
Received 25 October 2023, accepted 28 November 2023, date of publication 1 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339127

Quantum Mechanism-Based Convolution Model
for the Classification of Pathogenic Bacteria
ISRA NAZ1, JAMAL HUSSAIN SHAH1,
MUHAMMAD HABIB UR REHMAN 1, (Senior Member, IEEE),
MUHAMMAD RAFIQ 2, (Member, IEEE), AND
GYU SANG CHOI 3, (Member, IEEE)
1Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad 45550, Pakistan
2Department of Game Software, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
3Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea

Corresponding authors: Gyu Sang Choi (castchoi@ynu.ac.kr) and Muhammad Rafiq (rafiq@kmu.ac.kr)

This work was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (NRF-2019R1A2C1006159), in part by the 2023 Yeungnam University Research Grant, and in part by
the National Research Program for Universities (NRPU) Higher Education Commission (HEC) under Project ID 7794, COMSATS
University Islamabad, Wah Campus.

ABSTRACT Water, especially drinking water, should be clean and free of disease-causing bacteria
because of its critical role in life. However, it isn’t easy to identify and classify them rapidly at an early
stage. Primarily, the examination of water is performed manually to check the contamination level. Some
researchers have proposed techniques to detect and classify bacteria images, but this field still needs more
attention. In this research work, a robust Quantum Convolutional Neural Network (QCNN) classification
model is proposed to classify the six major categories of pathogenic bacteria. For the acquisition of pathogen
images, different slides are created through the gram-staining process, and then images are captured from
those slides. DIBaS is the publicly available dataset that provides these slides captured through gram-
staining, which is used to evaluate the proposed methodology. So, in the first step, database preprocessing,
small patches are extracted from slide images. However, the extracted patches were not clear and very
useful, so the Enhanced Super-Resolution Generative Adversarial Network Model (ESRGAN) was applied
to images to improve the image quality of extracted patches. The third step is to extract the deep features and
classify bacterial images using the QCNN model, in which the Quantum Convolutional layer is added, and
classical data is converted into quantum data to perform classification. Based on the results of classification
experiments using the QCNN model, the accuracy is 96.54%.

INDEX TERMS Generative adversarial network (GAN), pathogens, quantum convolutional network
(QCNN), super resolution.

I. INTRODUCTION
Pathogen detection is an essential aspect of healthcare, as it
allows medical professionals to identify and treat diseases
caused by various pathogens rapidly. However, current meth-
ods of pathogen detection are often time-consuming and
expensive. In the past decade, image-processing techniques
have become increasingly popular in detecting pathogens.
Image processing can detect pathogens’ presence in a sample
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by analyzing their shape, size, color, and other features.
Image processing also provides a means of quantifying the
number of pathogens present in a sample. Recent advances
in image processing techniques have enabled the detection
of a wide range of pathogens with high accuracy. These
techniques include machine learning algorithms, deep learn-
ing networks, and other image processing techniques [1].
Machine learning algorithms detect and classify pathogens
based on their image features. Deep learning networks iden-
tify and classify pathogens based on their morphological
features. Other image processing techniques, such as feature
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extraction, segmentation, and classification, are also used
to detect pathogens. Recent studies have explored image-
processing techniques to detect various pathogens, including
viruses, bacteria, and fungi. Image processing techniques
have enabled the development of highly accurate and effi-
cient pathogen detection systems. These systems are used in
various settings, including clinical laboratories, food safety
laboratories, and agricultural settings. Image processing tech-
niques have been used to develop rapid and cost-effective
pathogen detection methods. In addition, image-processing
techniques can detect pathogens in complex samples, such
as those containing multiple species or those having a high
concentration of pathogens [2]. Despite the advances in
image processing techniques, several challenges still need
to be addressed. These include the detection of low-level
pathogens, the detection of pathogens in complex samples,
and the development of accurate and efficient systems
for pathogen detection. In addition, future research should
focus on improving the accuracy of image processing tech-
niques and developingmore efficient algorithms for pathogen
detection.

