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ABSTRACT Railway track malfunctions can lead to severe consequences such as train derailments and
collisions. Traditionalmanual inspectionmethods suffer from inaccuracies and low efficiency. Contemporary
deep learning-based detection techniques have challenges in model accuracy, inference speed, and are
often associated with expensive computational costs and high power consumption when deployed on
devices. We propose an optimized lightweight network based on YOLOv5-lite. which employs an enhanced
Fused Mobile Inverted Bottleneck Convolution (BF_MBConv) to reduce the number of parameters and
floating-point operations (FLOP) during backbone feature extraction. The Squeeze-and-Excitation (SE)
mechanism is adopted, emphasizing more critical track features by assigning different weights from a
channel-wise perspective. Utilizing DropBlock with holistic dropping as a substitute for Dropout with
random dropping offers a more efficient means of discarding redundant features. In the neck section, Shuffle
convolution replaces the conventional one, significantly reducing the parameter count while better integrating
feature information post-group convolution. Lastly, the incorporation of Focal-EIoU Loss augments regres-
sion, and with the application of incremental dataset processing techniques, it addresses accuracy and sample
imbalance issues. The refined algorithm achieves a mean Average Precision (mAP)@0.5 of 94.4%, marking
an 8.13% improvement over the original YOLOv5-lite. Moreover, by leveraging the embedded platform
integrated with the Intel® Movidius™ Neural Compute Stick cluster as the portable device for model
deployment, Achieved a frame rate of 18.7 FPS. Our findings indicate that this approach can efficiently
and accurately detect railway track damages. Additionally, it addresses the previously overlooked issues
of performance-cost trade-offs, countering the past trend of prioritizing high performance at the expense
of elevated power consumption and costs, proposing a harmonized approach that prioritizes efficiency and
affordability.

INDEX TERMS YOLOv5-lite, lightweight network, data enhancement, neural compute stick cluster2,
energy-efficient consumption.

I. INTRODUCTION
A. BACKGROUND
Rail transportation represents one of the primary modes of
transit worldwide.While it offers unparalleled convenience,
the safety of railway systems has been increasingly chal-
lenged. With the surge in usage years of railway tracks,

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeeb Dey .

the quality of the tracks, especially under various extreme
weather conditions, has become a pivotal factor in train oper-
ation safety. Continuous rail traffic leads to wear and tear,
causing fractures, gaps, and other damages to the tracks.
Consequently, these damages come with associated risks of
potential accidents. Therefore, precise detection of surface
defects in the rail becomes imperative [1].To date, several
mainstream methods have been devised to detect rail defects.
These include the use of lasers to measure track geometries
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and profiles [2], Ground Penetrating Radar (GPR) to assess
ballast contamination [3], [4], ultrasonics or eddy current
techniques to identify internal track defects [5], [6], and
LiDAR for track fouling detection [7]. These automated
detection methods have significantly enhanced track safety
while reducing the need for manual labor hours.

Rail transport demands efficient, low-power, and portable
defect detection. The YOLO(You only look one) network,
having proven its mettle in areas like facial recognition [8]
and autonomous driving [9], has been explored for rail sur-
face damages [10], showing proficiency in detecting under
challenging conditions such as low-light or irregular crack
growth. YOLO’s inherent strength lies in its ability to rec-
ognize multiple objects in one glance, bypassing traditional
methods and making it favorable for real-time applications.
However, the diversity in rail damage types and external
environmental factors can affect its performance. To address
YOLO’s intricacies,Li et al. [11] proposed YOLOv3-Lite,
leveraging depthwise separable convolutions and feature
pyramids for enhanced defect detection. Mandal et al. [12]
further improved detection precision using YOLOv2 for
road surface crack.detection.Acknowledging the computa-
tional constraints of some devices, YOLO versions have been
developed for diverse requirements. For instance, YOLO-Lite
is designed for resource-constrained devices, while YOLOv5,
although more complex, offers varied sizes to cater to
different resource needs and has been further optimized
using decision tree pruning. Such pruning not only reduces
computational demands but also addresses overfitting [13].
Image preprocessing techniques, incorporating incremental
augmentation operations, have further refined the detection
process, enhancing model robustness and data quality [14].
In prior work [15], an algorithm utilizing a Raspberry

Pi with ultrasonic-equipped cameras for high-speed vehi-
cle detection was proposed. However, constraints due to its
embedded nature hampered real-time accuracy. This solution
boasts low energy consumption, cost-efficiency, and com-
pactness, providing an equilibrium between precision and
power consumption. Conventionally, deep learning frame-
works are centralized in cloud environments. This poses
challenges like substantial network latency and heightened
energy and financial implications [16]. To mitigate these,
the ‘‘Edge AI’’ paradigm is suggested. Edge AI decentral-
izes AI processing, shifting from central servers to device
edges, such as smartphones and embedded systems, facilitat-
ing real-time analytics closer to data sources. For high-speed
trains, this implies enhanced energy efficiency and optimal
spatial integration. With AI capabilities, the system can pro-
cess video streams instantly on-device, reducing latency and
preemptively identifying rail discrepancies. Given its cost-
effectiveness, a broader implementation on high-speed trains
appears viable.

The main contributions of this work are summarized
below: 1) For real-time detection of railway damages,
this study initially proposes a portable real-time moni-
toring methodology based on the optimized YOLOV5-lite

and embedded devices. Data augmentation techniques were
employed to increase dataset volume and simulate detec-
tion efficacy under various environments. This methodology
is capable of accurately identifying a multitude of railway
damage types across varied actual driving environments.
2) To enhance detection precision and inference speed,
we adopted several lightweight models, including Group
Conv, DWConv, MBCONV, and Shuffle Conv. We also
introduced attention mechanisms and residual structures,
constructing an improved B-Fused-MBCONVmodel. By uti-
lizing MB_Shuffle_Block in place of the original feature
extraction backbone network, we further elevated the accu-
racy of feature extraction. Simultaneously, DWConv and
Shuffle Conv modules supplanted the original convolution
modules in the Neck network, and ultimately, the original loss
function was replaced with Focal-EIoU loss function, alle-
viating computational burden and memory overhead while
preservingmodel accuracy. 3)We engineered a portable Edge
AI detection apparatus based on Raspberry Pi and NSC2
cluster, which exhibits superior performance and harbors
practical application potential.

