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ABSTRACT Microseismic arrival time picking serves as the foundation for microseismic source localization
and holds significant importance in the field of microseismic monitoring. Traditional methods, such as Short-
Time Average/Long-TimeAverage (STA/LTA) and clusteringmethods based on STA/LTA as feature vectors,
require manual adjustments of the time window parameters to achieve accurate picking. Furthermore, they
are susceptible to inaccuracies in high-background noise environments. And in response to these challenges,
this study introduces a fuzzy clustering algorithm based on Continuous Wavelet Transform (CWT-FCM) for
microseismic arrival time picking. This method begins by transforming raw data into the wavelet domain
and selecting scales with relatively large standard deviations as input for the fuzzy clustering process.
Ultimately, it identifies the initial arrivals of microseismic events within the resulting clusters. In this study,
our proposed method is applied to microseismic datasets with low signal-to-noise ratios as well as real
data, successfully and accurately picking microseismic arrivals. Compared with traditional methods, our
approach demonstrates increased robustness and practical value in high-interference scenarios. Notably,
it eliminates the need for manual parameter adjustments, thereby enhancing efficiency and precision in
automated microseismic signal picking and establishing a foundational dataset for subsequent automatic
and high-precision microseismic arrival time localization.

INDEX TERMS Microseismic monitoring, STA/LTA, wavelet transform, fuzzy clustering.

I. INTRODUCTION
Hydraulic fracturing technology [1], [2], [3] plays a signif-
icant role in the exploitation and enhanced production of
low-permeability oil and shale fields. During the construction
process, microseismic monitoring technology was employed
to capture the first arrival times of seismic waves and invert
them to obtain information about rock fractures. This aids
in understanding the spatial distribution and morphology of
fractures induced by rock fracturing, ultimately aiming for
efficient exploitation. With increasing demand for uncon-
ventional oil and gas, microseismic monitoring technology
is expected to find more applications. However, in practical
exploitation, the presence of high background noise poses
challenges for arrival-time picking. Therefore, research on
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microseismic arrival picking is necessary to improve the
accuracy of microseismic monitoring.

Traditional picking methods often utilize Short-Term
Average/Long-Term Average (STA/LTA) [4] and Akaike
Information Criterion (AIC) [5]. Although STA/LTA and
AIC have simple models and short processing times, they
are difficult to apply individually. On one hand, they are
sensitive to noise and struggle to achieve high-precision
picking under low signal-to-noise ratio conditions. However,
their parameters must be set manually, resulting in poor
adaptability. Scholars have made improvements through two
main approaches. First, they have addressed the inherent
problems of these methods by incorporating feature func-
tions. For example, the AIC formula has been combined with
autoregressive techniques, variance, and kurtosis algorithms,
resulting in improved algorithms such as VAR-AIC [6], [7]
AR-AIC [8], and Kur-AIC [9]. Lei and Caihua [10] and
others introduced a reference threshold in the calculation
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process of the STA/LTA method to reduce the difficulty of
parameter selection. Second, to mitigate the sensitivity of
these methods to noise, researchers have applied prepro-
cessing techniques to microseismic data by integrating other
algorithms to improve the signal-to-noise ratio. For instance,
Quanjie et al. [7] and colleagues employed a wavelet packet
denoising model, Ruisheng et al. [6] utilized Hilbert trans-
form to calculate envelope signals and determine the approx-
imate interval of phase arrival, and Eduardo [11] applied
the FCM algorithm to select complete microseismic events.
Other denoising methods for microseismic signals include
wavelet transform [12], empirical mode decomposition [13],
filtering [14], masking [15], and top-hat transform [16].
Although the improvements made to the STA/LTA and AIC
methods enhanced the robustness of the algorithms against
noise and the accuracy of arrival picking, their adaptability
remained limited.

With the rapid rise of computer networks, machine learning
has become pervasive across various industries, including
arrival time picking. Machine learning encompasses both
supervised and unsupervised learning. Supervised learning
involves labeling the training set data for subsequent
data differentiation. Chen et al. [17] used convolutional neu-
ral networks (CNN) to classify the first waveform and
employed the k-means algorithm for time picking. Owing
the problem of vanishing gradients in deep neural networks,
J. Zheng et al. [18] trained long short-term memory neural
networks and input the original waveform signals into the
trained network model to obtain the feature vectors of P-wave
arrivals. The aforementioned methods are based on neural
networks established by scalar neurons, which are not as
flexible as capsule neural networks established by vector
neurons. The former method requires a large amount of
data for generalization. Chen et al. [19] used capsule neural
networks to determine the arrival time of elastic waves.

