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ABSTRACT Machine learning based Virtual Screening has proved as an important intermediate process that
helps in the field of drug discovery in reducing the cost and manpower of classical drug discovery process.
This work proposes a deep learning based virtual screening model for the early discovery of drug compounds
for the disease named Hemochromatosis, which is the excess absorption of iron in the human body. Our
study focuses on finding possible drug compounds from medicinal plants to cure Hemochromatosis. The
proposed method uses Graph Convolutional Neural Networks (GCN) for Ligand Based Virtual Screening
(LBVS). Deep Learning algorithm, GCN outperformed all other experimented models in LBVS with an
accuracy of 98.26% and F-score of 98% respectively. A small set of biologically active compounds was
identified from the phytochemical dataset after performing the LBVS. The selected ligands after LBVS are
taken for In-Silico Structure Based Screening (SBVS) called molecular docking and the best compounds that
have high binding affinity towards the disease protein for Hemochromatosis is selected and recommended
for in-vitro studies. Ablation studies are done with 12 different machine learning models including ensemble
models. The proposed model exhibited a related percentage improvement of around 0.5% in accuracy and
F-score, when compared to the tree based ensemble model, XGBoost. This study aims to suggest in-silico
studies for ligand based and structure based screening to identify potential drug molecules from medicinal
plants which can be tested in in-vitro analysis and studies.

INDEX TERMS Computational drug discovery, virtual screening, molecular descriptors, molecular
fingerprints, graph convolutional neural networks.

I. INTRODUCTION
Drug Discovery is a time-consuming and cost expensive
process faced by pharmaceutical industries. To address the
challenges faced by the pharmaceutical industries, Computer
Aided Drug Discovery (CADD) [1], [2] has been considered
as a boon to overcome the challenges in pharmaceutical
field in the drug discovery and development process. In the
early stages of drug discovery, CADD helps to perform a
computation based screening of compounds to reduce the
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large set of ligands that are to be experimented to check
whether they are druggable or not. The drug discovery
process employs in-silico strategies [3] that leverage state-of-
the-art computational methods, including machine learning
and deep learning algorithms. These algorithms have been
widely applied for computer-assisted drug discovery [4],
[5], [6], [7]. The advancement in chemoinformatics and the
newest technologies in computing power have generated a
tremendous rate of advancement in drug discovery proce-
dures [8], [9], [10].

Virtual Screening includes many computational methods
to screen a large number of small molecules in order to
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identify hit ligands in the drug discovery process [11].
The two crucial virtual screening approaches towards drug
discovery are Ligand Based Virtual Screening (LBVS) and
Structure Based Virtual Screening (SBVS) [12], [13], [14],
[15]. Many computational approaches are there to implement
the two approaches. Machine learning and Deep learning
based virtual screening are considered very useful in the
initial screening of compounds.

The LBVS is a computational approach used in drug
discovery to identify drug-like molecules when the structure
of the target protein is not known. The screening of molecules
based on the molecular similarity of known drug molecules is
done in LBVS. It uses the information available in the ligand
for the screening of molecules instead of information about
structure of target protein. In LBVS, researchers may utilize
molecular descriptors or molecular fingerprints to represent
the molecular properties [16]. LBVS identify potential drug
candidates which can be used to bind to a specific target
protein, usually a disease related enzyme or receptor. The
basic approach in LBVS is comparing the similarity of
physicochemical properties and shape of molecules selected.
It deals with searching through a compound database of small
molecules called ligands and identifying those that have a
similar 3D shape and chemical properties to a known, high
affinity ligand for the target protein [13]. The LBVS works
based on the assumption that if two molecules have similar
shapes and chemical properties, then they are likely to bind
to the same protein target. Depending on the type of virtual
screening, non-drug molecules are removed from a particular
data set using a variety of conditions and analytics. This is
a fast and cost effective way of screening large numbers of
compounds, reducing the number of candidates that need to
be tested experimentally, and providing a starting point for
further drug discovery studies. The entire screening process
depends on how researchers compare the properties of a
potential drug candidate with a given set of drug compounds
or non-drug compounds [17]. It is needed to determine the
optimal way to depict the molecular feature to create the
perfect similarity based virtual screening system. Molecular
fingerprints, which are the mathematical representations of
molecular descriptor values are considered as best inputs in
drug likeness prediction models.