II. RELATED WORKS
Addressing the challenge of real-time detection of rail dam-
age with a high-speed train as a moving carrier poses
significant difficulties. As mentioned in [17], ‘‘Edge AI tech-
nology is an enabling technology that allows computation at
the edge.’’ Edge AI is renowned for its small size, low power
consumption, and excellent performance in terms of recog-
nition speed and accuracy. If the deep learning framework is
mounted on a local server, workstation, or cloud server, the
accompanying issue is that the consumption, whether human
or device, is hard to accept in terms of resource allocation
and budgeting. Pursuing high-output precision for algorithms
while maintaining portability and low power consumption
has also become a trending research direction. In the domain
of Edge AI, companies like Google, Intel, and NVIDIA have
made significant contributions. Google’s Coral SBC is the
first development board equipped with Google Edge TPU.
This AI accelerator combines the NXP i.MX 8M quad-core
Arm Cortex-A53 processor with 1GB of memory, offering
a fully functional AI edge computing platform. However,
it comes at a steep price of 160 USD. In contrast, Intel’s
Movidius Neural Compute Stick (NCS) is themost affordable
device for algorithmswith high computational demands using
multi-layer CNNs [16]. NCS and NCS2 are USB 3.0-based
sticks that encompass Myriad 2 and Myriad X Vision Pro-
cessing Units (VPUs), respectively. They can be plugged into
any device based on Windows, Linux, MacOS, or Raspbian
[18].Myriad 2 contains 12 SHAVE (StreamingHybrid Archi-
tecture Vector Engine) processors, designed specifically for
parallel processing of visual data. Their low power consump-
tion makes them highly suitable for battery-powered devices
like drones, security cameras, and AR/VR devices. They
also support various deep learning frameworks, including
TensorFlow and Caffe. Myriad X is a successor to Myriad 2.
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TABLE 1. In this project research, the price reference is based on the most common prices in China. since the NVIDIA Jetson TK1 is out of production and
has lost its cost-effectiveness, for the step of deployment on trains, it is necessary to consider the price, space occu-pancy, and performance
simultaneously materials and methods.

It comprises 16 SHAVE processors and introduces a special-
ized hardware block known as the Neural Compute Engine,
a hardware accelerator specifically designed for deep learning
inference [19].

Nvidia’s Jetson TK1 module, based on the NVIDIA
Maxwell™ architecture, is equipped with 256 NVIDIA
CUDA® cores and a 64-bit CPU, and it employs an
energy-efficient design strategy. Moreover, the module inte-
grates the latest advancements in deep learning, computer
vision, GPU computing, and graphics, making it highly suit-
able for embedded AI computations. On the other hand,
the Jetson TX2 module is built upon the NVIDIA Pascal™
architecture. Impressively, while maintaining a compact form
factor, it delivers robust performance and energy efficiency,
rendering it ideal for smart edge devices such as robots,
drones, intelligent cameras, and portable medical equipment.
The TX2 module supports all functionalities offered by the
TK1 module and further provides capabilities for construct-
ing larger and more complex deep neural networks [20].
Both these modules encompass a GPU, each with 256 CUDA
cores, and are compatible with NVIDIA’s CUDA and cuDNN
libraries. This indicates that these libraries can be leveraged to
hasten deep learning and other parallel computational tasks.
In [21], a propositionwasmade to employ theNVIDIA Jetson
Nano for training and testing a novel deep learning model
aimed at automatically classifying electrocardiogram (ECG)
signals into seven distinct types of ECG beats. Meanwhile,
[22] showcased the implementation of a rapid monocu-
lar depth estimation model’s primary functionalities on the
Nvidia Jetson single-board computer. Project [23] adopted
the Nvidia Jetson TX2 as its primary hardware platform and
highlighted the advantages in energy and cost efficiencies
across several domains such as the Internet of Things (IoT),
robotics, autonomous driving, and drone surveillance.

We employed the Raspberry Pi as the hardware platform,
hosting both the first and second generations of the Intel
Movidius Neural Computing Stick (NCS) as well as the
Nvidia Jetson TK1 andNvidia Jetson TX2. These setups were

implemented on high-speed trains for a comparative study of
their performance in real-time rail damage detection.

Edge AI small model networks, akin to YOLOv5-Lite,
include yolov3-tiny. YOLOv5-Lite stands out due to its
compact model size and reduced floating-point operations
(FLOPs), enabling its deployment on ships for detection
tasks without sacrificing precision. Remarkably, it achieved
a model size of 2.38 M [24]. An enhanced version of yolov3-
tiny was utilized for a rapid tomato detection method in a
picking robot operating in complex scenarios [25], evidenc-
ing commendable inference speeds and frames per second
(FPS). Moreover, owing to its compact nature, YOLOv5-
Lite has found extensive applications in edge AI. For
instance, when YOLOv5-Lite was deployed for ship detec-
tion, it was integrated onto the Nvidia Jetson TX2 [24].
Conversely, the applications of yolov3-tiny are even more
diverse. In [26], yolov3-tiny was integrated into the Ultra-
Scale XCKU040 FPGA (Field Programmable Gate Array) to
expedite convolutional neural networks, enhancing both its
FPS and inference speed.

The dataset for this study primarily comes from the ‘‘Rail-
way Track Fault Detection’’ dataset available on Kaggle [27],
consisting of 384 rail images. Additionally, with permissions
obtained, we incorporated 500 images taken from local rail-
way shoots. Keeping data diversity inmind, the railway tracks
were photographed under varying light conditions (including
day and night), tracks with significant foreign object obstruc-
tions, and during different weather conditions. This approach
was adopted to ensure the system’s robust performance when
mounted on trains operating under varying conditions. Infer-
ence on edge devices is a pivotal component of edge AI.
It’s paramount to recognize that model training is a pro-
cess heavily reliant on computational power and resources.
Deploying this training process on edge AI devices would be
ill-advised. Therefore, our training processes were stationed
on workstations, and subsequently, models equipped with
the obtained weights were deployed on target hardware for
execution.
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FIGURE 1. Environmental simulation of rail damage samples.

We collected information on six hardware devices avail-
able in the market, as shown in Table 1. Among them,
Nvidia Jetson TX2 stands out as the most expensive and
power-consuming, while in terms of volume, Nvidia Jetson
TK1 is the most bulky. Within the Raspberry Pi series we
selected, the 4B and 2B models differ by $20 in price, 4W
in power consumption, with negligible differences in volume
and weight. In the acceleration module, the Neural Compute
Stick series 1st and 2nd generations differ by $28 in price,
with other aspects being virtually identical. Notably, the TK1
model is now obsolete, rendering its price without reference
value.

In this experiment, we will delve into the optimization of
network models and the effects on hardware detection. For
clarity, we will segregate the system into two phases: the
model preparation phase and the deployment phase on edge
AI devices.

III. MATERIALS AND METHODS
A. DATA AUGMENTATION
In this experiment, our dataset originates from Kaggle’s
‘‘Railway Track Fault Detection’’ repository [27], supple-
mented with over 500 personally captured images, culminat-
ing in a total of 884 images encompassing several common
railway track defects. During our data collection process,
certain weather conditions were not encountered, hence we
also employed data augmentation techniques to simulate
these scenarios, as depicted in Figure 1. Common simu-
lated scenario augmentation methods include: a) simulating
snowy conditions in the case of missing fastener, b) simu-
lating bright light scenarios in the case of Track fracture,
c) simulating rainy conditions under Fine crack. The aim
is to enhance the model’s generalization capability, while
simultaneously considering the challenges posed by various
complex environments under real driving states for detection.

The crucial point to note is that all of our data augmentation
schemes involve random processing of the original samples
before integrating them back into the primary dataset.

i. Crop pictures at will: Crop within a range of [0.1,1]
in the original images. The scaled cropping will
eventually be adjusted to the original size.

