) + corridor (xi)upper ≥ pix (ti){
pi (ti) − corridor (yi)lower ≤ piy (ti)
pi (ti) + corridor (yi)upper ≥ piy (ti)

(15)

where corridor(xi)lower and corridor(xi)upper are respectively
the upper and lower limits of the safe driving corridor
in dimension x for the trajectory points on i-segment
at ti. Similarly, corridor(yi)lower and corridor(yi)upper are
respectively the upper and lower limits of the safe driving
corridor in dimension y for the trajectory points on i- segment
at ti. And any corridor is less than D.

Position constraint, continuity constraint, and safe driving
constraint can all be translated into solutions for optimizing
the parameter vectors of each trajectory segment pi =

[pi0, pi1, . . . ,pin]T . The position constraint and continuity
constraint can be formulated as equation constraint on
the objective function, while the safe driving constraint is
formulated as inequation constraint on the objective function.
It can be seen that the trajectory optimization problem is
transformed into a quadratic programming problem:

minpTQp

s.t. Aeqp = beq
Aieqp ≤ bieq (16)
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Solving this quadratic programming problem yields the
optimized smooth trajectory. In section III-D., it is proposed
to insert midpoints between adjacent points in the original
multi-target sequence to ensure that the generated trajectory
is completely within the safe driving corridor. In this section,
solutions are presented for both cases. As shown in Fig. 8, the
trajectory with more waypoints needs more constraints which
reduce the possibility of the trajectory to exceed boundaries of
the safe driving corridor. The insertion of intermediate points
between the original waypoints as proposed in III.D. is proved
to be necessary.

FIGURE 8. (a) Trajectory optimization when the number of waypoints is
equal to the number of multiple target points. (b) Trajectory optimization
when intermediate points between waypoints are inserted.

IV. SIMULATION AND ANALYSIS
In section I, we pointed out that the traditional APF
has the problems of local minimum, target unreachability,
and non-smooth paths. In section III, we proposed a
multi-target strategy based on the improved potential field
function considering environmental factors, and trajectory
optimization is performed using the generated path points.
In this section, the proposed method is verified in some
scenarios.

A. AVOIDANCE OF LOCAL MINIMUM
1) SINGLE OBSTACLE SITUATION
When the obstacle is between the AMR and the target point,
and the center coordinates of the three are in a straight line,
as the AMR travels toward the target point, at a point on the
line of the three will appear the situation that AMR is subject
to attraction of the target point and repulsion of the obstacle
which are equal in size and opposite in direction. At this time,
the resultant force is 0, and the AMR will fall into a stagnant
state. The simulation results are shown in Fig. 9(a).
In the improved APF algorithm, after the algorithm

analyzes the known map information, multi-target method is
applied to generate the sub-target point that must be passed to
avoid obstacles and local minimum. And then themulti-target
model guides the AMR to avoid them. The improved APF
algorithm can successfully avoid local minimum to reach the
target point, and the generated path is smoother, as shown in
Fig. 9(b). And the comparison of simulation data for TAPF [1]
and IAPF is shown in Table 1.

FIGURE 9. Simulation results for single obstacle before and after APF
improvement.

TABLE 1. Simulation results of local minimum for single obstacle.

2) MULTIPLE OBSTACLES SITUATION
When the AMR is in a complex environment of multiple
obstacles, it is easy to fall into a local minimum, as shown
in Fig. 10(a). In the improved algorithm, the known map
information is also analyzed first to select the area with
lower collision risk, and then the multi-target method is
used to generate the sub-target points that must be passed
to avoid obstacles and local minimum. Next, the multi-target
model guides the AMR to the target, as shown in Fig. 10(b).
The improved APF algorithm does generate multiple targets
for obstacle avoidance and local minima, and there is little
iteration after successfully reaching the final target, as shown
in Table 2.

TABLE 2. Simulation results of local minimum for multi-obstacles.