Because of lack of a reliable event catalog for microseismic
data and the complexity of adding labels to a vast number of
microseismic events, unsupervised learning is more widely
applied in the field of microseismic analysis than supervised
learning. Clustering analysis is an unsupervised learning
method used to group similar data points into clusters
with similar features. Its objective is to discover hidden
structures and patterns in the data, partitioning data points
into different clusters where data points within the same
cluster exhibit high similarity, whereas those from different
clusters have low similarity. Current researchers have made
improvements to clustering algorithms to achieve accurate
picking. For example, Meng [20] classified microseismic
data using spectral clustering based on the differences
between noise and low-dimensional manifold features of
the signal. Ma [21] improved each step of the clustering
algorithm, using a locally linear embedding algorithm
for Euclidean distance calculation and enhanced particle
optimization clustering for cluster centers, further enhancing
the performance of clustering analysis. However, the spectral
clustering algorithm is sensitive to noise, and Ma’s method

has long iteration times and high computational complexity.
Currently, most researchers achieve accurate classification
by modifying the input values of clustering algorithms. For
instance, Chen [22] used the mean, power, and STA/LTA
as input vectors for c-means and used a threshold to
determine the P-wave arrival time. Because STA/LTA is
sensitive to noise and its inclusion in the calculations can
affect the picking results under low signal-to-noise ratio
conditions, Chen [23] further improved the feature vectors by
replacing the STA/LTA parameters with spectral centroids.
Although this algorithm achieves fast computation without
requiring input parameters, spectral centroids are sensitive
to noise and require the use of synchronized compressed
wavelet technology for denoising, which increases technical
difficulty. While the aforementioned methods can accurately
measure microseismic arrival times to some extent, they
also have limitations in adaptability, as the setting of input
parameters relies heavily on manual adjustment. Improper
parameter settings can easily lead to inaccurate results in
clustering analysis. Therefore, it is necessary to study a stable
feature vector.

Picking operations performed directly in environments
characterized by low signal-to-noise ratios present signif-
icant challenges. Recently, wavelet transform-based fuzzy
clustering methods have been widely applied in the medical
domain [24], [25], [26], [27]. By leveraging the unique
attributes of microseismic low frequencies, this study also
incorporates the wavelet transform as the feature vector
for fuzzy clustering. The wavelet transform confers dual
advantages. It not only alleviates the impact of noise interfer-
ence but also directly computes the raw data. Furthermore,
the wavelet transform excels in detecting sudden changes,
making it particularly suited for capturing the initial arrival
times. Building on these principles, this paper introduces an
optimized method with the following sequential steps: the
raw data undergoes wavelet transform, subsequently enabling
fuzzy clustering computations employing time-frequency
data to ascertain microseismic initial arrival times. A note-
worthy aspect of this method is its independence from the
parameter inputs. Application to both simulated and authentic
data revealed the robustness of the proposed approach,
sustaining a remarkable level of precision even under robust
interference conditions.

II. METHOD
A. FUZZY CLUSTERING
The basic concept of clustering analysis is to group similar
data points into the same cluster based on the measure of
similarity between the data points. Similarity is typically
calculated based on the distance or similarity between the
features or attributes of the data points, often using Euclidean
distance as the similarity metric. In the field of arrival time
picking, fuzzy clustering is mainly applied to differentiate
between microseismic signals and noise signals and to
identify and determine the arrival time in microseismic
signals. In this algorithm, the number of clusters is set to 2.
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The objective of fuzzy clustering is to minimize the objective
function, as shown in Equation (1), which minimizes both the
membership degree and the Euclidean distance.

J =

N∑
i=1

C∑
j=1

umi,j
∥∥xi − cj

∥∥2, 1 ≤ m ≤ ∞ (1)

where umi,j represents the membership degree of the data point
in the jth cluster, N denotes that there are N data, xi denotes
the ith data point, cj represents the centroid of the jth cluster,
∥•∥ represents the Euclidean distance, and m is the fuzzy
parameter, which is usually greater than 1 [11].
The specific steps of fuzzy clustering are as follows:
First, we select the number of clusters (c) and the fuzzy

parameter (m), and randomly initialize the membership
degree (initial membership matrix U) of each data point to
each cluster center.