FIGURE 2. Demonstration of the effects for four different data
enhancement strategies.

ii. RandAugment is randomly applied twice, with an
amplitude of 9 and a standard deviation of 0.5, as pro-
posed in [28].

iii. D. Lopez-Paz introduced a novel deep learning train-
ing methodology named Mixup [29]. This approach
specifically addresses the potential overfitting issues
and sensitivities to adversarial samples that deep neural
networks might exhibit during training. The funda-
mental idea behind Mixup is to generate new training
samples during the training process by creating a
convex combination of training samples and their cor-
responding labels. Such a tactic encourages the neural
network to exhibit simpler linear behaviors between
training samples, subsequently enhancing its general-
ization capability.

iii. Shielding: Randomly select an area within the range
of [0.02,0.2] in the original images to be completely
covered in black.

Figure 2 illustrates the effects brought about by the
aforementioned four distinct data augmentation strategies
proposed by us.

Following our data augmentation, a total of 4345 data
items were obtained according to above, which were catego-
rized into three data folders including Training, Validation,
and Testing, with specific classification information as pre-
sented in Table 2. Among them, the circumstance of missing
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TABLE 2. Class distribution of the railway damage data set used.

fastener occurs most frequently, indicating that the absence
of fasteners is a common yet easily overlooked phenomenon.

B. RAIL DAMAGE DETECTION MODEL BASED ON
IMPROVED YOLOV5-LITE
The significance of railway track damage detection is self-
evident, hence the detection model is required not only
to have faster detection speed but also to maintain high
detection accuracy, and it needs to perform well when
deployed on energy-efficient edge AI devices. The YOLOv5
algorithm is an efficient object detection algorithm, employ-
ing a lightweight and efficient model structure to ensure
high detection accuracy and rapid detection speed. Therefore,
we believe that utilizing the YOLOv5model for railway track
damage detection can yield better results. Reference [30]
introduced a lighter, faster, and more deployable network:
YOLOv5LITE. It ismentioned that YOLOv5LITE, by incor-
porating channel shuffling in the YOLOv5 neural network
model and performing channel pruning on the YOLOv5 head,
can achieve an inference speed of 10+ FPS on Raspberry
Pi 4B with an input size of 320. Moreover, compared to
YOLOv5, the feature extraction network of YOLOv5-Lite
consists of Shuffle_Block, and has removed the Focus layer
present in YOLOv5, the model quantization accuracy decline
is within an acceptable range, making it more deployable.
Due to the numerous parallel operations in the SPP structure,
following the third principle in ShuffleNet V2, YOLOv5-Lite
has cut off the SPP with more parallel operations and a C3
structure following it, not only enhancing the inference speed
but also ensuring accuracy. Through the enhancement of the
YOLOv5 LITE feature extraction backbone, neck, and other
operations, we have obtained our BF_MB-YOLOv5 model,
which has achieved improvements in accuracy and inference
speed, well-suited for our task of detecting railway damages,
and is highly compatible with our portable edge AI devices.

1) GROUP CONV
In Figure 3(a), the standard convolution operation is depicted.
The input feature map dimension is H∗W∗C1, the convolu-
tion kernel size is h∗

1w
∗

1C1 with a quantity of C2, and the
output feature map dimension is H∗W∗C2. The equation for
the parameter count of standard convolution is denoted as
equation (1). In Figure 3(b), the grouped convolution oper-
ation is illustrated, where the input feature map is initially
divided into g groups according to the channel count, hence
each group’s input feature map dimension is H∗W∗(C1/g),

convolution size is h∗

1w
∗

1(C1/g), and the output feature map
dimension is H∗W∗(C2/g). Concatenating the results from g
groups yields the final dimension of H∗W∗C2 for the output.
The parameter count for grouped convolution is denoted
as equation (2). Comparing equation (1) with equation (2),
it is discernible that the parameter count of grouped con-
volution is (1/g) of the standard convolution. It is evident
from this comparison that grouped convolution indeed can
reduce the parameter count of convolution, thereby enhancing
efficiency.

par amsnormal Conv = c1 × h1 × w1 × c2 (1)

par amsGroup conv = g×
c1
g

× h1 × w1 ×
c2
g

=
paramsnormalConv

g
(2)

FIGURE 3. Group convolution operation.

DWConv (Depthwise Separable Convolution) represents a
special case of GROUP [31]. The group count g equals the
channels of the input feature map, with each channel of the
input image being convolved by a singular convolution ker-
nel. Post the channel-wise convolution operation, there is no
inter-fusion of information among the channels. Subsequent
to the point-wise convolution operation, a thorough fusion of
features across different channels is achieved, thereby further
obtaining the output feature map. To address the issue of
excessive parameter count in the original model, we substi-
tuted the standard 3 × 3 convolution in the YOLOv5 model
with DWConv.

In Figure 4(a), the input feature map of dimension
H∗W∗C1, post undergoing a 3 × 3 convolution layer, yields
an output feature map of dimension H∗W∗C2, where the
parameter count for the convolution process is represented by
equation (3). Conversely, in Figure 4(b), the applied DWConv
dissects the standard convolution into a depth convolution of
kernel size 3 × 3 and a point-wise convolution of kernel size
1× 1. The depth convolution operates on each input channel,
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FIGURE 4. Depthwise separable convolution.

FIGURE 5. Structure of SE block.

followed by the point-wise convolution which performs a
weighted sum and combination on the generated feature lay-
ers in the depth direction, thereby creating a new feature layer.
The parameter count for this convolution process is denoted
by equation (4). It can be discerned that the parameter count
of DWConv is considerably lesser than that of the standard
convolution. This delineates that this method can effectively
diminish the parameter count of the network, thereby substan-
tially elevating the detection efficiency.

par amsnormal conv = 3 × 3 × C1 × C2 (3)

par amsDWconv = 3 × 3 × C1 + 1 × 1 × C1 × C2

= par amsnormal conv × (
1
C2

+
1
9
) (4)

2) MBCONV BLOCK
In 2019, the report proposed a lightweight network known
as EfficientNet [32], which is constituted by seven MBConv
modules. An optimization upgrade is carried out within
the MBConv modules by incorporating the Squeeze and
Excitation (SE) operation, enabling shallow networks to
extract image features and describe images through a global
receptive field as well.

The SE attention mechanism [33] is utilized for capturing
channel-wise information, with the objective of learning a
set of weight values to represent the significance of each
feature channel. Based on the magnitude of the weight val-
ues, a reorganization of the feature channels is conducted,
thereby accentuating the useful feature channels and attenu-
ating the less useful ones. The specific structure is illustrated
in Figure 5. The squeeze module compresses the feature map
through the spatial dimension, simplifying each H×W sized
two-dimensional feature channel into a single real number
Z. These real numbers are amalgamated into a 1 × 1 ×

c feature vector. This step, to some extent, is capable of
capturing the spatial information of dimension W×H. The
excitationmodule processes the 1×1×c vector obtained from
the squeeze module to ascertain the significance weights of
each feature channel. The processing sequence encompasses:
dimension reduction to c/r via a fully connected layer, feature
mapping through ReLU, restoration to c from c/r via another
fully connected layer, and determining weights through a
sigmoid activation. These two modules, operating in concert,
enable the network to attribute varying significance to each
feature channel during forward propagation, consequently
enhancing the model performance.