In this paper, we present a novel approach for pathogen
detection using a Quantum convolutional neural network
(QCNN) model. This approach is based on a combination
of convolutional and recurrent neural networks and utilizes
various image-processing techniques to classify the pathogen
images. We evaluate the performance of this model on a
dataset of pathogen-infected images and show that it outper-
forms existing pathogen detection methods. We also describe
themodel architecture and discuss its potential applications in
the healthcare industry. The proposed methodology provides
a comprehensive approach for pathogen classification, incor-
porating dataset preprocessing, super-resolution techniques,
and the utilization of quantum computing in the classification
model.

The significant contributions of the proposed methodology
are as follows:

• The slides produced by Gram staining are clustered with
numbers of pathogens, so image patches are extracted from
slide images. Irrelevant patches are removed, the quality is
enhanced, and the dataset is expanded for improved perfor-
mance.

• The QCNN model is used to effectively classify
pathogens after enhancement based on their distinct features,
enhancing the accuracy of pathogen classification.

• It leverages the QCNN model for accurate classification
of pathogenic bacteria, demonstrating its potential in improv-
ing pathogen identification and classification processes.

II. LITERATURE REVIEW
Different researchers have presented various techniques for
the detection and classification of microorganisms. Some
of the techniques are discussed in this section. Polymerase
chain response (PCR) is one of the primary elective recog-
nition techniques being tested. PCR has been demonstrated
to be a fast, exceptionally touchy, and precise strategy.

It has effectively been utilized tentatively to distinguish
pathogenic infections, microorganisms, and protozoa inwater
and wastewater and set up strategies for pathogens identifi-
cation [3]. Polymerase chain response (PCR), culture, state-
considering strategies, and immunology-based techniques
are the most widely recognized devices utilized to deter-
mine pathogens’ location. They include DNA investigation,
checking of microscopic organisms, and antigen–neutralizer
communications separately.

A portion of the pathogens known to be sent through
polluted drinking water leads to serious and now and again
perilous sickness. Models incorporate typhoid, cholera, irre-
sistible hepatitis (brought about by hepatitis an infection
[HAV] or HEV), and illness brought about by Shigella spp.
Detection and identification of the pathogen is essential, and
multiple researchers present several methodologies for per-
forming this task. Some of them are discussed in this section.
In [4], the author used multiclass uphold vector machines
(MC-SVM) to distinguish between Legionella species. The
quickly recognizable proof of water pathogens is essential for
controlling food quality. The framework for the quick and
name-free distinguishing proof of bacteria depends on the
guideline of laser dispersing from the bacterial organisms.
The clinical model comprises three sections: the laser bar,
photodetectors, and the information procurement framework.
The bacterial testing test was blended with 10 mL of refined
water and set inside the machine chamber. At the point when
the bacterial organisms pass by the laser bar, the dissipating
of light happens because of the variety in size, shape, and
morphology. Because of this explanation, various sorts of
microbes show their one-of-a-kind light-dispersing designs.
The photograph locators were organized at the environmental
factors of the example at multiple points to gather the dis-
persed light. The photodetectors convert the dissipated light
power into a voltage waveform. Another researcher used the
Maximum Relevance Minimum Redundancy (mRMR) and
SVM classifier to highlight the order of three diverse bacte-
rial organisms E. faecalis, E. coli, and S. aureus [5]. Vibrio
class involves around 100 species, generally of the marine
or freshwater root. In [6], the author provides an overview of
Vibrio pathogens in rural water and howVibrio pathogens are
implicated in public health.

Clustering methods are also widely used for the detec-
tion of microorganisms. For example, [7] used an adaptive
neighborhood similarity comparison algorithm to segment
medical microorganisms (bacteria) from images of multicol-
oredmicrobes with a complex, noisy background. References
[8], [9], [10], [11], and [12] used K-mean clustering algo-
rithms to segment TB bacilli from tissue images. In [13], the
author utilized K-mean clustering to segment leishmania and
used the Modified Fuzzy divergence algorithm to segment
Plasmodium from low-contrast images. Reference [14] uti-
lizes Self Organizing Map (SOM) to segment bacteria and
measure the severity of the diseases. References [15], [16],
and [17] also used clustering algorithms to segment a medical
organism: TB bacilli. Clustering algorithms are also used
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to segment water-borne microorganisms. For example, [18]
used watershed algorithms for segmenting P. notatum water-
borne organisms. Reference [19] segmented the water-borne
bacteria using the K-mean clustering algorithm. Clustering
algorithms are also used for the segmentation of Industrial
bacteria [20], Environmental microorganisms [21], [22], and
science microorganisms [23], [24], [25], [26].
Labs breaking down microbes are promptly onboarding