B. IMPROVEMENT OF THE TARGET UNREACHABILITY
The first scenario of target unreachability in this paper is
that there are several obstacles to be avoided between the
AMR departure point and the final target point, and the final
target point is behind a larger obstacle and within the
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FIGURE 10. Simulation results for multiple obstacles before and after
APF improvement.

repulsive potential field of the obstacle. The path planned
by the traditional APF can lead to the situation of target
unreachability, and collide with the boundary of the obstacle.
But using the improved APF method, the AMR, guided by
the multi-target model, continuously detects obstacles and
targets in the prediction range in front of it and automatically
adjusts its step size and the resultant force size, so that it can
successfully reach the final target without collision, as shown
in Fig. 11(a).

Another scenario is that the final target point is between
two or more obstacle potential fields, and the traditional APF
also cannot ensure the reach of target point. But using the
improved APF method, the multi-target model can guide
the AMR to the target successfully, as shown in Fig. 11(b).
The iteration number of the proposed method is small, while
that of the traditional APF is infinite in the following two
scenarios, as shown in Table 3.

TABLE 3. Comparison of simulation results for target unreachability.

C. PATH UNSMOOTHNESS RESOLUTION
The path generated by the APF method has a great
dependence on environmental factors such as obstacles and

FIGURE 11. Simulation results for multiple obstacles before and after
APF improvement.

targets, and the problem of turnswith unsuitably large angle at
some points may occur, and the path is not suitable for AMR
for trajectory tracking, so smoothing of the path is necessary.
In this paper, based on the safe driving corridor constructed
on the planned path, the quadratic programming approach is
used to generate a path that is completely constrained to the
safe driving area. As shown in Fig. 12, in the scenarios of IV,
the generated optimized trajectory does not collide with any
obstacle, and becomes smoother.

FIGURE 12. Optimized trajectory.

D. ANALYSIS OF SIMULATION RESULTS
Compared to the stagnant situation in traditional APF
algorithm, the proposed improved APF algorithm
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TABLE 4. Comparison of simulation results for DWA, TAPF and IAPF.

successfully avoids the problem of local minimum and
reaches the target. In particular, when simulating in the
multi-obstacle environment, the proposed improved APF
analyzes the known environment information, selects the area
with less collision risk, and uses the multi-target model to
guide the AMR to reach the final target. The simulation
experimental data of the above four scenarios are shown in
Table 4, which contains the comparison experiments of IAPF
with traditional APF and DWA path planning algorithms,
where the evaluation indicator for smoothness is introduced.
Compared with the traditional APF algorithm, the improved
algorithm has fewer iterations. Except for the simulation
of avoiding local minimum in the single obstacle situation,
in the remaining scenarios the number of iterations of the
improved algorithm is much less than half of the number
of iterations of the traditional APF. Compared to recently
published papers [14], [17], [25], [26], the proposed IAPF
simultaneously overcomes several drawbacks of traditional
APFs - falling into local minima, the goal unreachability
problem, and path non-smoothing. The good results obtained
from the experiments are a strong proof of the simplicity and
effectiveness of the method in this work.

The improved algorithm has good real-time performance
with path planning time within a few hundredths of a second,
path optimization and trajectory generation time in the order
of a fraction of a second on a moderately fast 7th generation
i5 CPU computer.

V. CONCLUSION AND FUTURE WORK
In this paper, the author proposes an improved APF algorithm
that not only considers the effect of obstacle size and shape on

path smoothing and collision avoidance, but also adaptively
adjusts the step size according to the distance and angle rela-
tionship with the obstacle within a certain range, and finally
constructs safe driving corridors based on the generated path,
so as to generate a smooth and collision-free path.