In this study, a computational approach that includes
ligand based and structure based screening methods is
applied to identify a potential drug compound for the
disease, Hemochromatosis [18]. The proposed approach is
to identify a potential drug from medicinal plants to cure
Hemochromatosis. A graph based molecular fingerprint is
generated based on the SMILES [19] input using GCN and
this information is used to predict the drug likeness of ligand
molecule more accurately when compared to other simple
and ensembleMachine Learning (ML)models. After the drug
likeness prediction, 1000 drug compounds are identified for
in-silico docking studies and the best 50 molecules were
taken based on binding energy and 25 docking simulations are
visualized for detailed understanding. The selectedmolecules

after the in-silico studies can be suggested for the laboratory
studies.

The organization of this article is arranged in a subsequent
manner. Section I gives a brief introduction of the work.
Section II describes drug discovery from medicinal plants.
Section III describes the survey of literature based on differ-
ent topics and technologies used for this work. Section IV
reveals methods and materials, and Section V explains the
proposed methodology. Section VI demonstrates the results
and discussion. Section VI-A deals with the docking process
and Section VII depicts the conclusion of the investigation.

II. DRUG DISCOVERY FROM MEDICINAL PLANTS
Recently, the significance of scientific research on medicinal
plants is increasing in many developed countries. This need
is being addressed by various research institutes, universities,
pharmaceutical laboratories, and clinics. The research is
primarily focused on two aspects: firstly, studying the
bioactive molecules of plants that have been traditionally
used for their therapeutic properties based on prior surveys
and literature. Secondly, basic research has led to the
identification of new medicinal plants containing novel
bioactive molecules, bioactivity, and drugs from remote areas
of the world. Numerous novel medications that have been
found to be beneficial in treating ailments are derived from
phytochemicals. Most ailments could be treated effectively
with substances that are taken from plants. Several lead
compounds have been found to be effective against diseases
like AIDS, Alzheimer’s, Diabetes, Malaria, Cancer, etc.
When used as a medication to treat Influenza, the chemicals
alone isolated from medicinal plants were quite effective
[20]. Drug discovery from medicinal plants involves several
difficulties, including material collection, active component
identification, and selection, among others [21]. The impor-
tance of phytochemicals’ biological activity has been demon-
strated in several clinical investigations and pharmaceutical
research. According to research on the chemical components
of currently accessible pharmaceuticals, between 30 and
50 percent of them are derived from plants [22], [23].

Hemochromatosis is a genetic disorder happening in
human body that causes the body to absorb and store
too much of iron from food, leading to an excess deposit
of iron. The iron deposits in various organs and tissues
and the deposit of iron content damage the organs such
as liver, pancreas, heart, and other vital organs, resulting
in potentially life-threatening complications such as liver
cancer, heart failure, and diabetes, arthritis, kidney failure etc
[24], [25]. This is because of a mutation happening in the
gene which is responsible for the absorption of iron from food
into the body. Hemochromatosis can be caused by several
different genetic mutations, but the most common cause is
a mutation in the Homeostatic Iron Regulator(HFE)gene.
This gene normally produces a protein called Hepcidin,
that helps to regulate the absorption of iron in the body.
When this protein is not functioning properly, too much
iron can accumulate in the body. Many people suffer from
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the C282Y mutation happening to HFE gene which causes
Hemochromatosis genetic disease vulnerability. Symptoms
of Hemochromatosis can vary widely and may include
fatigue, joint pain, abdominal pain, and weakness. If left
untreated, hereditary Hemochromatosis can lead to morbidity
and eventually death. Treatment may involve regular blood
removal to lower the iron content levels in the body. Iron
chelation therapy is used to remove iron from the organs.

Identifying an effective medicine from medicinal plants
to cure hemochromatosis using computational methods is
the main objective of this study. It can be discovered
by efficient screening technologies using machine learning
algorithms. The data set consists of more than 30,000 small
molecules gathered from databases like NPASS (Natural
Product Activity and Species), Super Natural II, Chembl,
ZINC, etc. . . [26]. In the descriptor-based study, 48molecular
descriptor values are considered as features. In the molecular
fingerprint approach, 166-bit size to 2048-bit sizes are
considered features for various studies. The training set to test
data ratio is 75:25.

III. LITERATURE REVIEW
Elbadawi et al. [27] reviews the use of advanced techniques
to address limitations in machine learning (ML) for drug
discovery. It discusses how ML can be used to improve
classification performance and presents emerging techniques
that could potentially expand its application. Examples from
drug discovery are provided on how these approaches are
being applied which results promising outputs. The review
also looks at challenges such as needing large datasets,
sparsity in data, lack of interpretability and retraining post
deployment which may limit the effectiveness of ML algo-
rithms when it comes to drug discovery applications. Finally,
potential solutions using Bayesian neural networks (BNNs),
explainable algorithms or other methods are discussed which
aim to overcome these issues so that more effective usage is
possible within this field.

