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ABSTRACT Gastric cancer (GC) is still a significant public health issue, among the most common and
deadly cancers globally. The identification and characterization of precancerous lesions of the stomach
using endoscopy are crucial for determining the risk of cancer and guiding appropriate surveillance. In this
scenario, deep learning (DL)-based computer vision methods have the potential to help us classify and
identify particular patterns in endoscopic images, leading to a more accurate classification of these types
of lesions. The quantity and quality of the data used heavily influence the classification performance of DL
networks. However, one of the major setbacks for developing high-performance DL classification models
is the typical need for more available data in the medical field. This review explores the use of Generative
Adversarial Networks (GANs) and classical data augmentation techniques for improving the classification
of precancerous stomach lesions. GANs are DL models that have shown promising results in generating
synthetic data, which can be used to augment limited medical datasets. This review discusses recent studies
that have implemented GANs and classical data augmentation methods to improve the accuracy of cancerous
lesion classification. The results indicate that GANs can effectively increase the dataset’s size, enhance the
classification models’ performance. In specific applications, such as the augmentation of endoscopic images
depicting gastrointestinal polyps and Barrett’s esophagus Adenocarcinoma, our review reveals instances
where GANs, including models like Deep Convolutional GANs and conditional GANs, outperform classical
data augmentation methods. Furthermore, this review highlights the challenges and limitations of the recent
works using GANs and classical data augmentation techniques in medical imaging analysis and proposes
directions for future research.

INDEX TERMS Dataset augmentation, deep learning, generative adversarial networks, precancerous
lesions, upper gastro endoscopy.

I. INTRODUCTION
Gastric cancer (GC) remains a significant global health con-
cern, with over one million new cases reported in 2020 and
an estimated 769,000 deaths, ranking fifth in incidence
and fourth in mortality among all types of cancer world-
wide [1]. Like several malignancies, intestinal-type GC

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

typically progresses through precancerous stages, character-
ized by conditions that confer an increased risk of cancer
development in the long term.

GC is most commonly sporadic in nature, and chronic
inflammatory conditions often trigger its development. The
progression of GC is a multistep process, starting with
chronic gastritis (typically caused by chronic infection with
Helicobacter pylori) and then progressing to the loss of
normal gastric glands, known as atrophic gastritis (AG).
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In some cases, the atrophic mucosa may develop intestinal-
type glands, known as intestinal metaplasia (GIM), which can
then progress to low-grade dysplasia, high-grade dysplasia,
and eventually, invasive adenocarcinoma. The trigger for GC
development, characterized by a multistep process begin-
ning with long-standing inflammation, was first described
by Pelayo Correa and is now known as Correa’s multi-stage
cascade of gastric oncogenesis [2] (Figure 1)(Figure 2).

FIGURE 1. Correa’s multi-stage cascade of gastric oncogenesis [3].

FIGURE 2. Typical endoscopic appearance of chronic AG and GIM.
Characteristic endoscopic features of chronic AG include pale appearance
of mucosa, loss of gastric rugal folds, and prominence of submucosal
blood vessels due to thinning of the atrophied gastric epithelium,
as shown in (A) HD-WLE and (B) NBI. Changes representing IM are
frequently found in chronic AG. On HD-WLE, the areas with IM typically
appear mildly nodular (C) [4].

The prognosis of GC is closely related to the stage of the
disease at diagnosis, where cure is only possible when GC
is diagnosed in the early stages. However, early diagnosis is
difficult since symptoms are rare until the disease becomes
locally advanced or disseminated [5]. Early diagnosis is thus
only possible if screening programs are adopted, and patients
at higher risk with precancerous conditions are identified and
submitted to surveillance.

Endoscopy is a diagnostic and therapeutic tool that enables
the visualization of the digestive tract. Detecting and charac-
terizing precancerous lesions through endoscopy is essential
for determining cancer risk and guiding appropriate surveil-
lance. However, it is crucial to recognize that the prevalence
of precancerous gastric lesions may be underestimated,
as endoscopic assessment alone is insufficient for their detec-
tion in routine practice [5].

