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ABSTRACT The requirement for motion control of robotic arms in industrial settings is a dynamic field.
This study examines the principles and derivation of the kinematics of the robotic arm based on the D-H
parameter model. Additionally, the introduction of the seventh joint is proposed as a faster solution for
solving the inverse kinematics of the robotic arm. Swarm intelligence optimization for path planning is
currently advancing, and our proposed improved algorithm, the Golden Eagle search algorithm, enhances
the traditional Golden Eagle search algorithm Jining by integrating a stochastic gradient descent strategy
and Cauchy mutation strategy. We compare our IGEO algorithm with various other algorithms, and the
findings demonstrate that the robotic arm can adeptly circumnavigate obstacles while walking seamlessly
through environments with multiple obstacles. The IGEO algorithm is adept at navigating paths obstructed
by multiple obstacles. It improves the accuracy by 15.38% as compared to the conventional algorithm and
also improves it a lot as compared to other optimisation algorithms by up to 29.88%. It provides a solution
to the path planning problem of robotic arms with excellent robustness and accuracy in finding the shortest
collision-free path.

INDEX TERMS Six-degree-of-freedom robot, kinematics, D-H parametric model, golden eagle search
algorithm, path planning.

I. INTRODUCTION
Industrial robots have seen widespread use in Industrial

trajectory control, trajectory recognition and prediction, and
hazardous action intervention.

Manufacturing in recent years. The remote control of
human-computer interaction can take over the performance
of certain dangerous and difficult tasks that would otherwise
require humans. The control of robotic arms plays a vital
role in the development of robotic technology, as well as the
advancement of various technologies. To enhance and study
the performance of the robotic arm, it is imperative to refine
the motion control of the arm [1]. This encompasses motion
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The integration of humanoid robots into the real environ-
ment has been a longstanding focus of research. To enable
flexible use of robotic arms in various scenarios, there is
ongoing investigation of robotic arms that possess varying
degrees of freedom. In the simulation of trajectory planning
for a six-degree-of-freedom robotic arm, it proves challeng-
ing to visually confirm the correctness of the kinematic
algorithm and the trajectory planning’s effectiveness. There-
fore, Cheng et al. [2], with proper mathematical modelling
of the robotic arm, focused primarily on analyzing the arm
within joint space. To establish the six-degree-of-freedom
robotic arm’s simulation model, they employed the D-H
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algorithm and simulated the trajectory planning using the
quantum ant colony algorithm. Deng et al. [3] employ a
single-class support vector machine model to classify poses
of humanoids, and utilize the redundancy characteristics of
a 7-degrees-of-freedom manipulator arm through a linear
regression model to enhance the search for humanoid poses.
Ekrem et al. [4] apply particle swarm optimization (PSO) to
the robot arm’s trajectory planning, enabling the manipulator
to move from the starting point to the target point while
avoiding obstacles and selecting the most direct path.

Trajectory planning forms the foundation for the robot
arm’s movements, and significantly impacts the quality of the
completed operation. Dai et al. [5] provide an overview of the
current state of spatial obstacle avoidance trajectory planning
and motion trajectory planning, discussing the basic princi-
ples and practical applications of trajectory planning methods
for spatial manipulators. Du et al. [6] presented a method for
time-optimal trajectory planning during manipulator motion.
The method involves a piecewise polynomial interpolation
function based on a local chaotic particle swarm optimization
(LCPSO) algorithm. The authors obtained time-optimal and
smooth motion trajectories for each joint in the joint space
through simulation experiments, demonstrating the method’s
effectiveness in reducing the running time of robot manipula-
tors while ensuring motion stability. Ni et al. [7] incorporate
penalty terms as constraints in the trajectory optimization
problem and suggest a novel strategy for increasing the
penalty factor. This approach attains the objective of bal-
ancing punishment and search capability when dealing with
multiple constraints. Wang et al. [8] address the incomplete
traits of free-floating space robots and employ a constrained
PSO algorithm with stagnant processing tactics to execute the
coordinated trajectory structure of free-floating space robots.
While the algorithm for optimizing the trajectory of robotic
arms is still in development, numerous scholars have con-
ducted extensive research on the kinematic model of robotic
arms. In their study, Peng et al. [9] constructed a closed-chain
kinematics and dynamic model for multi-arm continuous
space robots. They also proposed a collaborative planning
strategy for said robots before and after target capture, and
developed a compliance control framework.