sub-atomic advancements to help oversee irresistible sick-
ness because of the squeezing need for instruments that
encourage compelling dynamics, improve future results, and
diminish care expenses. Applied Biosystems pathogens iden-
tification arrangements convey quick, exceptionally delicate
tests that empower precise outcomes for the most well-known
worldwide irresistible illnesses utilizing confirmed multiplex
constant PCR innovation. Our adaptable substance syndromic
boards let you test for numerous markers during the first run-
through, making them a significant and expense-proficient
approach for finding more solutions from your examples with
expanded trust in your research facility.

To identify microorganisms present in water, different
researchers used traditional methods like the random forest,
SVM, Naïve Bayes, and decision tree. Reference [27] classify
the bacterial images of the DIBas dataset using the method of
SVM and Bag of Word (BOW) features. Similarly, [28], [29]
also used the SVM classification method to classify bacteria.
Reference [30] used decision tree algorithm and color, shape,
size, and cluster shape as features for classification. It used
only 400 images of the DIBaS dataset. Reference [31] used
naïve Bayes algorithm and canny edge detection to classify
bacteria in low training time.

The existence of noise and data uncertainty poses signifi-
cant challenges that must be addressed from theoretical and
computational perspectives. Robust optimization has become
more significant as a modeling framework for mitigating
parametric uncertainties, both in terms of theoretical and
practical considerations [32]. For this, different researchers
have proposed work for modeling real-life data in vari-
ous application fields, even in the presence of parametric
uncertainties. Reference [33] presents a novel nonparametric
regression approach that utilizes multivariate adaptive regres-
sion splines, further enhanced by continuous optimization
techniques. Compared to MARS, a nonparametric regres-
sion technique, the CMARS algorithm demonstrates superior
accuracy, robustness, and stability. The study posits that
CMARSmight serve as a viable substitute forMARS. In [34],
the authors present the resilient conic generalized partial
linear model (RCGPLM) approach. This method integrates
linear and nonlinear regression models to enhance accu-
racy and simplify complexity. The methodology is employed
on an extensive dataset comprising 45 emerging markets
from 1980 to 2005. A balance is struck between tractability
and robustification to address limitations in computer power.
The authors in [35] introduce a Robust Conic Generalized
Partial Linear Model (RCGPLM) that utilizes the RCMARS
approach to effectively distinguish between linear and

nonlinear variables, allowing for distinct modeling of each
variable type. The model is enhanced by the application of
robust optimization techniques to address and mitigate the
impact of uncertainties present in the data. The proposed
methodology seeks to reduce the variability in estimation
and may be utilized in both regression and classification
scenarios. The RMARS approach, an enhanced version of
the MARS technique that effectively addresses uncertain-
ties associated with financial data, is proposed in [32]. The
researchers investigated the topic of RMARS within the con-
text of polyhedral uncertainty. A robust optimization strategy
is employed to enhance the feasibility of the RMARSmethod,
demonstrating its capacity to generate models with reduced
variability in parameter estimations and accuracy measure-
ments. The work proposed in [36] focuses on enhancing the
robustness of the CMARS algorithm by including polyhe-
dral uncertainty sets. The authors provide a novel technique
known as RCMARS, which integrates uncertainty into the
model by including complexity measures in the form of
integrals of squared first- and second-order derivatives of
the model functions. The outcomes of the sensitivity anal-
ysis conducted on the parameter estimations indicate that
RCMARS yields superior accuracy compared to CMARS,
as evidenced by the narrower confidence intervals seen on
the variables.