As depicted in Figure 6(a), MBConv consists of standard
convolution, depthwise convolution (accompanied byBN and
Swish activation), SE module, and Dropout layer. Depthwise
convolution is a channel-wise convolution, while the 1 ×

1 standard convolution (also referred to as pointwise convo-
lution) is employed to perform weighted operations on the
channel dimension of the output from the depthwise convo-
lution. This combination effectively reduces the computation
and parameter count of the model. The report mentions that
the MBConv employs the Depthwise Conv structure [32],
which possesses few parameters compared to standard con-
volution, alongside high computational capacity. However,
under general circumstances, Depthwise Conv cannot fully
leverage the performance of some existing hardware accelera-
tion devices, resulting in subpar inference performance of the
MBConv structure. To address this, we propose a more adapt-
able structure for portable hardware acceleration devices
known as B-fused-MBconv as illustrated in Figure 6(b). This
new structure utilizes a convolution layer in tandem with a
BN layer to improve the MBConv structure. During com-
putation, the operations of the BN layer are fused into the
convolution layer, thus indirectly omitting the computational
load of the BN layer, accelerating training. Specifically, the
Conv1×1 and Depthwise Conv3×3 in the main branch of the
MBConv structure are replaced with a standard Conv3 × 3.

Moreover, we discovered that the characteristic of random
drop by dropout, although highly effective for fully connected
layers, is less impactful for convolution layers due to the spa-
tial correlations in feature space. That is, even with dropout,
the information regarding the input can still be conveyed to
the subsequent layer, leading to network overfitting. There-
fore, we introduced DropBlock, a structured form of dropout,
which aggregates and drops units within adjacent areas of
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FIGURE 6. MBConv and the improved B-Fusion-MBCONV.

FIGURE 7. Contrast dropout with dropblock.

the feature map together. As illustrated in Figure 7, (a) rep-
resents the original image. In Figure 7 (b), the blue portion
denotes the activated feature units, while (b) exhibits the
random dropout of activated units. However, post-dropout,
the network still learns similar information from the vicinity
of the dropped activated units. In Figure 7 (c), the blue portion
represents the activated feature units, while (c) displays the
employedDropBlock in our work, through dropping a section
of adjacent areas altogether. In (b), a portion of the rail
along with a missing nut is filtered, prompting the network
to focus on learning the features of another missing nut to
achieve accurate classification, thus demonstrating enhanced
generalization.

3) SHUFFLENET OF BACKBONE
In YOLOv5 LITE, 85% of the backbone portion is com-
prised of Shuffle block modules with strides of 1 and 2.
The Shuffle block module originates from the ShuffleNet V2
network model. As depicted in Figure 8(a), channel splitting
is performed following the feature channels. The left branch
undergoes no operations, while the right branch undergoes
three convolution operations, where two 1 × 1 convolutions
have been replaced by regular convolutions from grouped
convolutions in ShuffleNet v1. Subsequently, data from these
two branch channels are merged with Concat+ channel shuf-
fle operation, not only equating the number of input and
output channels of this basic module but also avoiding the
Add operation.

In Figure 8(b), the number of output channels is double the
number of input channels, and the processes in the left and

FIGURE 8. Shuffle Block module with stride of 1 and 2.

FIGURE 9. BF_MB_Shuffle_Block module.

right branches are essentially the same as in (a). The backbone
of the YOLOv5-lite network structure primarily replaces
the DarkNet53 backbone with ShuffleNet V2. To avoid the
multiple usages of C3 layer and high-channel C3 layer, the
1024 conv from the shufflenetv2 backbone has been removed.
The structure of the Shuffle block is illustrated in Figure 8.
The report mentions that due to the redundancy present

in the Shuffle block structure [34], the feature maps affect-
ing precision are obtained from convolution operations and
are input into the next convolution layer for computation.
This process encompasses a substantial number of net-
work parameters. Concurrently, these network parameters
consume a significant amount of computational resources
and do not exhibit particularly outstanding performance in
terms of feature extraction precision. Hence, we employ
our enhanced module, BF_MB_Shuffle block, to replace the
existing Shuffle block module. Specifically, the 1∗1 convolu-
tion in the original Shuffle block module is substituted with
our improved BF_MB convolution as depicted in Figure 9.
We observed a notable increase in the number of layers in the
feature extraction network post-replacement. With the incre-
ment in convolution layers, the feature extraction network’s
performance can be effectively enhanced, facilitating better
analysis of high-level semantic information. On one hand,
the attention mechanism used in the BF_MBConv block
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FIGURE 10. Channel shuffle operation after group convolution.

can efficiently reduce the network’s parameter computation
load while adding convolution layers; on the other hand,
by introducing the concept of attention mechanism, the
network during training can allocate greater weight to the
channels where important information resides. However, with
the increase in convolution layers, the model may encounter
the issue of gradient vanishing during training, a problem
which the residual structure introduced in the BF_MBConv
block can effectively resolve. Moreover, our BF_MBConv
improved structure effectively addresses the issues of the
standard MBConv’s inability to fully utilize the computa-
tional performance of hardware devices and the network’s
propensity for overfitting.

4) SHUFFLE CONV OF NECK
Based on the theoretical analysis of Group Conv and Channel
Shuffle in Shuffle block as mentioned in the preceding sec-
tions, we amalgamated the two to construct our Shuffle Conv
module to replace the 1∗1 channel separation convolution
block in the neck part of YOLOv5 LITE. Our formula (2) has
indicated that compared to standard convolution, the param-
eter quantity in Group Conv would significantly diminish,
meanwhile channel shuffling would better amalgamate the
feature information post-group convolution. As illustrated in
Figure 10, within the Channel Shuffle structure, the feature
maps post-convolution operation are divided according to the
number of groups, and channels from different groups are
then shuffled together. This ensures that the output feature
maps have inputs originating from different groups, allow-
ing for the feature information to circulate among different
groups, and further thoroughly amalgamating the feature
information.

The Shuffle Conv module we constructed is depicted in
Figure 11, replacing the conventional convolution structure
by amalgamating 1 × 1 group convolution and the Channel
Shuffle module. Post the group convolution operation, the
feature maps are fed into the Channel Shuffle module and
divided according to the number of groups, followed by a
reshuffling of channels across different groups. This approach
ensures that subsequent feature maps obtain inputs from dif-
ferent groups across channels, thereby effectuating efficient
feature fusion. This module is employed within the network’s

FIGURE 11. Shuffle Conv module.

feature enhancement architecture, achieving a superior fusion
of information across three effective feature layers through
the channel shuffling method, and to an extent, reducing the
computational load of the model.