Jiménez-Luna et al. [28] discusses the influences of Arti-
ficial Intelligence in chemoinformatics and its applications
to drug discovery. The main focuses include quantitative
structure-activity/property relationship and structure-based
modelling, molecular design, and predictions of chemical
synthesis. This discusses about deep-learning based appli-
cations which have been used to address some fundamental
problems in drug discovery.

Atanasov et al. [29] presents some reviews about drug
discovery from natural products that, the natural products
are some of the major contribution to the pharmacotherapy,
especially for cancer and many infectious diseases. There
are many technical barriers like screening, isolation etc.,
in the discovery process. This causes to a decline in their
pursuit by the pharmaceutical industry since 1990s. But
recent technological developments like improved analytical
tools and advanced datamining strategies have opened up

new opportunities leading to research or interests in natural
product-based drug discovery.

Machado et al. [30] proposes that machine learning-driven
ligand based virtual screenings can be used to save time and
money when looking for new treatments/inhibitors against
HIV-1. In this study, Random Forest model combined with
SMOTE was found to give good results in distinguishing
between active or inactive compounds against the HIV-1
Integrase enzyme.

The study of Carpenter and Huang [31] presents reviews
of ML-based methods used for Virtual Screening (VS) and
applications to Alzheimer’s Disease (AD) drug discovery.
In this five Machine Learning techniques are discussed, and
they are Naïve Bayes, k-Nearest Neighbors, Support Vector
Machines, Random Forests and Artificial Neural Networks.
All of these algorithms have found success in VS but
neural networks -and more specifically Convolutional Neural
Networks – may be preferred due to their accuracy when
applied on unseen databases.

A workflow is proposed that can help researchers conduct
ML based VS for potential therapeutics related to AD or
other complex diseases with no known cure/prevention yet.
Collaborations between AI companies & pharmaceuticals
benefit from combining state-of-the-art hardware& technolo-
gies along with chemogenomics libraries which helps make
drug development process faster & cost effective.

According to the review on Machine Learning in Drug
Discovery by Dara et al. [32], Machine Learning (ML) tools
and techniques can be used to accelerate the drug discovery
process and reduce risk and expenditure in clinical trials.
ML is being applied across various applications such as
QSAR analysis, hit discoveries, de novo drug architectures
etc., for accurate outcomes. Clinical trial data needs to
generated accurately so that it helps tackle puzzles while
validating ML techniques & improving decision-making
processes during Drug Discovery activities.

Pinzi and Rastelli [33] reviews the importance and use of
molecular docking in drug discovery. This paper discusses
the use of docking in newer applications such as predicting
the side effects, polypharmacology, drug repurposing, target
fishing and profiling etc. This explores the future uses of
molecular docking when combined with artificial intelli-
gence. It explains that High-Throughput Screening (HTS) has
been the standard for discovering biologically active hits but
it is expensive to implement. So in silico approaches are being
usedmore often due to their low cost and increased chances of
finding desired drug candidates. It mentions various types of
molecular modelling techniques used in structure based and
ligand-based approaches.

Neves et al. [34] provides a review of the QSAR models
and the advantages and disadvantages of QSAR based virtual
screening in drug discovery. This study provides an overview
about many applications where compounds having desired
QSAR are identified using the computational approach.
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This study emphasis the importance of QSAR than High
Throughput Screening (HTS) in drug discovery domain. This
paper says that QSAR based VS can be used to improve the
hit rates of HTS.

Maia et al. [35] provides an overview of the challenges
associated with CADD to perform SBVS. It compares
common tools and techniques which are used for SBVS.
A method called Consensus Virtual Screening (CVS) is
introduced which helps to increase accuracy while reducing
false positives obtained from the experiments. Homology
modelling methodology is also discussed which allows
prediction of 3D structure protein from its amino acid
sequences.

Kimber et al. [36] reviews the applications and the
advancement of machine learning and deep learning in virtual
screening methods for active drug designs. Deep learning
methods have been successfully implemented based on the
availability of huge amount of chemical and bioactivity data.
It discusses different encodings used to represent compounds
as well as proteins along with various techniques such as
Bioactivity data sets which help to train better while testing
then against Benchmark Data Sets. The challenges faced
are also discussed and the rise of deep learning due to
novel technologies and increasing availability of chemical
and bioactivity data are emphasised.