Next, based on the current membership matrix u, c
calculates the cluster center for each cluster and identifies
the points around the cluster center for further partitioning.
The cluster center vector for the jth cluster is given by the
following formula (Equation 2):

cj =

N∑
i=1

umi,j · xi

N∑
i=1

umi,j

(2)

Then, based on the current cluster centers, the membership
degree of each data point was calculated for each cluster. The
membership degree of the ith data point to the jth cluster is
given by the following equation (Equation 3):

ui,j =
1

C∑
k=1

(∥xi−cj∥
∥xi−ck∥

)
2

m−1

(3)

Finally, update the membership degree u and centroids c,
repeat steps 2 and 3, and checkwhether the cluster centers and
objective function values have changed. If there is no change,
the iteration is stopped.

When the membership degree of the useful signals
changes, it can be determined whether a microseismic event
has occurred. Therefore, the arrival time was determined
based on this threshold. In the field of arrival time picking,
fuzzy clustering is more sensitive than the k-means clustering
algorithm because the membership degree in fuzzy clustering
can be precise to decimal places, wheras the values obtained
from the k-means algorithm are only 0 and 1.

B. WAVLET TRANSFORM
The most important factor influencing the clustering per-
formance is the input feature vector. In this case, wavelet
transform was chosen as the input vector for fuzzy clustering.

The wavelet transform was initially proposed by Gabor,
who invented the short-time Fourier transform [24]. Although
the short-time Fourier transform has strong processing capa-
bilities for frequency-domain stationary signals, it cannot

handle non-stationary signals. Continuous wavelet transform,
by moving and scaling the mother wavelet, performs local
multiplications on the signal to capture abrupt changes and
effectively handle non-stationary signals. The formula for the
continuous wavelet transform is as follows:

WTx (a, b) =
1

√
|a|

+∞∫
−∞

δ(t)ψ((t − b)/a)dt (4)

where a represents the scale factor, b represents the
translation factor, δ(t) represents the original signal, and
ψ(t) represents the mother wavelet. In this case, the Morlet
wavelet was used as the wavelet basis for the time-frequency
analysis. The Morlet wavelet expression is as follows:

ψ(t) = exp (iw0t) exp
(

−
t2

2

)
(5)

The wavelet transform can effectively suppress noise
interference. However, the continuous wavelet transform
outputs a large amount of scale data to achieve a time-
frequency analysis. Using all the time-frequency data as the
input feature vector significantly increases the computational
complexity and reduces efficiency. Therefore, in this method,
the standard deviation algorithm is introduced after continu-
ous wavelet transform to prevent the influence of redundant
features caused by the wavelet transform on the clustering
results.

The standard deviation reflects the data dispersion or
spread. As illustrated in Figure 1a, it represents a single-
channel, noise-free microseismic signal. Figure 2a introduces
a certain amount of white noise. Figures 1b and 2b depict
the corresponding spectral plots in Figures 1a and 2a,
respectively. Figure 1b portrays the three-dimensional
data, including wavelet coefficients, time, and frequency.
To sharpen the focus and enhance clarity, we implemented
a screening process based on the standard deviation of the
time-frequency data. This screening enabled us to extract

FIGURE 1. (a) Clean single-channel data (b) Spectrogram for a
(c) Time-frequency data for std=0.057 (d) Time-frequency data for
std=0.103.
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FIGURE 2. (a) Noised single-channel data (b) Spectrogram for a
(c) Time-frequency data for std=0.053 (d) Time-frequency data for
std=0.096.

time-domain data selectively, resulting in the effects depicted
in Figures 1c and 1d.
Based on the information presented in the figures, we can

draw the following conclusions:1) after wavelet transform,
the number of samples significantly increases; 2) with the
increase in noise, useful information is covered up; 3) under
low signal-to-noise ratio, time-frequency data with larger
standard deviation exhibits better noise resistance, while
time-frequency data with smaller standard deviation has
poor denoising capabilities. In other words, data with larger
standard deviations are more stable, which is beneficial for
fuzzy clustering.