Deep learning algorithms have proven to be an outstanding
achievement in the processing and analysis of microscopic
images. The different researchers used deep learningmethods
for the identification of bacteria. Reference [37] the CNN
method based on 3D images was used to identify bacteria
from the zebrafish dataset. References [38], [39], [40] used
CNN, VGGNet, and Resnet 50, respectively, [41] used CNN,
Alexnet, and autoencoder to identify bacteria from the dataset
of Peking University First Hospital. Reference [42] applied a
CNNmodel, ‘‘Xception architecture’’ for identifying bacteria
from a public database, and the CNN model was based on
transfer learning. Reference [43] used a Densely Connected
Convolution Network to identify bacteria of three classes.
References [28], [44], and [45] used CNN to detect bacteria
from images.

Quantum-based technologies known as Quantum Com-
puting (QC) are growing rapidly, driven by the interplay
between government, academia, startups, and multinational
companies such as Microsoft, Google, and IBM. Quan-
tum Machine Learning (QML) based systems, including
quantum classification and detection models, attract many
researchers. Moreover, quantum computers are also entering
an early industrial era. In QML, hybrid quantum circuits
(HQC) include quantum states, superposition, and ampli-
tude encoding, providing a quantifiable edge in classification
tasks relevant to image processing. Using QML algorithms,
pathogen image data is used to classify it through HQC.
By comparing with classical data processing, it shows that
the HQC can enhance the speed and accuracy of the classifier
model [46]. A comparison of some methodologies discussed
in this section is provided in Table 1 below:
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TABLE 1. Comparison of some existing methodologies for bacteria
images.

III. PROPOSED METHODOLOGY
In this research work, the QCNN model is used to classify
different pathogens of water bacteria. The proposed
methodology consists of multiple steps: Dataset pre-
processing, super-resolution for obtaining high resolution
from low-resolution images and categorizing distinct kinds
of bacteria. Pathogens images dataset is in the form of
slide images; therefore, small image patches are extracted
from those slides, but these patches were blurred and were
not of high quality, so those small images were passed
to the Enhanced Super-Resolution Generative Adversarial
Network Model (ESRGAN), where this model converts
the low-resolution images into higher resolution images.
The QCNN model was prepared to separate conventional
highlights to group microbes. For the classification of

6 categories, cell images are passed to the QCNN model in
the testing phase. The proposed methodology for pathogen
classification is graphically represented in Figure 1. The
detailed description of each phase of the proposed solution
is described in the sections below.

FIGURE 1. Flow diagram of proposed work.

A. DATASET PREPROCESSING
Data preparation is a vital stage in machine learning that
enhances data quality and makes extracting valuable insights
from the data easy. The experimentation is performed on
the DIBaS image dataset. Pathogen images of the DIBaS
dataset are slide images, so preprocessing is performed on
the dataset. Slides or bacterial images are produced mainly
by Gram staining and light microscopy of the freshly grown
cultures. The slides are prepared by adding a small amount
(with the help of a wire loop) of culture and suspending the
bacterial cells in a drop of distilled water. Then, bacteria are
heat-fixed on the glass slide after drying the smear. Crystal
violet is added to the smear and washed with water after
1 minute. Gram’s Iodine is added and washed with water
after 1 minute and then rinsed with ethanol (70%). Then, the
slide is washed immediately with plenty of water to remove
excessive amounts of ethanol. Safranin is added to the smear
andwashedwithwater after 1minute. The slides are air-dried,
and a drop of immersion oil is added to the smear. The images
of bacteria are observed at least on 100X magnification using
camera camera-fitted Light microscope. The bacteria are then
identified by using the developed software. Some of the
images of the dataset are shown in Figure 2. The details of the
DIBaS dataset used for experimental evaluation are shown in
Figure 3.

Data preprocessing is used in Machine Learning to clean
and organize raw data, making the creation and training pro-
cess easier and more appropriate for the Machine Learning
models. In this step, images obtained through the gram stain-
ing process are divided into multiple patches, and the useless
patches (not having bacteria in them) are removed from the
dataset. Figure 4 illustrates the visual representation of the
patch generation process from the slide images.

Image preprocessing is additionally applied to the
restricted size of the dataset to build the size of the dataset to
perform well for the huge size of the dataset. DIABs dataset
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FIGURE 2. DIBaS Dataset Images: (a) Acinetobacter.baumanii(Ai)
(b) Bifidobacterium.spp(Bp) (c) Candida.Albicans(Ca)
(d) Clostridium.perfringens(Cp) (e) Escherichia.Coli (Ei)
(f) Fusobacterium(Fm).