From the simulation results, it can be seen that the path
smoothness of IAPF is improved by an average of 97.3%
as compared to traditional APF and 45.19% as compared
to DWA. The sum of the proposed IAPF path planning and
optimization time is improved by 45.1% on average com-
pared to DWA path planning time. The results show that the
proposed improved algorithm is far superior to the traditional
APF algorithm and DWA. Therefore, this algorithm can be
used in cargo handling and mine transportation indoor or
outdoor in unmanned factories, patrolling and even certain
rescue situations. The path generated based on the multi-
target model and quadratic planning is not only suitable for
the AMR tracking, but also can reduce the distance and
increase the speed to a certain extent in many complex
scenarios.

There are still some shortcomings in the study. The adap-
tive step-size adjustment strategy based on the relationship
between distance and angle to obstacles within the prediction
range does not work well in some complex scenarios.
At some point, it may occur sudden changes in the path
due to improper step size adjustment. When constructing
the multi-target, the selection of lateral safety distance only
considers the obstacle size, and the obstacle type, motion
state and other factors will be taken into consideration in
the future research. In addition, the study in this paper only
considers the static obstacle case. The combination of some
intelligent algorithms in dynamic obstacle environments will
be considered in the future research.

ACKNOWLEDGMENT
Jie Yang would like to thank the laboratory partners for
their continued support, the supervisor for his guidance and
support during the work, and the anonymous reviewers for
their constructive suggestions.

REFERENCES
[1] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile

robots,’’ in Proc. IEEE Int. Conf. Robot. Autom., Mar. 1985, pp. 500–505.
[2] C. W. Warren, ‘‘Global path planning using artificial potential fields,’’ in

Proc. Int. Conf. Robot. Autom., May 1989, pp. 316–321.
[3] M. Cheol Lee and M. Gyu Park, ‘‘Artificial potential field based

path planning for mobile robots using a virtual obstacle concept,’’ in
Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM), Jul. 2003,
pp. 735–740.

[4] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, ‘‘Path planning
and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints,’’ IEEE Trans. Veh. Technol., vol. 66, no. 2,
pp. 952–964, Feb. 2017.

[5] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, ‘‘A potential
field-based model predictive path-planning controller for autonomous road
vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1255–1267,
May 2017.

[6] B. Krogh and C. Thorpe, ‘‘Integrated path planning and dynamic steering
control for autonomous vehicles,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
Apr. 1986, pp. 1664–1669.

VOLUME 11, 2023 139131



J. Yang et al.: Path Planning and Trajectory Optimization Based on Improved APF and Multi-Target

[7] Y. Koren and J. Borenstein, ‘‘Potential field methods and their inherent
limitations for mobile robot navigation,’’ in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 1991, pp. 1398–1404.

[8] O. Cetin, I. Zagli, and G. Yilmaz, ‘‘Establishing obstacle and collision free
communication relay for UAVs with artificial potential fields,’’ J. Intell.
Robot. Syst., vol. 69, no. 1, pp. 361–372, Jan. 2013.

[9] Y.-B. Chen, G.-C. Luo, Y.-S. Mei, J.-Q. Yu, and X.-L. Su, ‘‘UAV path
planning using artificial potential field method updated by optimal control
theory,’’ Int. J. Syst. Sci., vol. 47, no. 6, pp. 1407–1420, Apr. 2016.

[10] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, ‘‘Pseudo-bacterial poten-
tial field based path planner for autonomous mobile robot navigation,’’ Int.
J. Adv. Robot. Syst., vol. 12, no. 7, p. 81, Jul. 2015.

[11] S. S. Ge and Y. J. Cui, ‘‘New potential functions for mobile robot
path planning,’’ IEEE Trans. Robot. Autom., vol. 16, no. 5, pp. 615–620,
Oct. 2000.

[12] A. Sepehri and A. M. Moghaddam, ‘‘A motion planning algorithm for
redundant manipulators using rapidly exploring randomized trees and
artificial potential fields,’’ IEEE Access, vol. 9, pp. 26059–26070, 2021.