After conducting extensive testing, we opted to use the
eight values with the maximum standard deviations as inputs
for the fuzzy clustering process. The formula for the standard
deviation is:

S =

√√√√ 1
N − 1

N∑
i=1

|Ai − µ| (6)

where µ represents the average value in data A, and the

formula is µ =
1
N

N∑
i=1

Ai

III. RESULTS
A. NON-WAVEFORM VECTOR INTERFERENCE
First, to verify the robustness of the proposed model against
non-waveform disturbances, we introduce noise into the
theoretical data model. To accurately represent the intensity
of the noise, we utilize the signal-to-noise ratio (SNR), which
is calculated using the following formula:

SNR = 20 log
∥s∥

∥s− n∥
(7)

Within the simulated datasets, the generated signal rep-
resents an ideal data signal, devoid of any noise, and can
be directly employed as the clean signal s for computa-
tions. In contrast, n denotes the synthetic data acquired

by introducing a specified level of random noise to the
signal s. So the formula is applicable to this simulated
data set.

The simulated data model without noise is shown in
Figure 3, representing a single-source signal with a frequency
of 20 Hz. To evaluate the accuracy of the proposed method,
we introduced the method proposed in [22] (referred to as the
Chen method) and the traditional STA/LTA method as cross-
validation techniques.

Figures 3a and 3d correspond to the theoretical picking
method and the method proposed in this study, respec-
tively, while Figures 3b and 3e correspond to the Chen
method, and Figures 3c and 3f correspond to the STA/LTA
method. As both the STA/LTA and Chen method require
parameter settings, we used parameter values of 5 for the
short-timewindow length (nsta), 15 for the long-timewindow
length (nlta), and 25 for the analysis window length (q),
as shown in Figures 3b - 3c. These specific parameter values
were determined by the authors of the Chen method in their
original study, where they demonstrated the effectiveness
of these settings in microseismic arrival picking. Through
extensive experiments, we conducted a comprehensive
analysis of the different parameter combinations for the
proposed method. After careful evaluation, we found that at a
signal-to-noise ratio (SNR) of −2.09 dB, setting nsta, nlta,
and q to 87, 146, and 51, respectively, produced the most
favorable initial picking results to a large extent. Therefore,
we recommend using these parameter values in our study,
as shown in Figures 3e to 3f. Figure 3 reveals that in the
absence of noise, all methods produce relatively accurate
picking results, with different parameters having minimal
impact on the results.

FIGURE 3. (a) Theoretical pickup data, (b) Chen method, (c) STA/LTA
method, (d) method in this paper, Parameter increase of (e) Chen method
and (f) STA/LTA method arrival-pickup results for noiseless simulated
data.

Subsequently, using the theoretical initial arrival time as a
reference, we introduced Gaussian noise into the simulated
data model shown in Figure 3, reducing the signal-to-noise
ratio to−2.09 dB and−8.11 dB, respectively. Figures 4 and 5
correspond to SNRs of−2.09 dB and−8.11 dB, respectively.
In Figure 4, it is evident that the STA/LTA with smaller
parameters is sensitive to noise, leading to significant
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disturbances during picking. Increasing the parameters
results in smoother STA/LTA picking; however, the results
shift towards microseismic events, deviating from the realm
of the initial arrival times. Similarly, the Chen method
using STA/LTA as feature vectors exhibits disturbances with
smaller parameters. Several picking points had values close
to 0, indicating that q was too short. Increasing the number
of parameters significantly reduced the number of erroneous
points, as shown in Figure 4e. In contrast, our method
demonstrates a relatively consistent picking performance
even as the signal-to-noise ratio decreases.

FIGURE 4. (a) Theoretical pickup data, (b) Chen method, (c) STA/LTA
method, (d) method in this paper, parameter increase of (e) Chen method
and (f) STA/LTA method arrival pickup results at a noise level of
SNR = −2.09 dB.

Continuing to lower the signal-to-noise ratio to −8.11 dB,
the picking results are as shown. The STA/LTA method with
smaller parameters exhibited more pronounced disturbances,
whereas the STA/LTA method with adjusted parameters
was relatively stable, with picking points falling on the
microseismic events. When microseismic events are weak,
the Chen method in Figures 5d and 5e can no longer pick the
initial arrivals, and the picking points approach 0, indicating
that the parameters require further adjustments. Under low
signal-to-noise ratio conditions, our method shows a slight
fluctuation in picking as the SNR decreases.