5) THE LOSS FUNCTION EIOU LOSS IS INTRODUCED
YOLOv5 by default employs CIoU Loss as the loss function
for bounding boxes, while utilizing Logits and Binary Cross
Entropy (BCE) for handling losses of target scores and class
probabilities, respectively. Although CIoU Loss comprehen-
sively takes into account the overlapping area of bounding
boxes, the distance between centers, and aspect ratios, its
treatment of aspect ratio discrepancies is not sufficiently
accurate, which at times may constrain the optimization per-
formance of the model. To address this issue, this paper
proposes the adoption of Focal-EIoU Loss in lieu of CIoU
Loss. This modification dissects the aspect ratio loss into the
differences between predicted width and height and the width
and height of the actual minimum enclosing box, thereby
accelerating model convergence and enhancing regression
accuracy.

Focal-EIoU Loss not only decomposes the aspect ratio
loss term into the differences in predicted width and height
versus the width and height of the actual minimum enclos-
ing box, thereby accelerating the model’s convergence and
enhancing regression accuracy, but also incorporates Focal
Loss to address the issue of class imbalance. Specifically,
it diminishes the contribution of a large number of anchor
boxes with lesser overlap with the target box in bounding box
regression optimization, allowing the model to focus more
on high-quality anchor boxes. This effectively resolves the
class imbalance issue, improving the model’s performance
in bounding box regression tasks.The LEIoU loss function
formulae are represented as in equations (5), (6), and (7)
respectively.

LEIoU = LIoU + Ldis + Lasp (5)

LEIoU = 1 − IoU +
ρ2

(
b, bgt

)
(wc)2 + (hc)2

+
ρ2

(
w,wgt

)
(wc)2

+
ρ2(h, hgt )

(hc)2
(6)

LIoU = 1 −
|A ∩ B|

|A ∪ B|
(7)

In Focal-EIoU Loss, LIoU denotes the IoU (Intersection
over Union) loss, LEIoU represents the center point distance
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FIGURE 12. Improved BF_MB-YOLOv5 network structure diagram.

loss, and Lasp signifies the aspect ratio loss. Here, A and
B respectively denote the predicted box and the true box.
wc and hc correspond to the width and height of the Mini-
mum Bounding Rectangle (MBR) encompassing both boxes,
while b and bgt respectively denote the center points of
the predicted box and the target box.In essence, Focal-
EIoU Loss is a comprehensive loss function, which not
only attends to IoU and center point distance, but also par-
ticularly considers the aspect ratio loss. By decomposing
the aspect ratio loss term into the difference in predicted
width and height versus the width and height of the actual
minimum bounding rectangle, and integrating Focal Loss,
this loss function effectively accelerates model convergence,
enhances regression accuracy, and addresses the issue of
sample imbalance. This results in a model with increased
precision and robustness in bounding box regression
tasks.

In our BF_MB-YOLOv5 network as shown in Figure 12,
the Backbone primarily consists of BF_MB_Shuffle_Block1
and BF_MB _Shuffle_Block2, and employs depthwise sep-
arable convolution in lieu of the original standard convo-
lution. The 1 × 1 channel separation convolution block
in the neck part of the original YOLOv5 LITE has been
replaced with a lighter Shuffle Conv block. Lastly, the more
superior Focal-EIoU loss function is utilized for bounding
box regression tasks. This significantly reduces the model
parameters, enhances the algorithm detection speed, and
also results in a notable improvement in model detection
accuracy.

TABLE 3. Model quantization performance comparison.

C. MODEL PROCESSING
1) MODEL PRUNING AND QUANTIZATION TECHNIQUES
In the OpenVINO toolkit, there is an in-built model opti-
mizer that allows for user-driven model quantization. It’s
noteworthy that as the data type level of the model is reduced,
the inference speed increases, typically at the cost of a
decline in accuracy. The OpenVINO toolkit offers three
model data types: int8, float32, and float16, as illustrated in
Table 3. We conducted experiments on these three types of
quantization, and it can be observed that among the three
quantizations, the FP23 quantification has the largest Model
Size and also the highest mAP.

2) OPENVINO ACCELERATED MODEL DEPLOYMENT
OpenVINO [19], introduced by Intel in 2018, is a framework
designed for computer vision development. The primary
utility of this framework is to expedite on-device model
inference. OpenVINO facilitates inference acceleration
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FIGURE 13. Openvino development flow chart.

specific to Intel CPUs and Intel Neural Compute Sticks
by providing dedicated plugins. Deep learning engineers
can easily integrate model inference and deployment on
embedded systems by leveraging the API interface pro-
vided by OpenVINO. Key components of this framework
are the Model Optimizer and Inference Engine. The Infer-
ence Engine acts as an API interface, tasked with loading
trained models, and importantly, it supports asynchronous
multi-threaded inference acceleration, crucial for our subse-
quent work.Meanwhile, theModel Optimizer refinesmodels,
such as removing redundant layers and enabling fusion
acceleration for convolution layers combined with Batch
Normalization (BN) and ReLU activation functions. A note-
worthy feature is its integration with the OpenCV library,
allowing direct raw image processing through API calls.

As discussed in [38] and depicted in FIGURE 13. the
inference development process is as follows:

I. Initialization of the Inference Engine: The OpenVINO
Inference Engine is initialized to ensure hardware
availability and readiness for model inputs. For this
study, Intel’s second-generation Neural Compute Stick
was used.

II. Loading theModel IR File: Subsequently, the IR (Inter-
mediate Representation) file of the model is loaded,
which consists of the network structure parameter
file (.xml) and the weight parameter file (.bin) is
loaded. Preliminarily, due to OpenVINO’s lack of
direct support for PyTorch model reading ofr Open-
VINO’s, conversion to the ONNX format is necessary
via the Python interface is necessary, followed by the
transformation of this ONNX format into the IR.

FIGURE 14. Detection system design.

III. Configuring Input and Output Parameters: Post model-
loading, input and output parameters are set. Models
have specific criteria for input, such as image size,
format, normalization procedures, and the format for
output, whether it be image classification, object
detection, or semantic segmentation.

IV. Constructing an Executable Network: An executable
network is constructed using the IR files, converting the
IR into a format executable on the inference engine.

V. Creating an Inference Object: An inference object is
instantiated, set to perform the inference operation.

VI. Feeding Data: Actual input data is fed to the inference
object, which may range from individual and batches
of images, to video frames.

VII. Executing Inference: Inference is executed, processing
input data to yield output results.

VIII. Post-Inference Operations: Once inference concludes,
output data is parsed, followed by requisite image post-
processing. In the case of video data, settings can
dictate intervals between frame captures, with infer-
ence carried out upon data retrieval, until the entirety
of frames is processed.

D. APPLICATION
The hardware framework for the experimental design is
illustrated in Figure 14. Initially, our pre-configured model
was integrated into the main host. Subsequently, the camera
collects information on the samples to be detected, it is note-
worthy that to adapt to nighttime conditions, two illumination
devices were mounted around the camera. A connection was
then established between the camera and the Raspberry Pi
development board. Considering the portability requirements
of the device application, the Raspberry Pi was equipped
with a portable power supply capable of displaying energy
parameters. This not only ensured a convenient power sup-
ply but also provided energy to the device. Ultimately,
the entire system is envisioned to be deployed on train.
Regarding system architecture, the edge AI device on the
train directly interfaces with a base station, ensuring timely
transmission of critical alerts when significant issues are
detected.
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FIGURE 15. Multithread model and multiprocessing model.