FIGURE 3. Details of DIBaS dataset before generating patches of slides.

FIGURE 4. Patch Generation for Escherichia. Coli images.

has six classes, each containing a minimum of 20 slides.
In this phase, the size of the DIABs dataset is expanded to
at least 1080 images in a single class. Another reason for this
step is to ensure that every classification of microbes has the
same number of tests.

B. SUPER RESOLUTION
The Super-resolution technique generates high-resolution
images from a single image or multiple low-resolution
images. Super-resolution enhances the resolution and quality
of an image. This is used as the preprocessing step, as the
patcheswere extracted from slides to form a pathogen dataset.
But those patches were not clear, and the quality of the
images was also deficient. The slides generated through gram
staining are clustered with numbers of pathogens, so as a

first preprocessing step, the slides are divided into multiple
patches. Almost 55 patches are extracted from each slide,
which are of very low resolution and small in size. So,
the Enhanced Super Resolution Generative Adversarial Net-
work model is applied to improve the quality of the patches
extracted from different slide images.

C. CLASSIFICATION MODEL
The QCNN model was prepared to separate six categories
of pathogenic bacteria for the classification. This section
systematically discusses the detailed mathematical represen-
tation of the QCNN model.

1) QUANTUM CLASSIFICATION BACKGROUND
In quantum computing, a quantum state or superposition of
qubits is often represented by the ‘‘|’’ (pipe symbol) followed
by ‘‘>’’ (greater than sign), known as a ket notation. A quan-
tum system’s state is denoted by a vector called a ket. The
‘‘|’’ sign indicates the ket’s beginning, and its completion
by the ‘‘>’’ symbol. Then, the ket defines the quantum
states (or qubits). Traditional Machine Classification prob-
lems can be represented as CPs = cp1, cp2, . . . , cpn where
CPs is a list of target classes and a set of training-data as
Dn = (x1, y1), . . . , (xi, yi), . . . , (xn, yn)}where xi represented
as features (fn), of data-point dp(i) properties and yi is the
correspondence of that dp(i)s. For solving classification prob-
lems of the QML domain, first, classical data is converted to
quantum data (qd), and in training samples that qd is rep-
resented as Dn = (|ψ1⟩, y1), . . . , (|ψi⟩, yi), . . . , (|ψn⟩, yn)}
where |ψi⟩ is the ith order of the quantum state(qs) of
Dn, |ψi⟩ ϵC2d and for the classification of multiple classes
yi = cp1, cp2, . . . , cpn where xiϵRd and d are real-valued
attributes., there are several methods used for the mapping of
classical data to quantum data, like amplitude-encoding and
basis-encoding.

Basis Encoding (BE) is the most straightforward tech-
nique used for encoding classical data into quantum data.
BE acquaintances between the computational of n-qubit input
and n-bit classical inputs, In classical input (1100), the string
is encoded to 4 qubits (|1100⟩) in quantum states. The rep-
resentation of the data in computational states of qubits is as
follows:

|D⟩ =
1

√
N

∑N

n=1
|Xn⟩ (1)

where D = X1,X2, . . . ,XPN is classical data from a
binary string, Xn = a1, a2, a3 . . . aX , ai ∈ 1, 0 And
i ∈ {1, 2, . . . ., k} and k is number of features. Amplitude
Encoding (AE) is another popular technique used in encoding
for QML algorithms. The idea behind amplitude encoding
is constructed on the association between classical data and
quantum state amplitudes (QSA). For encoding of classi-
cal data vector to quantum amplitudes, the first phase is
to normalize the classical-data vector and passed it through
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quantum state amplitudes [44], [45].

X =


x1
x2
.

.

x2n

 (2)

where normalized vector denotes as X , x ∈ superscripted C
represents complex numbers. QSA can be encoded, as you
can see in the below equation:

|ψx⟩ =

2n−1∑
i=1

xi |i⟩ (3)

where ψ ∈ is used as quantum amplitude, this quantum
amplitude is described in the following section III-C3.