FIGURE 5. (a) Theoretical pickup data, (b) Chen method, (c) STA/LTA
method, (d) method in this paper, parameter increase of (e) Chen method
and (f) STA/LTA method arrival pickup results at a noise level of
SNR = −8.11 dB.

To evaluate the picking results, we calculate the picking
error using the formula:

E =
1
N

N∑
i

∣∣∣P(i) − P̂(i)
∣∣∣ (8)

where E represents the picking error measured in the
sample, P(i) represents the picked first arrival time of the
ith trace, P̂(i) represents the accurate first arrival time of
the microseismic event, and N is the total number of traces.

The results are shown in Figure 6. Our method exhibits
a slight increase in the error as the noise level increases,
which is acceptable. Overall, the picking performance
was good. STA/LTA performs well under high signal-to-
noise ratio conditions, but as noise increases, the accuracy
significantly decreases. Under low SNR conditions, altering
the parameters allows the method to identify only the
maximum amplitude of the microseismic event, indicating
inherent limitations. In contrast, at an SNR of −3.84 dB,
manual adjustments were made to the parameters of the
Chen method. Therefore, the Chen method exhibits greater
noise tolerance than STA/LTA at this SNR. However,
at SNRs exceeding −3.84 dB, the Chen method experienced
widespread disturbances. Improving the parameters signifi-
cantly enhances the accuracy of the Chen method, howerver,
the parameter data require continuous updates.

FIGURE 6. Error pick-up diagram.

In conclusion, STA/LTA is highly sensitive to noise, and
changes in the parameters have some influence on the picking
results, although not significantly. The Chen method is also
sensitive to noise, and changing parameters can greatly
improve the picking results, however the parameters require
continuous updating. In contrast, the method introduced in
this study does not require parameter input and exhibits
a certain level of robustness to noise, achieving accurate
picking even under low signal-to-noise ratio conditions.

B. WAVEFORM VECTOR INTERFERENCE
In addition to non-waveform components, waveform com-
ponents can also generate energy interference. To verify the
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robustness of the proposed method under the interference
of waveform components, tests were conducted using a
theoretical data model.

First, waveform vector interference was added to assess
the applicability of the proposed method. Figure 7 shows
the simulated microseismic data, consisting of 60 receivers
and 2 microseismic sources. The first microseismic event
had a dominant frequency of 20 Hz, whereas the second
had a dominant frequency of 40 Hz. The picking results
are shown in Figure 7. Even in cases with relatively high
signal-to-noise ratios, the STA/LTA picking points fell on the
second microseismic event. The Chen and proposed methods
achieved more accurate picking. During the picking process,
we observed that the STA/LTA method tends to select data
with higher frequencies, whereas the Chen method, which
includes other feature vectors, was not affected by changes
in the frequency of the second microseismic event.

FIGURE 7. (a) Method in this paper (b) Chen method and (c) STA/LTA
method pickup results under the interference of high frequency
waveform components.

Second, when waves are excited in a well, they undergo
reflection and refraction between different media. When the
waves reach the bottom of the well or other interfaces,
some waves will reflect upward, forming upgoing waves,
while others will continue to propagate downward, forming
downgoing waves. Considering that upgoing and downgoing
waves, as waveform components, can also interfere with the
picking of first arrivals, we simulated a situation in which
waves were excited in the well using a three-layer velocity
model. Figure 8 shows the configuration of 50 receivers
represented by vertically arranged black squares and seismic
sources represented by red triangles in the third layer. The
microseismic event was excited by a 55 Hz Ricker wavelet.
The microseismic dataset synthesized from this velocity
model is shown in Figure 9. The first appearance of the two
downlink waves was located in channels 15 and 28.

The picking results of the three methods are shown
in Figure 9. Among these methods, the proposed approach,
STA/LTA, and the Chen method show commendable perfor-
mance in picking.

To further comprehensively compare the impact of wave-
form components and non-waveform components on the
picking results, we added noise to the microseismic data
set shown in Figure 9, reducing the SNR to −8.27 dB.
Considering that the parameters of the Chen and STA/LTA
methods can affect the picking results in the presence of
noise, we manually optimized the parameters and con-
ducted subsequent tests, resulting in the final results shown

FIGURE 8. Acoustic velocity model.