Andrianov et al. [37] proposes computational method to
identify drug like compounds using in silico virtual screening
methods. Molecular docking, quantum chemical calculations
and molecular dynamics simulations are done on approved
drug candidates to identify potential viral inhibitors of SARS-
CoV2 main protease. They provide an overview of their
research methodology for further exploration into this field.

Liu et al. [38] discusses the development of a user-friendly
web server with integration of state-of-the-art deep learning
algorithms. This web server is designed to help biologists and
chemists perform virtual screening for chemical probes or
drugs against specific targets. The DeepScreening tool allows
user to analyse and to construct classification and regression
models, generate target focused new libraries, as well as
conduct virtual screenings on diverse chemical libraries in
stock.

IV. MATERIALS AND METHODS
In this study for the ligand-based virtual screening of
compounds, the input data is SMILES representation of
compounds. The compounds are taken from natural com-
pound databases and the format is converted into SMILES
representation for processing. The features of molecules
for the processing are the molecular descriptors. There are
different approaches in giving the descriptor inputs to the
system. First approach is calculating the different descriptor
values that can be computed from molecular SMILES. The
second approach is the representation of molecular descriptor
values as 0’s and 1’s which is called molecular fingerprints.

Another approach is using molecular graph and calculating
the molecular fingerprints based on the graph. Here, SMILES
representation is given as the basic input to the model.

In the second phase, an in silico docking study of selected
bioactive compounds are carried out and the results are taken.
Few compounds are taken for visualization and the results are
analyzed.

A. SMILES REPRESENTATION
SMILES, which stands for Simplified Molecular Input Line
Entry System, is a way of representing the structure of a
molecule using a string of characters. SMILES gives a linear
representation of chemical compound. SMILES notation
consists of a series of characters containing no spaces in
between In SMILES representations, atoms of compounds
are represented using atomic symbols. The structure of
the molecule is represented using string of characters. The
atoms, bonds and functional groups are represented by fixed
set of alphabets and some special alphanumeric characters.
This notation is used to encode the structural information
of a molecule in a concise and unambiguous way. The
representation is case sensitive. The single, double, triple and
aromatic bonds are represented as −, =, #, and: respectively.
Parentheses indicate the location of functional groups on the
ring structures. O, C and N are oxygen, carbon and nitrogen.
Atoms in aromatic rings are specified by lower case letters
[39], [40], [41].

B. MOLECULAR DESCRIPTORS
Different molecular descriptors are discussed in the following
subsections.

1) DESCRIPTOR VALUES
Molecular descriptors are the unique features of a molecule
which describes the molecule based on physicochemical
and structural properties. The descriptors can be classified
into 0D, 1D, 2D, 3D. The molecular formula, atom types,
bond types are 0D descriptors., The counts of atom types,
number of hydrogen bond donors, number of hydrogen bond
acceptors, number of rings, number of functional groups
etc comes under 1D. Mathematical epresentations by graph
theory or calculated values like lipophilicity, TPSA etc comes
under 2D. 3D include all geometrical descriptors and Polar
Surface Area [42].

2) MOLECULAR FINGERPRINT REPRESENTATION
The molecular fingerprint is a binary string that represents
the presence or absence of specific structural and chemical
features in the molecule. Once the molecule has been repre-
sented in a standardized format, a computational algorithm is
used to generate a unique molecular fingerprint based on the
molecular descriptors. Molecular fingerprints are vector rep-
resentations of molecular properties. SMILES representation
of molecules are used to generate the molecular fingerprint.
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The generated binary feature vectors values will be imported
to a machine learning model that will efficiently predict the
given molecule is drug or non-drug. 2D fingerprints provides
more structural information for the precise understanding of
the molecule structure [16].

Major classification of molecular fingerprints include:
Substructure key based Fingerprints: Bits are generated in

substructure key based fingerprints in accordance with the
molecule substructures. Each position in the fingerprint rep-
resents the presence or absence of a substructure. Molecular
ACCess Systems (MACCS) keys fingerprint and PubChem
Fingerprints are the most common example of substructure
key based fingerprints.

Path based fingerprints: All the molecule fragments that
follow a linear path up to a predetermined number of
bonds are evaluated to establish topological or path-based
fingerprints. This method allows the creation of a reliable
path-based fingerprint for any molecule and performs a
validation process to ensure the fingerprint was created
effectively. Topological fingerprints are more effective than
other fingerprints at promptly identifying substructures.
A specific bit is not associated with a single feature because
path-based fingerprints are hashed fingerprints.