The increasing development and application of intelli-
gent optimization algorithms have shown outstanding per-
formance in path planning [10]. Scholars have gradually
explored the optimization characteristics of conventional
intelligent optimization algorithms. Based on this break-
through, more researchers have shifted their focus towards
studying fusion intelligent algorithms. Wang et al. [11]
combined the particle swarm algorithm with the artificial
fish swarm algorithm. They initially created two subgroups
and then iteratively optimized them using both algorithms.
By optimizing information sharing, they ultimately derived
the PSO-AFSA hybrid algorithm, which exhibited better
performance. Further researchers [12] have implemented
the intelligent optimization algorithm for robotic arm con-
trol and incorporated a range of optimization algorithms
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through enhancement of the standard intelligent optimization
algorithm [13]. As a result, the precision of the robotic arm’s
operation has been significantly augmented.

Nasrollahy et al. [14] have developed a path planning
method for mobile robots which is based on PSO to
ensure the shortest path and time while avoiding static and
dynamic objects. Further research has been conducted on
the path planning method of robot arms. In their study,
Lopez-Franco et al. [15] compared the simulation results of
eight different path planning optimisation algorithms. Rafal
and colleagues [16] investigated the capability of robotic arm
palletisation to select the correct item while managing mul-
tiple production lines. They employed artificial bee colony
algorithms backed by DEB rules to increase productivity
and fulfil specific demands. Meanwhile, Arup et al. [17] put
forward a Q-learning triggered firefly algorithm (FA) that
learns the optimal parameter values of each firefly in the
population during the learning phase and performs the path
planning of the robot manipulator while dealing with different
obstacles.

Il. KINEMATIC MODEL

A. ROBOTIC ARM COFIGURATION ANALYSIS

The flexible robot arm examined in this research is designed
to clean the cargo area. Given the complexity of the cargo’s
structure but relative fixity of its placement, the number
of joints impact the robotic arm’s dynamic performance.
Figure 1 displays the configuration of the robot arm. Hence,
we equipped the robot with six modular joints and connecting
rods, providing six degrees of freedom.
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FIGURE 1. 6-DOF robotic arm configuration.

Set the initial coordinates of the robotic arm to (x1, y1, 21),
and then calculate the coordinates of subsequent joint points
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accordingly. The D-H coordinate parameters of the robot arm
are based on the Denavit Hartenberg model [18], with the
specific parameters determined by the size of the robot arm’s
structure and used to determine its basic properties. Technical
terminology abbreviations will be always explained when
first used. The D-H parameters serve as a foundation for
analyzing the forward and inverse kinematics of manipula-
tors. Additionally, the complexity of kinematic models varies
depending on the D-H parameters utilized. Table 1 displays
the parameters for the provided ur-6-DOF manipulator in
accordance with the meaning of the D-H parameter table [19].

TABLE 1. Robotic arm D-H parameter table.

Joint 0 d, a,, a,
1 0 144 0 Pi/2
2 Pi/2 0 264 0
3 0 0 236 0
4 -Pi/2 106 0 Pi/2
5 0 114 0 -Pi/2
6 0 68 0 0
7 Pi/2 0 0 Pi/2
where, @ represents the joint rotation angle, d,

represents the joint deflection, @, represents the connecting

rod length, and ¢, represents the connecting rod rotation

angle.

B. POSITIVE KINEMATIC MODEL

The composite transformation of the three-dimensional coor-
dinate system can be decomposed into the translation and
rotation of multiple two-dimensional coordinate systems, that
is, the transformation of the coordinate system X — Y, X —Z,
and Y —Z. Taking the coordinate system X —Z transformation
as an example, between n and n + 1 coordinates, assume that
the existing coordinate system is X;,, — Z,, and the coordinate
system after the composite transformation is X;,+1 — Z;+1-

(1) Rotate the X,, axis around the Z, axis by 6,41 so that
X, and X;,1 are parallel.

(2) Shift the d,, 1| distance along the Z, axis so that X, and
X+ are collinear.

In (1), X, and X4+ are parallel and both are already
perpendicular to the Z, axis, so translating X, along the Z,
axis causes X, and X, to coincide, as shown in Figure 3.

(3) Translate the a,,+ distance along the X,, axis so that the
origins of X,, and X),1| coincide.
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FIGURE 2. The first rotation transform.

FIGURE 3. The first translation transformation.