FIGURE 9. (a) Method in this paper (b) Chen method and (c) STA/LTA
method pickup results under downlink waveform component
interference.

in Figure 10. It can be observed that the proposed method
remains robust, the STA/LTA method has half of the picking
points falling on the secondmicroseismic event, and the Chen
method exhibits significant disorder after the appearance of
waveform components, rendering the analysis meaningless.

FIGURE 10. (a) Method in this paper (b) Chen method and (c) STA/LTA
method pickup results in the presence of both waveform interference and
non-waveform interference.

In conclusion, waveform components can interfere with
the feature vectors. The STA/LTA method is prone to false
picking when the interfering waveform component has a
higher frequency. The Chen method is susceptible to interfer-
ence when the interfering waveform component is adjacent
to the microseismic waveform component or when gap
waves appear. In both cases, the CWT-FCMmethod achieves
ac-curate picking, demonstrates good generalization, and
can accurately perform operations even in the presence
of interference from both waveform and non-waveform
components.

C. REAL DATA
Finally, we applied the methodology outlined in this study to
actual data. Figure 11(a) illustrates the 16-level tricomponent
microseismic record obtained during a hydraulic fracturing
operation. Detailed information on the detection process is
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TABLE 1. Basic well and instrument information.

presented in Table 1. Notably, there was a significant fluctua-
tion around 2000 ms, which is indicative of a microseismic
event occurring at that time. When we zoomed in on the
microseismic event around 2000 ms, as demonstrated in
Figure 11(b), distinct P and S waves became discernible.
We applied the method proposed in this paper along

with STA/LTA to detect microseismic events within the
dataset, as shown in Figure 11. The results were magnified

FIGURE 11. (a) Method in this paper and (b) STA/LTA method for the
actual data pickup results.

FIGURE 12. (a) Method in this paper and (b) STA/LTA method for the
actual data pickup results enlarged.

in Figure 12. It’s important to mention that, to best illustrate
the performance of the methods employed, we opted not to
apply denoising to the STA/LTA method. However, we fine-
tuned the parameters for the STA/LTA method. Figure 12
shows that, under conditions of strong interference, the
proposed method outperformed STA/LTA. In contrast, the
STA method exhibited three segments that did not appear in
the 1900 ms to 2200 ms range, indicating a lack of precision
in event detection.

To gain deeper insight into these errors, we extracted data
from the 15th level using both our method and STA/LTA,
as depicted in the figure. These data corresponded to the XYZ
axes at the 15th level. It is evident that the microseismic data
experienced substantial energy interference. Given our focus
on arrival times, we elected to analyze the Z-axis data.

Figure 14 shows the results of the STA/LTA calculations
for the microseismic data. It becomes apparent that under
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FIGURE 13. 15th channel of microseismic data (a) x-axis data (b) y-axis
data (c) z-axis data.

low signal-to-noise ratios, the amplitude of the noise equals
or surpasses that of the events. This results in numerous
false peaks in the STA/LTA method, rendering it incapable of
accurately pinpointing the locations of microseismic events
in high-energy environments. As shown by the green line, the
STA/LTA values are highest at the false peak around 1250ms,
the STA/LTA determines that the microtremor occurs at this
point, but this point is well ahead of the true microtremor
arrival time (as shown by the red line). In this particular
case, the high energy from the non-waveform components
contributed to the STA/LTA misjudgment.

FIGURE 14. The value of STA/LTA.

In Figure 15, we outline the CWT-FCM picking process.
Initially, a continuous wavelet transform was applied to the
raw data. Figure 15b illustrates that, under low signal-to-
noise ratios, strong energy is observed around 2000 ms in
the wavelet transform, whereas no discernible energy was
apparent around 1200 ms, where STA/LTA erroneously iden-
tifies peaks. This highlights the efficacy of the time-frequency
analysis in eliminating noise interference. In terms of the
noise resistance, the wavelet transform outperformed the
STA/LTA algorithm. After filtering the time-frequency data

using standard deviation, eight time-frequency data points
were obtained, as presented in Figure 15c. It is observed that
the standard deviation can effectively distinguish between
the microseismic data and noise. As the standard devia-
tion decreased, the amplitude of the microseismic event
around 2000 ms also diminished, rendering the demarcation
between the microseismic events and noise less distinct.
At this juncture, the time-frequency data becomes more
stable following interference removal, serving as a feature
vector for clustering analysis. This yielded the results
shown in Figure 15d. We observed that the signal cluster
experienced a jump around 2000ms, with the post-jump value
exceeding 0.5, signifying the occurrence of a microseismic
event at that time. This accurately captures the true arrival
time of the a microseismic event.