Circular Fingerprints: Circular fingerprints record each
atom’s environment up to a specific radius rather than
searching for paths within themolecule. Due to the possibility
of different contexts for the same fragment, they are thus
inappropriate for substructure searches but are widely used
for searching for complete structure similarity. Some of
the circular fingerprints that are used the most frequently
includeMetaprint2D, Functional Class Fingerprints (FCFPs),
Extended Connectivity Fingerprints (ECFPs), and so on.

Machine learning based in-silico LBVS studies using
molecular descriptors are carried out. Ensemble method-
based XGBoost is one of the best algorithms that can be used
to implement LBVS based onmolecular descriptor values and
molecular fingerprints. Many base models are implemented
to check the prediction accuracy and other performance
measures. To improve the accuracy of the screening result
and to boost the performance of the system, various state
of the art ML based screening models were compared to
conclude the effectiveness of this approach. There are defined
set of rules to interpret the representations of molecular
information in SMILES format. The chemical structure
can be generated from a SMILES format representation of
a molecule. The detailed examination demonstrates based
on the findings, if the molecule is a feasible medication
candidate, the framework will dock the molecule with
the target protein to examine how it interacts with the
target.

C. MACHINE LEARNING MODELS FOR DRUG
CLASSIFICATION
In this study, 12 different machine learning models, including
ensemble models, to predict drug likeness using molecular
descriptor values and molecular fingerprints based on five

FIGURE 1. Workflow of ML based drug likeness prediction using
molecular descriptors.

FIGURE 2. General structure of GCN.

different methods: MACCS166, Atompair, RDKit, Topolog-
ical Torsion, and Morgan [43], [44], [45]. The workflow of
the screening process based on molecular fingerprints and
molecular descriptor values is shown in Fig.1.

The study aimed to compare the performance of the
different models andmethods in predicting drug likeness. The
ensemble models [46] like SVM with Bagging, KNN with
bagging, Random Forest, Rotation Forest with PCA, Rotation
Forest with LDA, Adaboost, Gradient Boost, XGBoost,
XGBoost and RFE, Stacking.

Extreme Gradient Boosting, or XGBoost, is an ensemble
machine learning model built on decision trees that uses the
gradient boosting technique [47], [48]. Gradient boosting is
a special type of boosting technique that was introduced to
make the system more optimized to handle data errors. Even
though both Gradient boosting and XGBoost work based
on boosting week learners using gradient decent technique
the XGBoost has an upper hand on both performance and
accuracy due to a much more optimized algorithm flow.
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V. PROPOSED METHOD
GRAPH CONVOLUTIONAL NEURAL NETWORK
(GCN)

A Graph Convolutional Network (GCN) based virtual
screening model to predict the drug likeness of chemical
compounds is proposed after detailed study and compari-
son with machine learning models [49]. Graph molecular
fingerprints generated from GCN predict the drug likeness
of compounds very precisely. The graph representations
can be generated based on the representation of molecules
in the SMILES format. Graph Convolutional Networks
(GCNs) have solidified their position as the cutting-edge
method for tackling drug-related tasks due to two critical
advantages:

• GCNs excel at feature extraction by considering the
inherent data structure, making them adept at capturing
subtle relationships within the data.

• GCNs empower automatic feature extraction directly
from raw inputs, eliminating the need for manually
crafted features that could potentially overlook valuable
information, influenced by the inherent biases of domain
experts.

The architecture of GCN is the same as Convolutional
Neural Networks (CNNs) and it consists of fully connected,
pooling, and graph convolutional layers. The general struc-
ture diagram of GCN is shown in the Fig.2. The primary
distinction between GCN and CNNs is the substitution of
graph convolutional layers for convolutional layers. The
convolutional layer, fully connected layer, and pooling layer
are the three basic layers of CNN in the graph, the same as it
is used with images. The pooling layer is used to downscale
a graph, whereas the convolutional layer is used to learn
receptive fields in graphs whose data points are not ordered in
Euclidean grids. The output from the convolutional layer or
final pooling is passed into the fully connected layer, where
it is flattened before being applied. GCN’s main principle
is to implement convolution on a graph. It accepts a graph
as its input rather than a 2-D array. In contemporary graph
CNN research, the parameter combination of the graph filter
spectrum and graph signal spectrum defines the convolution
operation in the signal spectrum region. In order to restore the
graph vertex domain, the outcome is modified. Because the
drug molecule itself is represented as a graph, GCN is well
suited for the drug identification. The architecture diagram
of the proposed model is shown in the Fig.3.