X, ()

Translate the a,4; distance along the X, axis, when the
origin of the two coordinate systems n and n + 1 will be
in the same position, and the translation process is shown in
Figure 4.
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FIGURE 4. The second translation transformation.

(4) Rotate the Z, axis around the X), ;| axis o, angle so
that the Z,, axis and Z, 4 axis coincide.

Rotate the Z, axis around the X+ axis o4 angle, the two
coordinate systems n and n 4 1 are exactly the same, and the
rotation process is shown in Figure 5.

Zpa Lo 20

- X ()

FIGURE 5. The second rotation transform.

According to the translation rotation law, the transforma-
tion matrix can be obtained as:

Z—HT = Ay1 = Rot(z, Opy1) x Tra(0, 0, dyy 1)
X Tra(an+l ’ 0’ 0) X ROt('xa an+l) (1)
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The D-H model is the positive kinematics model of the
robotic arm, which describes the process of solving the ter-
minal pose by knowing the joint angle 6 during the motion
control of the robotic arm. Therefore, the positive kinematic
equation of the six-degree-of-freedom robotic arm is:

Ny Ox Qx Px

0 | ny oy ay py
T = A1AA3A4A5A¢ = 2
6 >0 n; 07 4a; p; @
0001
where,
[ ne = —s6 (cas1 — 54 (c15253 — c1c2¢3))

—cg (5 (5154 + ¢4 X (c15253 — c1¢2¢3))
+s5 (c10283 + €1€352))

ny = s¢ (c1¢4 + 54 (515283 — €2¢351))

+c6 (¢5 (c154 — ¢4 (515283 — c2c351))

—s5 (c25153 + €35152))

[ 71; = c6 (€2355 + $23C4C5) — 5235456

[ 0r = 56 (c5 (5154 + ¢4 (c15253 — c1€23))
+s5 (c10283 + c1¢352))

—c6 (cas1 — 54 (c15253 — c1¢2C3))

0y = C6 (C1C4 + 54 (515253 — €2€351))
—s6 (¢5 (c154 — ¢4 (15283 — €20351))
—s5 (C25153 + €35152))

0; = —S6 (€2355 + $23€4C5) — $23C654

ax = 55 (5154 + ¢4 (c15253 — c1¢2¢3))
—cs5 (1253 + €10352)

ay = —s5 (c154 — c4 (515283 — €2C351))
—c5 (c2s183 + ¢35152)

| @z = c23¢5 — 523C455

[ px = ascic2 — dasazer — dg (s23cics + 18455

—C1C2C3C485 + C1C4525385)

Dy = a2¢281 — das2381 — de (523C551 — C15455
—C2C3C45185 + €4515253585)

p; = d1 +dscoz + arsy — (desazsas) /2 + decaszcs
+ (des—45523) /2

L

C. INVERSE KINEMATIC MODEL
The inverse kinematics problem for a robotic arm involves
solving for the angles of the rotational joints based on the
known end attitude of the robotic arm, i.e., using the positive
kinematics equations to solve 61, 6, 63, 64, 65, 66. The solu-
tion process of manipulator inverse motion is very complex,
and there are many solution methods, mainly closed solution
and numerical solution [20], this paper takes the analytical
method in the closed solution form as an example to analyze
and solve the problem.

If the endpoints of the three axes on the robot converge
at a single point, an analytical solution must exist for the
robot. Hence, for this six-degree-of-freedom robotic arm, the
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analytical approach is the quickest and most precise method,
and the subsequent steps are outlined below.

From equation (2) we get: (3), as shown at the bottom of
the next page.

To enable smooth computation, Table 1 includes an addi-
tional connecting rod which is fixedly attached to connecting
rod 6 and remains stationary during rotation. Cause dg = 0,
d7 = dg. Then the coordinate system of the connecting
rod 7 coincides exactly with the connecting rod 6, and the
homogeneous matrix of the connecting rod 7 is:

1000 100 0

6~ | 0100 60—1_ 1010 0O

T=10014 "7 =001 -a “)
000 1 000 1

The homogeneous transformation matrix before and after
adding the connecting rod 7 remains unchanged, that is, gTald
before adding the connecting rod 7 is equal to (7)T after adding
the connecting rod 7, so that d7 = 0 then there is:

Ny Ox Gy Px

ny Oy ay p}’

ng 0z dz Pz
0001

Nx Ox Ay Px

Ny Oy ay Py 5)
ng 0z dz Pz

0001

0 0 6 —1
6Tnew = 6Told X 7T =

6—1 _
x 7T~ =

At the same time, since | Tyew = (77! x 9T}, = 0771
gTold X ?T‘l makes d7 = dg, i.e.: (6), as shown at the bottom
of the next page.