In summary, the presence of noise in real events can
lead to false peaks during calculations using the STA/LTA
method, resulting in premature data point selection. Con-
versely, the method introduced in this paper excels in
accurately identifyingmicroseismic events even in high-noise
environments.

IV. DISCUSSION
In the field of microseismic picking, the STA/LTA method
is widely used to determine the first arrival time of events.
It compares the short-term average energy (STA) and
long-term average energy (LTA) of the signal to distinguish
between events and noise. Under high signal-to-noise condi-
tions, seismic events generally exhibit a significant increase
in short-term energy, while noise is more prominent in long-
term energy. Consequently, the STA/LTA method effectively
separates events from noise. However, this method has two
limitations: weak resistance to interference and complex
parameter settings. These challenges are encountered by
several picking algorithms in this field. To address these
issues, this paper proposes the use of a fuzzy clustering
algorithm based on wavelet transform.Wavelet transform is a
widely employed mathematical tool in signal processing that
has the unique advantage of capturing signal time-frequency
characteristics and facilitating correlation calculations on
the original data. Specifically, it enables denoising in the
frequency domain and accurate differentiation of waveform
components in the time domain, thereby providing precise
time information for waveform components and achieving
accurate picking results.

A. LIMITATIONS OR SHORTCOMINGS OF THIS STUDY
1) This study utilized a single set of actual data, which

limits the comprehensiveness of the dataset;
2) Microseismic picking relies heavily on time-frequency

data. However, in scenarios with an extremely low
signal-to-noise ratio, applying a continuous wavelet
transform to the data results in the signal energy being
overshadowed by the noise energy. Consequently,
subsequent operations lead to a significant decrease in
accuracy;
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FIGURE 15. CWT-FCM pickup process (a) raw data (b) scalogram (c) scales of data with the largest standard deviation. (d) clustering
results. (e) pickup results.

3) This method lacks accuracy in selecting microseismic
events when they are exceptionally weak. In addition
to the exclusion of feature vectors, there are inherent
limitations in fuzzy clustering. In reality, microseismic
events constitute a relatively small proportion com-
pared to noise data in a given dataset. This biases
the centroid calculation in the clustering algorithm
towards noise, introducing noise contamination within
the signal cluster and significantly reducing the picking
accuracy.

B. FUTURE RESEARCH DIRECTIONS
Considering the limitations of this method, we propose
a hypothesis to improve the fuzzy clustering. To address
the issue of centroids easily skewing towards noise in
the presence of strong noise, modifications to the centroid
formula can be explored. The standard deviation of the
original data or the input feature vectors can be calculated
to assess the degree of interference in the original data.
By controlling the distance between the two centroids, we can
restrict centroid movement based on the strength of the
standard deviation.

V. CONCLUSION
This paper proposes a fuzzy clustering-based method for
accurate microseismic picking by optimizing time-frequency
data. The conclusions drawn from this method are as follows:

1) The raw data undergoes continuous wavelet trans-
form to obtain the time-frequency information of
each microseismic trace. Eight data points with
the maximum standard deviation are extracted
from the low-frequency data as feature vectors for
fuzzy c-means clustering. The waveform components
and non-waveform components are then processed

through clustering. Finally, the first arrival time is
extracted from the waveform component data based
on a threshold. This method effectively eliminates
interference from waveform and non-waveform com-
ponents and directly computes the original data,
thereby efficiently separating the signal from the noise
by reducing the redundancy of signal features;

2) STA/LTA, Chen’s method, and the method proposed in
this paper were applied to simulated and real interfer-
ence microseismic datasets. The STA/LTA is sensitive
to noise, and high-energy waveform interference
severely affects its performance. Chen’s method relies
heavily on manual input parameters, and continuous
parameter updates are required to ensure the picking
accuracy. In contrast, the method proposed in this study
exhibits strong robustness against waveform and non-
waveform interference, requires no input parameters,
and demonstrates high generalization;

3) When the signal-to-noise ratio is low, the picking
accuracy of CWT-FCM changes. There are two reasons
for this: useful signals in the scaleogram are masked by
irrelevant signals, and the centroids of fuzzy clustering
are skewed. These deficiencies point the way for our
future work.
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