The smiles of chemical compounds are given as the
input to the GCN-based model. The GCN model accepts
the SMILES input and generates Graph-based molecular
fingerprint which is a representation of molecules which can
be directly used to predict the properties and activities of
compounds. The mathematical explanation for graph-based
molecular fingerprints is:

Let G = (V,E) be a molecular graph where V is the set

of nodes representing the atoms and E is the set of edges
which is representing the bonds between atoms. Let X be
the feature matrix representing the features of the molecule
where each row represents an atom, and each column
corresponds to a feature.
In the molecular graph, the Adjacency matrix is defined

as:

Ai,j =

{
1 if edge exists between i and j
0 otherwise

(1)

GCNs perform convolutions on the graph by aggre-
gating information from neighboring nodes. Each node
aggregates and updates its features based on its neighbors’
features. The new features of a node are computed by
taking a weighted sum of its neighbors’ features.
The mathematical representation of aggregation opera-

tion is:

h′
i =

N∑
j=1

1√
didj

· hj ·W (2)

where h′
i is the feature vector of node i, W is the weight

matrix, and di and dj are the degrees of nodes.

In traditional molecular fingerprints, molecules are repre-
sented by a fixed-length vector of binary or integer values,
which encode molecular features such as the presence or
absence of certain functional groups or substructures. Molec-
ular fingerprints fail to capture the structural relationships
between atoms and their local environments in a molecule.
But GCN can learn to extract features directly from the
molecular graph, which represents the molecular structure
as a set of nodes (atoms) and edges (bonds). It uses
convolutional filters to perform localized feature extraction
on the graph, where the filters are learned from the graph
structure itself and can be used to capture patterns and
relationships in the molecular structure. The molecular graph
is first constructed from the molecular structure, and then
the GCN is applied to the graph to learn a set of features
that are specific to the molecular structure. The learned
features can then be used as input to the machine learning
models, to predict various molecular activities and properties.
GCN based molecular fingerprints have shown promise
in a variety of applications, including drug discovery and
material design. They are particularly effective for predicting
properties and activities of molecules that have complex or
flexible structures, where traditional molecular fingerprints
may fail to capture the relevant information.

Graph convolutions operate on a graph and begin with
a data vector for each node of the graph (for example,
the chemical properties of the atom that node represents).
Convolutional and pooling layers combine information from
connected nodes (for example, atoms that are bonded to
each other) to produce a new data vector for each node. For
the implementation of graph based fingerprint generation,
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FIGURE 3. Architecture diagram of proposed model.

a python library, DeepChem1 is being used. DeepChem
aims to provide a high quality open source toolchain that
democratizes the use of deep-learning in drug discovery,
materials science, quantum chemistry, and biology. For the
GCN model creation in the present study, the default param-
eter values (Dense layer size=512, Batch normalise=True,
Batch size=64, Mode=Classification, No:of epochs=10) of
DeepChem library for GCN are adopted. At first, an one
hot encoding operation is done on the columns and removes
the outliers by discarding rows that have features that
have z score ≥ 3 std deviations away from the mean.
Here ‘Canonical SMILES’ is the column used to model
a Graph Convolution Network. In this study, DeepChem’s
ConvMolFeaturize is used to Featurize SMILE strings into
Molecular graphs. A custom GraphConvModel is created by
using the following layers from DeepChem.

A. GRAPHCONV LAYER
The function of this layer is to perform graph convolution,
which involves combining feature vectors of individual nodes
in a nonlinear manner with the feature vectors of neighboring
nodes. This process effectively integrates information from
local neighborhoods within the graph, resulting in a blended
representation.

B. GRAPHPOOL LAYER
This layer performs max-pooling on the feature vectors of
atoms within a neighborhood. It can be conceptualized as a
counterpart to themax-pooling layer used in 2D convolutions,
but adapted to operate on graphs instead.

1https://deepchem.readthedocs.io/en/latest/

C. GRAPHGATHER
Numerous Graph Convolutional Networks perform opera-
tions on feature vectors at the level of individual graph
nodes. In the case of a molecule, each node could represent
an atom, and the network would manipulate atomic feature
vectors that provide a summary of the atom’s local chemistry.
Nevertheless, at the conclusion of the application, it is
typically desirable to work with a feature representation at
the molecule level. To achieve this, a graph gather layer is
utilized, which combines all the node level feature vectors
to create a single graph level feature vector. Subsequently,
the output of the graph gather layer is concatenated with the
remaining features in the dataset and passed through a dense
layer.

D. TRAINING
The model is trained for 10 epochs after which the accuracy,
precision, recall on the test dataset are calculated.