Since the coordinate systems of connecting rod 6 and
connecting rod 7 coincide exactly, it is obtained:

1
6T

ct 51 00 Ny Ox Ay Dx
_ ()T_l % 2T _ 0 0 1 —dl ny Oy ay py
s1 —c1 0 0 n; o, a; p;
0 0 0 1 0001
C1hx + S1hy C10x + $10y C1dx + S1ay C1Px + S1Py
_ n; 0z a pz—di
S1hx — ClNy S10x — C10y S1dy — Cldy S|Px — C1Py
0 0 0 1
@)

By making the rows and columns equal, the inverse kine-
matic model can be solved.

61 = atan2(py, px) — atan2(—dy, +,/p? +p} —dj) (8)

05 = atan2(ss, sjax — C1ay) )
—510x + C10y

g = atan?2 5 5
:I:\/(slnx — clny) + (slox — cloy)

’

—S1ny + c1ny

:I:\/(slnx — clny)2 + (slox — cloy)2

(10)
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0, =atan2(B,A) —atan2(C, £VA2 + B2 — C?) (11)
04 = 6234 — 623 (12)
03 =63 — 6 (13)

IIl. ALGORITHM PRINCIPLE

Path planning is a prominent research area in many fields
for efficiently and securely determining the optimal or sub-
optimal path between the start and destination points in a
simulated environment model based on performance indi-
cator requirements [21]. In recent years, both domestic and
international scholars have engaged in research on these algo-
rithms, including A* [22], [23], ant colony algorithm [24],
genetic algorithm [25], and golden eagle search algorithm
[26]. A* algorithms are implemented using heuristics, but dis-
covering the appropriate heuristics can be time-consuming in
larger settings. Ant colony algorithms, on the other hand, are
based on positive feedback mechanisms that ants create when
foraging for food. While the ant colony algorithm is efficient,
forming positive feedback at the start of the search takes con-
siderable time, resulting in slower convergence speeds [27].
Genetic algorithms exhibit efficient parallelism and global
search capabilities, however, they may converge prematurely
and become fixated on local optimal solutions [28].

On the basis of the theoretical derivation of the study and
solution of the positive and negative kinematics model of the
manipulator in the first chapter, combined with the research
of many scholars applying optimization algorithms to robotic
arm path planning, this chapter investigates and simulates the
robotic path planning algorithm.

A. TRADITIONAL GEO ALGORITHM

Golden Eagle Optimizer (GEO) is a bionic optimisation
algorithm. Its main idea is to hunt according to the golden
eagle’s continuous adjustment of speed in the spiral stage,
dividing the hunt into two stages, the initial stage and the final
stage, and constantly adjusting the behaviour mode to achieve
the best position close to the target.

1) PREY SELECTION
In every cycle, every golden eagle in the population needs to

eagle position illustrates the most excellent positioning mech-
anism currently identified. As cycles occur, every agent hunts
for a target prey in every memory of the population of
golden eagles. The vectors of attack and cruise for every
Golden Eagle with respect to the chosen prey are subse-
quently computed. If the calculated new position is superior
to the previous memory position, the Golden Eagle’s position
is updated. Each Golden Eagle selects prey only from its own
memory, without interfering with each other, and utilizes a
random one-to-one mapping scheme. The selected prey may
not necessarily be the farthest or closest, but the selection
result is computed based on the attack vector and cruise
vector.

2) OFFENSIVE BEHAVIOR

The attack behavior is the calculation of the attack vector,
starting from the current position of the golden eagle and
ending with the position of the prey in memory, using a vector
instead. That is, the attack vector formula is:

- = =
Ai=X - X (14)

In Equat10n (14), A is the attack vector of the i Golden

Eagle, X X+ is the position of the prey, and X is the current
position of the i Golden Eagle.