FIGURE 16. Multiprocessing method.

Lastly, to accelerate the recognition device and enhance
detection efficiency, we proposed a cluster composed of
two Intel Neural Compute Stick 2 units to support the
inference phase. When integrated with high-speed trains,
this system excels in terms of energy efficiency and cost-
effectiveness. Whether considering large-scale implementa-
tion on railways or the potential impact on train operations,
the foresight attributes demonstrated by this system appear to
be promising.

1) MULTIPROCESSING
In the method described [39] and shown in Figure 15(a),
amultithreaded approach is introduced. Throughout the infer-
ence process, each inference task is assigned to a separate
thread for execution. Subsequently, the generated images are
queued for processing by multiple NCS2s in a single proce-
dure; each image may be handled by multiple NCS2 systems.
In layman’s terms, a single acceleration cluster handles one
task. However, Python, aimed at simplifying memory man-
agement and ensuring thread safety, incorporates a Global
Interpreter Lock (GIL) [40]. This implies that at any specific
moment, only one thread can execute Python bytecode. Even

on multicore hardware, due to the presence of GIL, Python’s
multithreading cannot achieve true parallel computing as
only one thread operates at any time. This necessitates an
alternative technique, namely Multiprocessing as depicted
in Figure 15(b), where each NCS2 corresponds to a sep-
arate process. In layman’s terms, a single acceleration
entity only handles one task, deviating from the tradi-
tional operation of sharing a single process across multiple
devices.

TheMultiprocessing strategy also circumvents the obstacle
of Python being unable to achieve true parallelism due to
GIL. However, this enhanced processing performance results
in stricter resource demands, implying the requirement for
more processing devices. From a parallel computing per-
spective, considering that each NCS2 device (each process)
handles different workload, this exploits data parallelism to
boost computational performance. A caveat of this method is
that since each process independently manages its memory
and state, there might be an increased demand on system
resources such as memory to maintain multiple autonomous
processes.

Algorithm 1 Error Handling System Pseudocode
try:

thread = createInferenceThread(i)
launchThread(thread)

except Exception as e:
print(f"Error: Failed to create or launch thread for

device {i} : {e}")
print("Attempting to restart the device. . . ")
try:
restartDevice(i)

except Exception as e:
print(f"Error: Failed to restart device {i} : {e} ")
print("Banning the device. . . ")
banDevice(i)

end try
end for

For system stability, the integration of exception handling
logic can be considered. For instance, if there is a failure in
thread or process creation, a restart mechanism can be estab-
lished. Considering the scenario of installation on high-speed
trains, issues related to device lifespan and malfunctions may
disrupt the queue handled by a single NCS2 device. To allevi-
ate this situation, we have designed a system workflow with
an error detection mechanism as shown in Figure 16, priori-
tizing system restart in the event of device failure. If persistent
errors are detected post-restart, the faulty device will be
disabled to ensure the integrity of the entire system. Employ-
ing the try/except structure aids in capturing and addressing
potential exceptions. Upon error detection, notifications will
be sent to the terminal before proceeding with the restart or
disable program, followed by alerting railway personnel for
device maintenance. Algorithm 1 elucidates this point with
pseudocode.
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IV. RESULTS AND EXPERIMENTS
A. COMPARISON AND EVALUATION OF NETWORK
MODELS
The experimental platform is based on NVIDIA RTX 2060
Super 8G GPU, i7-5950HQ, and Windows 10 operating sys-
tem. The software includes CUDA11.5, cuDNN8.2, Python
3.8, and the Pytorch 1.0.0 deep learning framework, The
following hyperparameters were utilized: a learning rate of
0.01, the optimizer employed was Adam, and the batch size
was set to 16.

In the domain of model performance evaluation, classi-
fication accuracy is often a conventional metric. However,
in our work, it is not the optimal evaluation criterion. This bias
is attributed to the typical skewed distribution of images of
different classes in the training dataset. To comprehensively
understand the capabilities of the model, multiple metrics
were evaluated. Specifically, mAP@0.5 denotes the mean
average precision with a set Intersection over Union (IoU)
threshold of 0.5. IoU, ranging between 0 and 1, quantifies the
overlap between the predicted bounding boxes and the ground
truth bounding boxes, representing perfect consistency.

Accuracy is the ratio of correct predictions in all predic-
tions as shown in equation (8). Precision elucidates the ratio
of correctly predicted positive instances to the total instances
predicted as positive, measuring the accuracy of the classifier
in positive predictions as illustrated in equation (9). On the
other hand, Recall depicts the ratio of correctly predicted
positive instances to the actual positive instances, reflect-
ing the proficiency of the classifier in identifying positive
samples as illustrated in equation (10). The F1 score is the
harmonic mean of precision and recall, encapsulating the
overall accuracy and recognition ability of the classifier as
shown in equation (11).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

F1 = 2∗
Precision∗Recall
Precision+ Recal

(11)

Within this context, True Positives (TP) refer to the count
of positive class samples correctly predicted as the positive
class by the model. False Positives (FP) denote the count of
negative class samples incorrectly predicted as the positive
class by the model. False Negatives (FN) are the count of
positive class samples incorrectly predicted as the negative
class by the model. True Negatives (TN) refer to the count
of negative class samples correctly predicted as the nega-
tive class by the model. (Number) N represents the number
of object classes. As depicted in the confusion matrix of
FIGURE 17, the prediction accuracy is highest for theNormal
category, while it is the lowest for the Fine Crack category.
This may likely be due to a certain level of similarity between

FIGURE 17. The confusion matrix of our improved method.

the Fine Crack and Track Fracture categories, posing a certain
challenge for classification.

To evaluate the performance of different components
within the model, this study conducted ablation experiments.
The BF_MB _Shuffle, F_MB-ShuffleBlock (without drop-
block) backbone, Shuffle Conv neck, and Focal-EIoU loss
function are the distinct parts of the ablation study. As can
be inferred from TABLE 4, employing the dropblock’s over-
all drop method in the task of rail defect detection, which
demands a higher level of feature integrity, indeed outper-
forms the random drop of dropout. This also validates that
the improved algorithm has elevated the mAP@0.5 value of
YOLOv5-lite (unimproved) by 8.13 percent, increased the
recall rate by 10.37 percent, F1 score increased by 5.03%
while augmenting the detection speed by 28 frames per sec-
ond.

In the previous section, we discussed four dataset aug-
mentation and enhancement techniques. Table 5 displays the
accuracy of different classification schemes after applying
data stacking and enhancement. The overlay from the fourth
layer exhibited the best performance, while the accuracy of
the third layer overlay declined. This decline can be attributed
to the fact that during the stitching process, blocks containing
rail damage (such as missing fasteners and cracks) were
concatenated into normal blocks. The repeated stitching of
multiple Fine Crack instances also led to decreases in accu-
racy for the Normal, Missing fastener, and Track fracture
categories by 2.385%, 1.95%, and 3.35%, respectively. Over-
all, our image enhancements indeed played a positive role in
improving the system’s accuracy and robustness.