Variational quantum circuits (VQC) are parameterized
quantum circuits (QC). In QML, most of the hybrid quan-
tum algorithms rely on quantum-based circuits (QBC). The
construction behind the variation in QBC is to optimize
parameters according to their objective functions. Modified
QBC consists of 3 major phases; in phase one, a classical nor-
malized vector is passed to quantum amplitudes, in the second
phase, which can also be called the quantum phase, and then
again is the classical phase. Phase two state preparation is
performed; QBC is the backbone of the modified circuits
that parameterizes the input (X) according to the number of
parameters and measurements. The third phase comprises the
QBC output and the learning algorithm’s objective function.
QBC uses in various fields of machine learning [48], [49],
optimization [50], and deep learning [51].

2) QCNN CLASSIFICATION MODEL
Quantum convolution neural networks (QCNNs) used in
the proposed methodology is uses quantum computing to
improve the accuracy of image processing tasks. The clas-
sification process for this QCNN model follows a similar
structure to that of classical convolutional neural networks
(CNNs) but uses quantum computing to speed up the pro-
cess and improve accuracy. There are several concepts that
are used in our research: 1) Quantum-circuit to handle
q-bits known as Bloch-Spere, 2) Quantum Fourier Transform
(QFT) to convert classical image data into higher-dimension
images known as quantum-based images (QBI), 3) Quan-
tum Convolutional Layers embedding the Neural Network
model to extract quantum-based features, and 4) Quantum
Entanglement and Superposition used in quantum circuits
to categories the pathogen images. The classification pro-
cess of a QCNN starts with a quantum circuit that takes a
microscopic pathogen image as input and applies a set of
quantum operations to generate a quantum feature vector.
This feature vector is then used to classify the input image into
six categories of pathogens. Our QCNN model uses a com-
bination of quantum concepts and deep learning to perform
classification tasks which are: 1) Quantum Fourier Transform
(QFT): used to map the input data into a higher-dimensional

feature space, 2) Variational Quantum Eigensolver (VQE):
used to find the optimal weights for the network, 3) Quan-
tum Approximate Optimization Algorithm (QAOA): used to
optimize the weights for the network, and 4) Measurement-
based classifier: used to classify the data into its respective
classes of the pathogen.

TABLE 2. Parameters of model.

For classification, the QCCN model used six variational
layers and a batch size of 4, which means four samples are
used for each training step. The parameters which are used for
the proposedmodel are shown in Table 2. QCNN network has
eight quantum bits with the initial spread of random quantum
weights of 0.01 and a learning rate of 0.0004 per step with the
reduction applied after every ten epochs in learning rate of
gamma_lr_scheduler = 0.1. The quantum pooling layers and
quantum fully connected layers are used, which are described
in the following section.

3) TRAINING MODEL
This section will first describe the basics of QC. Like a clas-
sical bit(Cb), a quantum bit(Qb) known as qubits represented
as (|0⟩ , |1⟩)⟩, these qubits are used in a superposition state
α |0⟩ + β|1⟩ with amplitudes
(α, β) ϵC as |α|

2
+ |β|

2
= 1. With n no. of qubits,

2n superposition binary combinations are possible, each with
a specific amplitude. The ith combination like., |01 . . . 110⟩ is
represented as (|i⟩), where the vector is represented as v, vϵRd

encoded with a quantum state that includes qubits ⌈log (d)⌉.
This type of encoding works as quantum superposition and
for the components, ( 1, · · · , d) where used as the ampli-
tudes of the d binary combinations. This state is defined as:

| i⟩ := (
1

∥ ∥
)
∑

i ∈ [d] i|i⟩ (4)

where |i a register denotes the ith vector. QC starts working
by applying quantum gates, and these are defined by unitary
matrices acting on one to two qubits, e.g., the Hadamard-gate
that maps:

|0⟩ 7 → 1
√
2(|0⟩ + |1⟩) (5)

and

|1⟩ 7 → 1
√
2(|0⟩ − |1⟩) (6)

The output is the quantum state that is used to measure
the classical data. The qubit output is represented as (|0⟩ +

β|1 |0⟩) yields either 1 or 0, with the highest probability equal
to the (amplitude)2. The details of the QCNN model used in
our proposed system are shown in Figure 5.
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FIGURE 5. Details of the QCNN model.