3) CRUISING BEHAVIOR

The cruising behavior is the calculation of the cruising vector,
and first according to the result of the attack vector, the
three-dimensional cruise vector is located in the hyperplane
tangent to the circle where the attack vector is located. When
cruising, the dimensionality needs to be specified, and the
three-dimensional space scalar form in the hyperplane is as
follows:

n
thxy=d =Y hx=d (15
j=1
In equation (15), H = [h1, hy, ..., h,] is the normal
vector, X = [x1,x2,...,X,] is the variable vector, and any
point on the hyperplane is P = [p1, p2, ..., pnl, then there

hixi + hoxo + ...

select prey to exhibit its behaviour. The target is named as e SN B
a congregation of golden eagles, and each individual golden d=HP = Zi: v (16)
€234C5C6 — $23456 —$234C6 — €234C586 —C23485 323 — (d652345) /2 + s2¢2 + (d6s234—5) /2 + dss234
I _ | €23456 F $234C5C6  €234C6 — $234C556 823455 ds (52354 — €23¢4) + a3s23 + azsy — dgss (2354 + 523¢4) 3)
6 —C6S5 —55856 C5 dy + dgcs
0 0 0 1

€234C5C6 — $23456 —5234C6 — €234C586 —C23485 A3C23 + Az + dss234

lT — €23456 + $234C5C6  €234C6 — $234C5856 —S23485 A3823 + A282 — d56234 (6)
67 new C6S5 —5556 Cs da
0 0 0 1

VOLUME 11, 2023

139413



IEEE Access

S. Hu et al.: Research on Motion Control Strategy of Flexible Manipulator

Since the cruise vector is the tangent vector that produces
'@)e circle perpendicular to the attack vector, considering the
A; attack vector as the normal of the hyperplane, the cruise
vector can be expressed as the hyperplane position where the
Golden Eagle is currently located:

n n
2. 4% =24 a7
=1 =1

In Equation (17), A = [ay, a2, . . ., a,] is the attack vector,
X = [x1, X2, ..., x,]is the decision variable vector, and X * =
[xf, x5, ..., x3] is the prey position.

As the cruise vector’s starting point is the current position
of the Golden Eagle and its position transfer necessitates a
random destination, we create a random vector on the cruise
hyperplane. We then reduce the dimension of the hyperplane
by one, resulting in a new degree of freedom for the reduced
dimension that is determined by the hyperplane form (for-
mula (17)). This task can be accomplished by setting a free
vector and a fixed vector to determine the destination within
a random dimension on the Golden Eagle cruise hyperplane.
The steps to achieve this are as follows:

Stepl: Randomly select a variable from the variables as a
fixed vector;

Step2: Randomly assign values to all variables except the
k variable;

Step3: Calculate the value of a fixed vector:

o = d— Zj,j;ék aj (18)
ay

In Equation (18), ¢ is the k element of the targg) point C
and g; is the first j element of the attack vector A;. At the
same time, k is the number of bits of the fixed vector.

Step4: General representation of the point of destination on
the cruising hyperplane: (19), as shown at the bottom of the
next page.

4) NEW LOCATION TRANSFER
The step size of the Golden Eagle iteration is defined as:
— —

A; C;
AXi = T pat + M PeT—T (20)
A ( C

— —
where, | A; C;

= iaz, = ancz
V' VT

Then, superimpose the step vector in formula (20) on the
position in the iteration, which is the position of the Golden
Eagle individual in the iteration:

X = x4 Ax! (1)

In Equation (21), x'*! is the position of the golden eagle
of the 7 + 1 order, x’ is the ¢ position of the golden eagle, and
Ax! is the step size of the golden eagle’s movement.

If the new position is more suitable than the position stored
in memory, the memory is updated accordingly. Otherwise,
the original memory position is kept, although the golden
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eagle is also moved to the new position. During each iteration,
every Golden Eagle picks a random Golden Eagle from the
population, and rotates around its optimal position to cal-
culate the attack and cruise vectors. Finally, the step size
and new position for the next iteration is calculated until all
termination conditions are satisfied. The attack and cruise
coefficients are outlined below:

pa=po+7 |pa — Pl o2
pe =+ |pl — 1
In Equation (22), p0 and p! are the initial and final values
of p,, and pg and p! are the initial and final values of p..

B. IMPRIVED GEO ALGORITHM

The Golden Eagle algorithm displays outstanding perfor-
mance, speedy convergence, and robust optimisation capa-
bility. However, during the process of interstellar exploration,
Golden Eagle adopts a random one-to-one mapping scheme.
When operating the robotic arm for long-distance spatial
movement, trajectory data experiences significant spatial
uncertainty. We enhance the optimization effect by employ-
ing a non-convex function in stochastic gradient descent
to further improve the purposeful random search perfor-
mance. During the process of Golden Eagle position iteration,
as indicated in formula (23), the position update method is rel-
atively uncomplicated with no clear specification. Therefore,
we opted to utilize the Cauchy inverse cumulative integral
distribution function to mutate it. Our testing showed a sig-
nificant improvement in search performance, and the median
value during the process was superior.