To assess the generalization capabilities of our model
across varied scenarios, we conducted tests on both the
improved and the original models over four distinct natural
datasets. Figure 18 illustrates the classification accuracies of
our model and the baseline model on these datasets, which
include CIFAR10/100 [35], Describable Textures Dataset
(DTD) [36], and Oxford 102 Flowers [37]. The outcomes
indicate that our model continues to excel in fine-grained
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TABLE 4. Ablation experiment results.

TABLE 5. Comparison of test accuracy of the original YOLOv5-Lite with our method at incremental enhancement levels.

recognition tasks on the DTD. It also demonstrates com-
mendable performance on the complex feature tasks of
Flowers102. Moreover, our model outperforms the baseline
model across all tasks, underscoring that our enhanced model
can be generalized to a broad spectrum of classification detec-
tion challenges.

It’s important to note that for the sake of fairness,
we employed the same parameters and conducted tests on the
CIFAR10 dataset. CIFAR10, organized by Hinton’s students
Alex Krizhevsky and Ilya Sutskever, is a compact dataset
for generic object recognition. It comprises 10 categories
of RGB color images: airplanes, automobiles, birds, cats,
deer, dogs, frogs, horses, ships, and trucks, totaling 50,000
training images and 10,000 testing images. The variety in
size and shape of the points of interest within this dataset
makes it a commendable choice for testing model robustness
and recognition effectiveness.We evaluated algorithms such
as GGS-Pf-YOLOv5, YOLOv8n, and YOLOv7-Tiny on the
aforementioned CIFAR10 dataset. As evidenced by Table 6,
YOLOv8n, which excels in terms of parameters, possesses
only 6.2M, a reduction of 0.08M compared to ours. How-
ever, it compromised 2.1% in mAP@0.5% to achieve this

FIGURE 18. Comparison with our method and the original model on four
classical natural datasets.

decrease in parameter size. This suggests that, in terms of
balancing, YOLOv8n significantly lags behind our model.
Our mAP@0.5 metric surpasses all comparative algorithms,
with YOLOX-Tiny’s 90.11% and YOLOv8n’s 90.17% being
the closest to our methodology. This highlights the superior
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TABLE 6. Performance results for different networks on CIFAR10.

FIGURE 19. Regions of interest obtained from different algorithms.
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FIGURE 20. AP@0.5% and loss curves for 5 models on our dataset.

FIGURE 21. The performance demonstrated by the Multiprocessing and multithread models when installing different amounts of
NCS2 under various simulated weather conditions.

detection performance of our model. The results emphasize
our primary intention to strike an equilibrium between accu-
racy and speed, thus our model delivers a more harmonized
performance. This infers that we can attain more accurate
object detection outcomes at the cost of computational over-
head, thereby meeting the real-time detection prerequisites of
lightweight, low-energy portable systems. It also underscores
the model’s robustness across diverse datasets.

Subsequently, we evaluated several mainstream models
on our dataset, including YOLOv3, YOLOv5, YOLOv5-lite,
and YOLOv7, to assess their detection performance, with a
particular emphasis on certain aspects of detection, as illus-
trated in Figure 19. The findings suggest that the approach
offers high probability and accuracy in depicting the overall
contours of damages. As evident from figures a) and c),
YOLOv3-TINY and YOLOv5-lite demonstrated detection
errors when addressing damages such as Track Fracture and

Fine Crack, with notable similarity and relatively low con-
fidence scores. In figures b) and d), while YOLOv5 and
YOLOv7 did not exhibit missed detections, they showed
instances of incomplete feature extraction during the detec-
tion process, and when compared to our model, also recorded
lower confidence scores. Figure e) indicates that our model
outperforms on our railway damage dataset. A specific focus
was given to the mAP@0.5 training curve and the loss train-
ing curve, as depicted in Figure 20(a). The data suggests
that, in terms of mAP@0.5, our approach significantly sur-
passes the original models YOLOv3-TINY, YOLOv5-lite,
andYOLOv5, and also exhibits slightly superior performance
when compared to YOLOv7. The loss curve in Figure 20(b)
reveals that our method and YOLOv7 have comparable
loss curves around Epoch 150, but by Epoch 200, our data
demonstrates the best performance among the other four
models.

134860 VOLUME 11, 2023



C. Dang et al.: Accelerated Inference of a Novel Optimized YOLOv5-LITE on Low-Power Devices

FIGURE 22. Power consumption and time relationship of different
devices.

B. EXPERIMENTS WITH EDGE AI DEVICES
1) MULTIPROCESSING AND MULTITHREAD MODELS
In the experiment depicted in Figure 20. we evaluated the con-
figurations of different quantities of NCS2 devices along with
the FPS performance under multithread and Multiprocessing
in four distinct weather conditions: snowy conditions, high-
intensity sunlight, rainy weather, and regular weather. These
tests validated the concerns posited in the previous section
regarding the impact of the Global Interpreter Lock (GIL) on
multithreading.

As observable in Figure 21(a). upon augmenting the quan-
tity of NCS2 devices, there wasn’t a notable enhancement
in FPS, and, contrarily, more NCS2 led to a performance
decrement in the testing environments of Normal and High-
intensity sunlight. On the other hand, Figure 21(b).under
the Multiprocessing mode, the increment of NCS2 indeed
contributed to a performance improvement, amply demon-
strating that addingmoreNCS2 devices does not significantly
enhance performance in a multithreaded environment. Simul-
taneously, it elucidated that despite a slight performance
reduction in our system under extreme driving conditions,
as illustrated in Figure 21(b). where the worst performance
with 2 NCS2 under strong sunlight conditions showed only
a reduction of 1 in FPS across the four conditions, such
minute alterations do not exert a consequential impact on our
system. This robustly reflects the system’s resilience.It should
be noted that our inference experiments were conducted on an
i7-5950HQ processor.

2) EDGE AI DEVICE PERFORMANCE COMPARISON
In Figure 22. to assess the deployability and energy efficiency
ratio of the system, we examined the energy consumption
relationship of our method with four different platforms.
It can be observed that our method, when implemented
using 2∗NCS2 devices, exhibited the lowest energy consump-
tion, with an average power usage of merely 5568mw. The

power consumption of a single NCS2 stick is approximately
1.2 watts. In comparison, although devices like the CPU
may exhibit superior performance, their energy consumption,
around 45 watts, is significantly higher than that of edge AI
devices.

In TABLE 7, we evaluated the relationship of low energy
consumption and performance for our method compared
with other four different platforms. From the perspective
of selecting the quantity of NCS2 sticks in our system, the
performance improvement brought about by the hardware
accumulation of more than two NCS2 sticks is not suffi-
cient to compensate for the increase in power consumption
it incurs. Moreover, we can observe that although the CPU
provides quite satisfactory detection results, it accompanies
high energy consumption. In contrast, the device setup with
two NCS2 sticks that we chose demonstrates the most excel-
lent performance under the circumstances where both power
consumption and performance are taken into account.