a: QUANTUM CONVOLUTION LAYER
Let X is the input pathogen image, and K denoted as a
kernel, and it for layer( ) of a CNN, and f it’s a real number
f : R → [0,C] where C should be greater than 0(C > 0)
for nonlinear function so that f (X + 1) := f (X ∗K ) is the
output for . Given thatX andK saved in QuantumRandom
Access Memory (QRAM), for the quantum-based algorithm,
the precision parameters represented as ε and η both should
be greater than 0(ε > 0 and η > 0), to create quantum state
|f (X̄ + 1)⟨ such that |f (X̄ + 1) − |f (X + 1)∥∞ ≤ 2ε and
to retrieve classical-tensors X + 1 and for each pixel i.

f(X +1
i ) represented as CXL (7)

f(X̄ +1
i ) represented as QXL (8)
∣∣∣X +1

i − CXL
∣∣∣ ≤ 2ε → &QXL ≥ η

X +1
i = 0 → &QXL < η

(9)

The running time of the Quantum algorithm is

Õ

 1
εη2
. M

√
C√

E
(
f(X̄ +1)

)
 where E(·) represents the average

value, Õ is used to hide the factors polylogarithmic in the
size of X andK , the parameterM = maxp,q∥Ap∥∥Fq∥. The

maximum product M of norms from X and K subregions.
The no of elements in the X (input) and K (kernels) appear
with a polylogarithmic contribution in the running time. The
main advantage of this algorithm is that it helps us to use
it with larger and deeper kernels. There are no elements
involved in the input hidden in the precision parameter η in
the running time.

b: QUANTUM POOLING LAYER
After the convolutional layer, the pooling layer is added
whose job is to reduce the spatial size of the representation
to bring the total number of parameters under control. In our
model, we use an approach called ‘‘average pooling,’’ which
determines the pooling layers by calculating the average

value for each patch on the feature map. Consider a pixel
pooling operation that is applied with a stride of 2 pixels
and has a size of 2 × 2 pixels. It is possible to directly
actualize it by disregarding the final qubit in the quantum
environment as well as the mth qubit. The input image

|X l = (x1 , x2 , x3 , x4 , . . . , . . . , xM2 )
T
after this operation can

be expressed as the output image |Op which is equal to (10),
as shown at the bottom of the page.

c: QUANTUM FULLY CONNECTED LAYER
The data that was retrieved by the layers that came before it
is compiled by fully connected layers to generate the final
output, which is then inserted at the very end of the QCNN
model. We refer to the quantum fully connected layer as
a parametrized Hamiltonian that is up to a seconder order
correlation in correlation. This Hamiltonian (H) c onsists of
identity operators I and Pauli operators σz,

H = h0 +

∑
i

hiσ iz +

∑
i,j

hijσ izσ
j
z (11)

where h0, hi, hij are the parameters, and Roman indices i, and
j denote the qubit on which the operator acts, i.e., σ iz means
Pauli matrix σz acting on a qubit at site i. The parameters in
the HamiltonianmatrixH are updated by the gradient descent
method.

IV. RESULTS AND DISCUSSION
For the classification of discriminatory types of pathogens,
the experimentation is performed on a pathogen dataset
having six classes of pathogens: Acinetobacter.baumanii
(Ai), Bifidobacterium.spp (Bp), Candida.Albicans (Ca),
Clostridium.perfringens (Cp), Escherichia.Coli (Ei), and
Fusobacterium (Fm). These images are tested on Quantum
Convolutional Neural Network (QCNN) based classifier. All
the steps of the proposed algorithms are implemented in
Python using an operating system of 64 bits with 16GB
RAM, a 3.6GHz processor, and NVIDIA 4GB 1660 GTX.
For the evaluation of the proposedmethodology, performance
measures of accuracy, specificity, precision, Recall, and F1
score are used.

The results of the pathogen classification achieved by the
proposed work are discussed in this section. Firstly, low-
resolution pathogen images are converted to high-resolution
images through the ESRGAN model. In this proses the
images are enlarged and their resolution is enhanced. Some
of the pathogen images are shown in Figure 6.

For the evaluation purpose, images are also tested using a
basic CNN model having 4 Convolutional layers, 5 dropout
layers, and 2 max-pooling layers. The results of pathogens
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FIGURE 6. Result of super-resolution using ESRGAN.