1) STOCHASTIC GRADIENT DESCENT

The stochastic gradient descent method is mainly used
for rapid learning and evolution, so we only extract the
non-convex function in it for improvement, and its charac-
teristics of selecting only one sample at a time match the way
the Golden Eagle selects its prey, and in the position update
of each Golden Eagle iteration, its update formula is:

0 =0—nVeJ(©,x) (23)

2) CAUCHY VARIATION

The initial selection of the rotating golden eagle in the Golden
Eagle algorithm is random, thus making it difficult to discover
the global optimal solution. To address this issue, we utilized
the Cauchy inverse cumulative distribution function to mutate
the golden eagle, resulting in a wider range of rotating golden
eagles selected by the population. Simultaneously, the muta-
tion approach enhances the properties of the population of
golden eagles by randomly selecting an eagle for rotation.
This improves their capability to locally optimize while also
preventing blind mutations. Equation (24) depicts the Cauchy
inverse cumulative distribution function. Equation (25) shows
the search formula derived when the golden eagle population

VOLUME 11, 2023
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FIGURE 6. IGEO algorithm flowchart.

selects the rotating golden eagle.

Flpixosy) =xo+y-tan(r-(p—1/2) (24
X+ D) =x;+ 4 tan(r-(r —1/2))  (25)

In equations (24) and (25), F~! is the inverse integral func-
tion of the Cauchy variant, x;; is the j position of the i golden
eagle_l):)efore the mutation, and the uniform distribution of
ye A,rel0,1].

The flow of the Golden Eagle search algorithm based on
gradient optimization and Cauchy variation is as follows:

Stepl; initialize the population size and location of the
Golden Eagle;

Step2: Calculate the fitness function and initialize the pop-
ulation memory location; R

Step3: Initialize attack vector A; and cruise vector cy;

Step4: Update the Golden Eagle position according to
Equation (25), Update the Attack Vector and Cruise Vector
according to Equation (14) and Equation (18);

the Cauchy mutation
strategy

Step5: Based on the memory position of the population,
calculate the attack vector and select the prey according to
the formula (23);

Step6: Calculate the cruise vector, step vector, update the
position and calculate the fitness function of the new position;

Step7: Update the optimal solution and optimal position;

Step8: If the maximum number of iterations is reached, the
optimal golden eagle position and global optimal solution are
output; Otherwise, go back to step 4.

IV. SIMULATION EXPERIMENTS
Taking the 6DOF robotic arm as an example, this paper first
uses the Monte Carlo method to obtain the motion space of
the robotic arm [29], takes the sample number N = 30000.
The path planning of the robotic arm seeks the shortest
path while avoiding obstacles, so this paper uses the two
indicators of successful obstacle avoidance and path length
of the robotic arm to evaluate the fitness function, and the

—
C = [q = random, ¢y = random, . .., cy =

VOLUME 11, 2023
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FIGURE 7. Obstacle avoidance results when the number of obstacle is 1, 2, 3, 4.

length of a path in the workspace is:

Lizrf(\/(xfﬂ _xl,_-)2+ (yi:Jrl _}{)2_'_ (Z;'Jrl —zf)z)
j=0
(26)

In Equation (26), n is the number of interpolation points
searched by Golden Eagle i, and x], y,, and Z; represent the
three-dimensional coordinates of the j interpolation point of
Golden Eagle i on the path, respectively. The collision loss
coefficient for simultaneous collision detection is defined as:

.. 0, No collosions
collision = ( 100, else 27
Then the objective function can be defined as:
fitness = L; + collision x L; (28)

To construct an obstacle ball with a radius of 100, randomly
generate the starting point of (—400, 300, 300) and the gen-
eration target point of (350,360,630), and test the obstacle
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avoidance performance of the robotic arm when the number
of obstacle balls is 1, 2, 3, and 4, respectively, and the obstacle
avoidance results are shown in Figure 7. As can be seen from
the figure, with the change of the number of obstacle balls,
the robotic arm can still successfully avoid obstacles.