VI. RESULTS
The operations required to perform virtual screening are
based on fingerprint similarity: a reference molecule, or at
least one known active compound (s), a database of probable
active molecule and software that can create to contrast
fingerprints. The best fingerprint should then be selected
after the reference molecules have been determined. The
options offered by the programme being utilised typically
restrict the options. The fingerprint accuracy can be obtained
by choosing the best reference molecules. It is necessary
to determine whether the database or the fingerprints used
for screening the tautomeric forms, stereochemistry and the
reference molecules. Screening databases should ideally be
executed using stereochemistry-sensitive methods. The usage
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TABLE 1. Comparison of performance measures of different ML
algorithms in descriptor values based drug likeness prediction.

of fingerprints that rely on conformations is made possible
by their presence. Tautomerism of the molecules under study
should also be considered because different tautomers of
the similar molecule may have dissimilar fingerprints. The
proposed algorithm would produce fingerprints for each
reference molecule in the database before calculating the
likeness coefficient among each reference molecule and each
other molecule. The similarity coefficient can then be used to
order the molecules in decreasing order. The top molecules in
the rank should display behaviour that is comparable to that
of the reference molecule.

Here, several machine learning algorithms are evaluated
using parameters such as accuracy, F1-score, recall, preci-
sion, andROC score. The parameters are calculated using eqs.
(3)– (6) respectively.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F − score =
2TP

2TP+ FP+ FN
(6)

A. ANALYSIS OF DIFFERENT LIGAND-BASED VIRTUAL
SCREENING APPROACHES
In this section we present analysis of three different
approaches for ligand based virtual screening viz., descriptor
values based, finger print based and graph based.

1) LBVS USING DESCRIPTOR VALUES
Different ML algorithms are used to predict the drug likeness
of molecules based on molecular descriptor values. The most
accurate prediction result is given by XGBoost algorithm
when the inputs are the different molecular values. So the tree
based ensemble model which uses the boosting concept can
be considered as a better prediction for drug likeness. The
accuracy, precision, recall and F1 score values are given in
Table1. The AUC of RoC curve is shown in Fig.4.

2) LBVS USING MOLECULAR FINGERPRINTS
• MORGAN FP
Morgan fingerprint is primarily a reconfiguration of
the Extended Connectivity Fingerprint (ECFP). Here,

FIGURE 4. Comparison of AUC-ROC of different ML Algorithms using
descriptor values in drug likeness prediction.

TABLE 2. Performance measures-MORGAN fingerprint.

a number with a maximum based on bit number is
hashed from each distinct path. The larger the fragments
are encoded in the place where the value of the radius
is increased. Therefore, a Morgan radius contains all
pathways discovered in a Morgan radius along with
the additional bits. The Morgan Fingerprint is used to
compare different algorithms along with the metrics
such as accuracy, recall, precision, F1-score and ROC
score. Table 2 contains the results of different algorithms
using Morgan Fingerprint. The values of the XGBoost
algorithm are higher than the other algorithm.

• MACCS166
Structure fingerprints known as MACCS keys are
frequently employed to calculate molecular similarity.
It is not limited to individual fingerprint vectors.
The redundant vectors are eliminated using these
fingerprints. From Table 3, it is observed that the
proposed (XGBoost) algorithm performs better than
other conventional algorithms.

• ATOMPAIR FP
Atom fingerprints are often utilized to describe
atoms immediate environs. It includes a structural
search approach that reduces duplicate structures along
with encoding information such as lengths of the
link to nearby atoms or crystal organization of co-
ordinating numbers. The energy invariance under
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TABLE 3. Performance measures- MACCS166 fingerprint.

TABLE 4. Performance measures- ATOMPAIR fingerprint.

TABLE 5. Performance measures-topological torsion fingerprint.

particular operations is not encoded by these types
of fingerprints. It must hold true uniform translations,
rotations, and permutations of the systems identical
atoms. Furthermore, if two environments have identical
fingerprints, they are guaranteed to be identical, hence
fingerprints must be distinct. A fingerprint used as an
input will give the same energy to two different non-
degenerate structures if this requirement is not satisifed.
Here, XGBoost algorithm performs efficiently with
Atom fingerprints as described in Table 4.

• Torsion FP
Molecule conformations are assessed and compared
using the Torsion Fingerprint. It derives Torsion Fin-
gerprints using a querying molecule and its produced
conformations, weights them, and compares them

FIGURE 5. Comparison of AUC-ROC of 5 fingerprint models.

while taking acyclic bonds and ring systems into
consideration. Table 5 depicts the performance of the
different algorithms using the TORSION fingerprints.
The proposed algorithm obtains 96.8% of accuracy
with TORSION fingerprints. Here, stacking and random
forest are nearly similar but the proposed method
outperforms in terms of accuracy, recall, precision,
F1-score and ROC score.