Lastly, we conducted an intriguing experiment to com-
pare the price ratio per frame per second, as demonstrated
in Table 8. If our objective is to strike a balance between
performance and cost, this appears to be the optimal choice,
with its Average FPS/Price reaching 0.1093. It’s evident
that the CPU does indeed offer superior performance, but
it requires accompanying hardware and comes at a steeper
price. With a base of 50.3 FPS, its Average FPS/Price is
a mere 0.1043, not as favorable as our device. Moreover,
considering the long-term prospects of deployment on trains,
the combination of Multi (2∗NCS2) + Raspberry Pi 4B is
truly a commendable option.

In TABLE 7, we evaluated the relationship of low energy
consumption and performance for our method compared
with other four different platforms. From the perspective
of selecting the quantity of NCS2 sticks in our system,
the performance improvement brought about by the hard-
ware accumulation of more than two NCS2 sticks is not
sufficient to compensate for the increase in power consump-
tion it incurs. Moreover, we can observe that although the
CPU provides quite satisfactory detection results, it accom-
panies high energy consumption. In contrast, the device
setup with two NCS2 sticks that we chose demonstrates the
most excellent performance under the circumstances where
both power consumption and performance are taken into
account.

Lastly, we conducted an intriguing experiment to com-
pare the price ratio per frame per second, as demonstrated
in Table 8. If our objective is to strike a balance between
performance and cost, this appears to be the optimal choice,
with its Average FPS/Price reaching 0.1093. It’s evident
that the CPU does indeed offer superior performance, but
it requires accompanying hardware and comes at a steeper
price. With a base of 50.3 FPS, its Average FPS/Price is
a mere 0.1043, not as favorable as our device. Moreover,
considering the long-term prospects of deployment on trains,
the combination of Multi (2∗NCS2) + Raspberry Pi 4B is
truly a commendable option.
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TABLE 7. Performance ratio analysis of different platforms.

TABLE 8. Price/performance analysis of the different embedded platforms.

V. DISCUSSION
In our study, concerning the direction of the network model,
we adopted three strategies to enhance our approach. Bymod-
ifying the lightweight model of the original YOLOV5s ver-
sion, namely YOLOv5-lite, we derived our custom BF_MB-
YOLOv5 network. In the first strategy, we initially intended
to replace the standard convolution in the backbone part with
MBConv, which possesses high detection accuracy and low
complexity. However, we realized that the Depthwise Conv
in MBConv could not fully utilize hardware acceleration per-
formance, which is fatal for our aspiration to deploy portable
edge AI acceleration devices. Consequently, we adopted the
fused-MBconv structure, which replaces Depthwise Conv
with standard convolution. Ultimately, considering that our
recognition target features are quite integrated, the charac-
teristic of random dropping in dropout is far inferior to our
DROPBLOCK in terms of feature extraction. In the second
strategy, we employed Group Conv structure to replace the
1∗1 channel separation convolution in the neck to derive a
more lightweight model. In the third strategy, we used the
Focal-EIoU Loss, which has superior regression accuracy to
address the existing sample imbalance issue. It can be seen
from TABLE 3 that each strategy brought positive results to
our network in both detection speed and detection accuracy.
Compared to the original model, our mAP value overall
increased by 8.13%, recall rate improved by 10.37%, while
the detection speed per second elevated by 28 frames

In the aspect of edge AI acceleration device deployment,
we investigated the enhancement of detection speed in our
deployed detection network by the NCS2 acceleration stick.
In TABLE 7 and TABLE 8, we delved into the issues of detec-
tion speed, power consumption, and cost. It is observable
that our Average Power/Average FPS is the most outstanding
among the platforms compared, as low as 361.60, indicat-
ing that our device performs quite well in the domain of
low power consumption and high performance. In terms
of Average FPS/Price, we also excelled with a high value
of 0.1093.In TABLE 9, we conducted an in-depth analy-
sis of several related literature, encompassing edge artificial
intelligence (Edge AI) devices, network models, and their
cost-effectiveness analysis.

Wemeticulously compared the networkmodels in different
literature, including their key indices such as mAP, FPS,
and COST/FPS. Through contrasting these indices, we can
better comprehend the discrepancies in performance and
cost-effectiveness among different models and devices. It is
discernible that our model exhibits the most splendid perfor-
mance inmAP,while in the aspect of FPS, theNVIDIA Jetson
AGXXavier with Yolov4-tiny in [49] is the most remarkable.
However, it is not difficult to notice that the price of NVIDIA
Jetson AGX Xavier is exceedingly expensive, almost five
times as much as our method, and its Cost/FPS is also as
high as 40.8, far exceeding our 9.14. The lowest cost is the
first-generation NCS with Raspberry Pi 3B method, with a
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TABLE 9. Performance of devices and network models in different studies.

cost of merely 75 dollars, yet its FPS is only 5, leading to a
Cost/FPS as high as 12.357. It is evident that in balancing cost
and performance, our method indeed performs excellently.

Currently, most research in the direction of industrial
detection problems overly emphasizes performance, unre-
strainedly utilizing high power consumption, high-cost
devices. Our research has made optimizations based on this
foundation, which is a crucial aspect in industrial issues.

VI. CONCLUSION
This work proposes a system termed as BF_MB-YOLOv5,
laden on Raspberry Pi 4B coupled with two NCS2 accelera-
tion sticks, for the deployment of a railway damage detection
network. This is an enhancement of YOLOv5-lite, designed
to real-time detection of railway damages. The system is
capable of real-time railway condition detection at low cost
when mounted on mobile devices aboard trains. Improve-
ments were made on YOLOv5-lite to maintain a balance
between model complexity and model performance. In terms
of the dataset, we utilized four effective image augmenta-
tion and enhancement techniques to mitigate the issue of
dataset diversity deficiency. On the network model front,
an improved MBConv replaced the conventional convolution
structure in the model backbone structure of ShuffleNet V2,
wherein BF_MBconv introduced the SE attention mecha-
nism and employed the lighter and more portable-device
adapted Fused-MBConv structure, ultimately incorporating a
more precise dropblock structure. The overall modifications
not only enhanced model performance but also addressed
the issue of MBconv being unable to fully utilize hardware
performance. Improvements were made on the convolution
operations in the two Conv modules in Neck, replaced
with Shuffle Conv modules combining Group Conv modules
and Channel Shuffle modules, constructing a lighter model.

Furthermore, Focal-EIoU Loss was utilized to replace the
original loss function, rendering the model more precise and
robust in bounding box regression tasks. Lastly, we explored
an edge AI device that, under reasonable economic cost
and power consumption circumstances, can still maintain
real-time detection efficiency. Experimental results demon-
strate that our method can enhance the detection accuracy
of multi-class railway defects, possessing certain advantages
compared to other algorithms. It effectively resolves the
issues of low recognition efficiency, low recognition accu-
racy, lack of energy-saving in onboard devices, and high
deployment cost in real-time railway damage detection, pro-
viding a good reference for addressing safety issues in railway
transportation.
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