TABLE 3. Classification results for different categories of pathogen using
the basic CNN model.

classification using this basic Convolutional Neural Network
(CNN) based model are shown in Table 3. As shown in
the table classification accuracy for Candida. Albicans is
89.64% which is better than the other five categories of
pathogens. The overall accuracy of classification is 83.23%.
The graphical representation of classification results is shown
in Figure 7.

FIGURE 7. Graphical representation of classification results using the
basic CNN model.

Then the images are tested using our proposed QCNN
model. The results of pathogens classification are shown in
Table 4 using the proposedQCNNmodel. The table shows the
accuracy of classification for Candida. Albicans 99.9%which
is better than the other five categories of pathogens. The
overall accuracy of classification is 96.54%. The graphical
representation of classification results is shown in Figure 8.

TABLE 4. Classification results for different categories of Pathogen using
the QCNN model.

FIGURE 8. Graphical representation of classification results using the
QCNN model.

the numerical evaluation of the classification results is
performed using different performance measures such as
accuracy, precision, recall, and F1 score. The values of per-
formance measures are shown in Table 5 and their graphical
representation is shown in Figure 9.

TABLE 5. Performance evaluation of the QCNN model.

For comparison purposes, results are also evaluated by
applying pre-trained models (Alexnet, SSD Net, and FixNet)
on the same dataset. In Table 6, the comparison of pre-trained
models and QCNN models is presented, which shows that
the QCNN model achieved better accuracy as compared to
the original data. Results are taken out in terms of Accuracy,
Precision, Recall, and F1 Score of each class. The trained
model achieves an accuracy of up to 96.54% as shown in
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FIGURE 9. Graphical representation of the performance measures of the
QCNN model.

TABLE 6. Results comparison for pre-trained and QCNN model.

TABLE 7. Comparative analysis of the proposed method with some
existing techniques.

Table 6. This problem is novel and there is no such method
for detecting the bacteria in real-time from the water to check
the contamination of water.

The comparative analysis of various methods for traffic
sign classification is given in Table 7. The table shows that
different authors have employed different methods for the

classification task, including CNN, SVM, and XGBoost. Our
proposed method utilizes the QCNN model. The accuracy
is used to measure the performance of each method. Our
proposed QCNN model achieves the highest accuracy of
96.54%, outperforming the other approaches.

V. CONCLUSION
A step-by-step pathogen classification algorithm has been
proposed in this research work. Experimental results
described in the result section demonstrate that the pro-
posed system provides better classification accuracy on
DIBAS databases. In the proposed work, the classification
of six categories of the pathogen (Acinetobacter.baumanii,
Bifidobacterium.spp, Candida.albicans, Clostridium.
perfringens, Escherichia.coli, and Fusobacterium) is per-
formed. QCNN Model was used and the quantum-based
features of pathogens were utilized for the classification of
these pathogen images in multiple categories for detecting
the contamination of water. All the steps of the proposed
algorithms are implemented in Python using an operating
system of 64 bits with 16GB RAM, a 3.6GHz processor,
and NVIDIA 4GB 1660 GTX. This method is effective and
attains a classification accuracy of 96.54% on the pathogen
database which is higher than the basic CNN classification
model. The proposed method offers promising prospects for
the future of bacterial classification with the potential for
increased accuracy, precision, and sensitivity. The model
can advance our understanding of pathogenic bacteria and
their behavior. There were also some challenges which are
faced during image acquisition and model training phase
which are: a) Adding quantum layers to the neural network
creates a lot of errors which takes a lot of time. b) Collection
of datasets, Conversion of classical images into quantum
images, extraction of quantum features, and hyper-parameter
tunning was also a challenging task. This has implications
for healthcare, enabling rapid and precise identification of
bacteria for improved diagnostics and personalized treat-
ment strategies. Furthermore, the utilization of quantum
mechanisms stimulates technological innovation and inter-
disciplinary collaborations, pushing the boundaries of both
quantum computing and microbiology. Overall, the model’s
future impact lies in its ability to enhance classification accu-
racy, provide novel insights, improve healthcare outcomes,
and drive advancements in computational biology.
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