[13] R. M. J. A. Souza, G. V. Lima, A. S. Morais, L. C. Oliveira-Lopes,
D. C. Ramos, and F. L. Tofoli, ‘‘Modified artificial potential field for
the path planning of aircraft swarms in three-dimensional environments,’’
Sensors, vol. 22, no. 4, p. 1558, Feb. 2022.

[14] H. Li, ‘‘Robotic path planning strategy based on improved artificial
potential field,’’ presented at the Proc. Int. Conf. Artif. Intell. Comput. Eng.
(ICAICE), Oct. 2020, pp. 67–71.

[15] M. Shang, M. Chu, and M. Grethler, ‘‘Path planning based on artificial
potential field and fuzzy control,’’ in Proc. Int. Conf. Intell. Comput.,
Autom. Syst. (ICICAS), Dec. 2020, pp. 304–308.

[16] Y. Ji, L. Ni, C. Zhao, C. Lei, Y. Du, and W. Wang, ‘‘TriPField: A
3D potential field model and its applications to local path planning of
autonomous vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 3,
pp. 3541–3554, Mar. 2023.

[17] R. Szczepanski, ‘‘Safe artificial potential field—Novel local path planning
algorithm maintaining safe distance from obstacles,’’ IEEE Robot. Autom.
Lett., vol. 8, no. 8, pp. 4823–4830, Aug. 2023.

[18] H. Li, W. Liu, C. Yang, W. Wang, T. Qie, and C. Xiang, ‘‘An optimization-
based path planning approach for autonomous vehicles using the
DynEFWA-artificial potential field,’’ IEEE Trans. Intell. Vehicles, vol. 7,
no. 2, pp. 263–272, Jun. 2022.

[19] Y. Shin and E. Kim, ‘‘Hybrid path planning using positioning risk and
artificial potential fields,’’ Aerosp. Sci. Technol., vol. 112, May 2021,
Art. no. 106640.

[20] J. Sfeir, M. Saad, and H. Saliah-Hassane, ‘‘An improved artificial potential
field approach to real-time mobile robot path planning in an unknown
environment,’’ in Proc. IEEE Int. Symp. Robot. Sensors Environ. (ROSE),
Sep. 2011, pp. 208–213.

[21] Y. Zheng, X. Shao, Z. Chen, and J. Zhang, ‘‘Improvements on the virtual
obstacle method,’’ Int. J. Adv. Robot. Syst., vol. 17, no. 2, Mar. 2020,
Art. no. 1729881420911763, doi: 10.1177/1729881420911763.

[22] F. Matoui, B. Boussaid, and M. N. Abdelkrim, ‘‘Distributed path planning
of a multi-robot system based on the neighborhood artificial potential field
approach,’’ Simulation, vol. 95, no. 7, pp. 637–657, Jul. 2019.

[23] Y. Duan, C. Yang, J. Zhu, Y. Meng, and X. Liu, ‘‘Active obstacle
avoidance method of autonomous vehicle based on improved artificial
potential field,’’ Int. J. Adv. Robot. Syst., vol. 19, no. 4, Jul. 2022,
Art. no. 17298806221115984, doi: 10.1177/17298806221115984.

[24] R. Szczepanski, A. Bereit, and T. Tarczewski, ‘‘Efficient local path
planning algorithm using artificial potential field supported by augmented
reality,’’ Energies, vol. 14, no. 20, Oct. 2021, Art. no. 20.

[25] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and
T. Yang, ‘‘Path planning method with improved artificial potential
field—A reinforcement learning perspective,’’ IEEE Access, vol. 8,
pp. 135513–135523, 2020.

[26] R. Szczepanski, T. Tarczewski, and K. Erwinski, ‘‘Energy efficient local
path planning algorithm based on predictive artificial potential field,’’
IEEE Access, vol. 10, pp. 39729–39742, 2022.

[27] A. Azzabi and K. Nouri, ‘‘An advanced potential field method proposed for
mobile robot path planning,’’ Trans. Inst. Meas. Control, vol. 41, no. 11,
pp. 3132–3144, Jul. 2019.