• RDKit
Most fundamental molecular functions are carried out
by RDKit. Several functions can be used to transform
single molecules into text. Usually, hydrogen atoms are
implicit in the molecular graph when storing compounds
in the RDKit. Using the various embedding techniques,
many conformers can also be produced using the RDKit.
In all situations, all that is required is to repeatedly
execute the distance geometry calculation from several
random starting positions. Table 6 showcases the
performance of the different algorithms using the RDKit
fingerprints. Here XGBoost algorithm outperforms
other algorithms in terms of accuracy, recall, precision
and ROC score. The proposed algorithm achieves 96.8%
accuracy, recall, precision, F1-score and ROC score with
RDKit.

From multiple experiments, we noticed that the XGBoost-
based models reported an average F-score of 97.27%. The
comparison of AUC-ROC of five fingerprint models are
shown in Fig.5.

3) LBVS USING GRAPH CONVOLUTIONAL NEURAL
NETWORK
In this section, we present the evaluation of GCN based
models. It is noticed from Fig.6 that the proposed approach
reported an average F-score of 98% and a relative percentage
improvement of 0.5 (Refer Table 7) with XGBoost.
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TABLE 6. Performance measures-RDKit fingerprint.

FIGURE 6. Performance measures of GCN.

TABLE 7. Performance analysis of three approaches used for LBVS in the
present study.

In summary, three approaches for drug likeness prediction
are included in this study. One is molecular descriptor value-
based prediction, second one is molecular fingerprint based
prediction and third approach is molecular graph-based pre-
diction. There are many ML algorithms implemented for the
first two approaches and XGBoost gave a better performance.
Third approach is accepting the molecular graph as input and
learning the features by GCN and prediction is done using the
fully connected network. The study gave the best accuracy
compared to other two approaches.

B. STRUCTURE BASED IN-SILICO DOCKING STUDIES OF
THE SELECTED COMPOUNDS
A docking study of the target protein (disease protein) with
selected drug compounds is to be carried out to identify a
potential drug for a disease. In the present study, we attempt
to find a suitable drug for the disease, Hemochromatosis.

TABLE 8. Docking results of selected compounds.

In the proposedwork, the ligands were pre-processed using
Autodock software [50]. This software aids in the discovery
of potential drug candidates, substrates, and receptor binding.
It is used to carry out the ligand docking procedure in order
to identify the target proteins. More than 30,000 molecules
were selected for investigation, among them a collection of
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FIGURE 7. Visualistion of docking results.

1000 molecules were selected for docking studies. From
the 1000 molecules, 50 molecules were selected, whose
binding energy ranges from −9.9 to −8.9 (Table 8).
For the visualization of the protein-ligand binding (Fig.7),
25 molecules were randomly selected. The visualization also
shows that these selected compounds are likely to be the
potential drug for Hemochromatosis.

VII. CONCLUSION
This study recommends the best 50 molecules for the in vitro
analysis from a large database ofmore than 30,000molecules.
GCN model for the Ligand based Virtual screening is the
suggested model for drug likeness prediction. The screened
molecules based on their bioactive nature are taken for the
in-silico docking process with the HFE protein structure
1A6Z. Autodock is the software platform used for docking
studies. The initial study started with molecular descriptor
values as the features used for the ML models. The study
is extended with 5 different types of molecular fingerprint
representation as features for the ML based classifications.
In these studies, it is concluded that the ensemblemodel based
LBVS based onXGBoost is one of the best model while using
molecular descriptor values and fingerprint representations.
The study is extended to deep learning based GCN model.
A graph-based fingerprint generation by the GCN and
prediction using the network is the suggested model for
LBVS. The fixed length fingerprints require a huge volume
of vectors to compute the sub-structures whereas the graph
fingerprints utilize the encoding procedure for the relevant
properties. It is revealed that graph fingerprints outperform
molecular fingerprints. The experimental findings showed
that the proposed graph-based fingerprint method such as
Graph Convolutional Neural Network (GCN) outperforms
existing methods with a greater accuracy of 98%. Hence,
GCN based model is the recommended technique for drug
discovery. This study selects a small set of phytochemicals
after performing in silico LBVS screening from a large

dataset for the in silico docking study which is carried out
using Autodock software. After docking the molecules which
give a binding energy between −8.9 to −9.9 kcal/mol are
recommended for the laboratory experiments.
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