Using the IGEO algorithm, Figure 7 displays the optimized
path planning results of the robot arm while taking into
account four obstacle balls as an example.

To evaluate the algorithm’s performance, this paper com-
pares the proposed IGEO algorithm with the classical DE,
GA, and SA algorithms. After conducting 30 simulation
experiments, the average fitness function of each algorithm
is taken as an indicator. The results are presented in Figure 8
and the path result is shown in Figure 9. The specific fitness
value data can be found in table 2 (with two decimal places
retained).

According to Figure 8, the IGEO algorithm exhibits
greater convergence performance. Additionally, Table 2 data
demonstrates that the IGEO algorithm achieves consistent
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TABLE 2. Comparison table of simulation experimental data.

Number of obstacles Algorithm Optir\r}l:lluf;tness WOI;?:IIE‘;HGSS Averilliclaufgtness

IGEO 945.78 1559.72 1239.37

GEO 1078.40 1618.60 1344.60

One DE 610.12 2116.82 1354.99
GA 1023.18 4480.63 1984.59

SA 991.43 1696.86 1373.73

IGEO 852.15 1512.07 1190.43

GEO 1084.70 1432.40 1233.70

Two DE 558.88 2211.58 1307.48
GA 1434.75 3969.43 2247.65

SA 1221.13 1629.56 1453.00

IGEO 818.16 1603.38 1294.86

GEO 1050.20 1785.30 1326.30

Three DE 970.33 2193.45 1315.12
GA 942.14 3246.67 1818.38

SA 1196.92 1848.47 1453.21

IGEO 845.29 1686.92 1237.15

GEO 1034.30 1978.70 1426.90

Four DE 870.88 1996.06 1409.35
GA 949.68 3196.21 1803.80

SA 1134.97 1733.20 1443.82

optimization performance with smaller numbers of obstacles,
yielding the lowest average fitness value. However, the opti-
mal fitness value is slightly higher compared to some other
algorithms. However, as the number of obstacles increases,
the IGEO algorithm proves to be the most efficient among all
tested data, indicating its superior performance in resolving
path planning issues for a robotic arm navigating a multi-
obstacle environment.

To enable further experimentation, it is essential to inves-
tigate both successful and unsuccessful attempts to find the
shortest route, leading to a degree of damage to the robotic
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arm. It is important to note that technical term abbreviations
will be explained upon first use. This damage is indicated
primarily by the angular displacement, velocity, and acceler-
ation of the arm’s joints. Figures 10 to 12 display the angular
displacement, velocity, and acceleration for each joint during
path planning.

It can be seen from Figures 10 to 12 that when the path
planning of the robotic arm is completed, the angle, velocity
and acceleration of each joint of the robotic arm are very
smooth, and most of the joints are well connected, indicating
that the robotic arm can perform smooth motion.
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FIGURE 11. Angular velocity of each joint over time.
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FIGURE 12. Angular acceleration of each joint with time.

V. CONCLUSION

Taking the original 6-DOF manipulator as an example, this
paper constructs the D-H parameter model of the manipu-
lator, establishes the coordinate system of the manipulator
linkage, and then derives the coordinate change matrix
through the formula, and completes the positive kinemat-
ics model of the 6-DOF manipulator arm and its solution.
The solution of the inverse kinematics of the six-degree-
of-freedom manipulator arm is completed by the analytical
method.

Following the fundamental principle of the GEO
algorithm, two enhancement strategies are presented, result-
ing in the introduction of the IGEO algorithm. Various
simulation experiments were conducted in obstacle-laden
environments with an assortment of balls, ultimately leading
to the successful path planning of the six-degree-of-freedom
robotic arm. The results of the simulation demonstrate that
the IGEO algorithm successfully enables the six-degree-of-
freedom manipulator to locate the most optimal path, and
exhibits strong robustness and accuracy even as the number
of obstacles gradually increases.

The improved algorithm proposed in this paper has an
optimal fitness value of 845.29 and an average fitness
value of 1237.15 for the case of four obstacles. Com-
pared to several other algorithms the maximum improve-
ment is 29.88%, the minimum improvement is 14.16%,
and compared to the original algorithm the improvement
is 15.38%.

139420

This paper makes a study for the application of population
intelligence optimisation algorithms in robotic arms, but this
is simulated when the obstacles are static. In real life, robotic
arms face more complex situations in motion, and the appli-
cation of population intelligence optimisation algorithms in
these situations will be the focus of the next research that can
be carried out.
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