[28] T. Guo, J. Wang, Z. Wang, W. Chen, G. Chen, and S. Zhang, ‘‘Research
on path planning of mobile robot with a novel improved artificial
potential field algorithm,’’ Math. Problems Eng., vol. 2022, pp. 1–13,
Sep. 2022.

[29] Y. Li, W. Yang, X. Zhang, X. Kang, and M. Li, ‘‘Research on automatic
driving trajectory planning and tracking control based on improvement
of the artificial potential field method,’’ Sustainability, vol. 14, no. 19,
Sep. 2022, Art. no. 19.

[30] L. Zhai, X. Zhang, X. Zhang, and C. Wang, ‘‘Local dynamic obstacle
avoidance path planning algorithm for unmanned vehicles based on
potential field method,’’ Trans. Beijing Inst. Technol., vol. 42, no. 7,
pp. 696–705, 2022.

[31] J. Song, C. Hao, and J. Su, ‘‘Path planning for unmanned surface
vehicle based on predictive artificial potential field,’’ Int. J. Adv. Robot.
Syst., vol. 17, no. 2, Mar. 2020, Art. no. 1729881420918461, doi:
10.1177/1729881420918461.

[32] J. Batista, D. Souza, J. Silva, K. Ramos, J. Costa, L. dos Reis, and A. Braga,
‘‘Trajectory planning using artificial potential fields with metaheuristics,’’
IEEE Latin Amer. Trans., vol. 18, no. 5, pp. 914–922, May 2020.

[33] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, ‘‘The hybrid path
planning algorithm based on improved A∗ and artificial potential field for
unmanned surface vehicle formations,’’ Ocean Eng., vol. 223, Mar. 2021,
Art. no. 108709.

[34] S. A. A. Shahidian and H. Soltanizadeh, ‘‘Path planning for two unmanned
aerial vehicles in passive localization of radio sources,’’ Aerosp. Sci.
Technol., vol. 58, pp. 189–196, Nov. 2016.

[35] J. Chen, K. Su, and S. Shen, ‘‘Real-time safe trajectory generation for
quadrotor flight in cluttered environments,’’ inProc. IEEE Int. Conf. Robot.
Biomimetics (ROBIO), Dec. 2015, pp. 1678–1685.

[36] J. Chen, T. Liu, and S. Shen, ‘‘Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 1476–1483.

[37] F. Gao, W. Wu, Y. Lin, and S. Shen, ‘‘Online safe trajectory generation for
quadrotors using fast marching method and Bernstein basis polynomial,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 344–351.

JIE YANG received the B.S. degree in vehicle
engineering from Xihua University, Chengdu,
China, in 2021. He is currently pursuing the
M.S. degree in vehicle engineering with the
Wuhan University of Technology, Wuhan, China.
His research interests include path planning and
trajectory optimization for AMR.

HONGCHANG ZHANG received the B.S. and
M.S. degrees from the Wuhan University of
Technology, in 2002 and 2006, respectively, and
the Ph.D. degree from Huazhong University of
Science and Technology, Wuhan, China, in 2012.
Since 2015, he has been with the Wuhan Uni-
versity of Technology, where he is currently an
Associate Professor with the School of Automo-
tive Engineering. His research interests include
research on automotive active safety technology,

research and application of sensor detection (environment sensing) technol-
ogy, research and application of connected vehicle technology, and design
and development of automotive electronic control systems.

PENG NING received the B.S. degree in auto-
mobile service engineering from the Nanjing
Institute of Technology, Nanjing, China, in 2021.
He is currently pursuing the M.S. degree in
vehicle engineering with the Wuhan University of
Technology, Wuhan, China. His research interests
include decision-making, trajectory planning, and
control of autonomous vehicles.

139132 VOLUME 11, 2023

http://dx.doi.org/10.1177/1729881420911763
http://dx.doi.org/10.1177/17298806221115984
http://dx.doi.org/10.1177/1729881420918461