Identifying precancerous lesions through endoscopic man-
ual screening is an intensive and time-consuming labor
process that heavily relies on clinical expertise since the
correlation between endoscopic and pathological findings is
suboptimal. However, virtual chromoendoscopy can increase
the detection and characterization of gastric precancerous
conditions and lesions [6]. Virtual chromoendoscopy still
needs expertise and is not widespread among endoscopists.
Computer-assisted diagnosis (CAD) using artificial intelli-
gence (AI) can mitigate these challenges. The utilization
of CAD systems in medicine has significantly expanded in
recent years. The growing interest in these systems is mainly
due to their ability to make diagnostic decisions at a level
comparable or superior to that of a qualified human expert,
thus functioning as an expert system [7].

Deep learning (DL) based computer vision methods can
classify and detect specific image patterns or objects. DL-
based methods for image classification are a well-established
and widely researched area. Supervised image classification
with DL requires a dataset and class labels. The network is
then trained according to the supervision provided by the
labels [8].

Convolutional neural networks (CNNs), a type of DL
architecture, have been applied to improve the diagnosis of
gastrointestinal lesions such as colorectal polyps, esophageal
cancer, Helicobacter pylori infection, and GC [9]. Recently,
a CNN system based on endoscopic white light images has
shown high sensitivity, specificity, and accuracy for recog-
nizing AG and GIM [10], [11], [12]. DL methods have been
demonstrated to effectively detect gastrointestinal diseases
through endoscopy, with studies showing successful results
in identifying gastrointestinal disorders [13].

The quantity and quality of the data used can signifi-
cantly impact the classification performance of DL networks.
However, in the medical domain, the data available is often
limited. Other issues, such as data imbalance, where the
number of samples in each class category varies significantly,
also affect the dataset’s quality. The quality of a dataset affects
its ability to represent the real world accurately; the samples
should reflect a distribution similar to that scenario [14]. It is
also important to note that annotating extensive endoscopic
data is a costly, time-consuming process requiring specialized
expertise [15].

A common strategy to address the limited and imbal-
anced data availability in the medical domain and improve
the performance of DL-based image classification methods
is data augmentation. Studies have demonstrated that data
augmentation techniques can enhance a dataset’s quantity and
quality, which involve manipulating or synthesizing existing
images [16]. Recently, sub-branches of data augmentation
have emerged, such as generative data augmentation, which
utilizes generative models to create new data [17].

Generative models can be broadly defined as a network
that describes how a dataset is generated using a probabilistic
model. By sampling from this model, new data can be gen-
erated. In endoscopy image analysis, a common challenge
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is the lack of large, annotated datasets, which restricts the
application of supervised DL. Generating labeled datasets in
the medical domain requires significant medical expertise,
time, and effort [18].

For example, in the case of a dataset containing a sub-
optimal number of upper endoscopic images of stomach
precancerous lesions, it may be desirable to build amodel that
can generate new images of this type of lesion that have never
existed but still appear realistic because themodel has learned
the general rules governing the appearance of this specific
type of lesion. This is the type of problem that can be solved
using generative models [19].

Generative Adversarial Networks (GANs) have brought
a new perspective to the DL community. GANs were first
introduced in 2014 [20] and later described and discussed
compared to other generative models in detail [21]. The
architecture of GANs consists of two neural networks: the
generator and the discriminator. The task of each network is
to compete against each other so that the generator network’s
output images are indistinguishable from the discriminator.
This adversarial training enables the synthesis of images sim-
ilar to real images. It is important to remark that challenges
in the application of GANs for gastric lesion classification,
usually stem from inherent variations in lesion characteris-
tics, intricacies involved in capturing subtle patterns, and the
imperative for fine-tuning GAN architectures to align with
the nuanced features present in gastric images. However,
with the advancements in GAN structure and computing
power, generative data augmentation in the image domain has
become a reality. The advances in GANs and their various
applications in the medical domain, including image classifi-
cation, are discussed within the context of this paper.

A. MOTIVATION
The need for more medical data available challenges the
development of DL classification models. The dataset used
in DL models often requires some form of data augmentation
to achieve high performance. Classical data augmentation has
been the traditional solution to this problem. However, gen-
erative models, such as GANs, have emerged as a promising
alternative for data generation in DL models.

Thus, this literature review aims to assess the current
state of the utilization of GANs for enhancing DL models
in detecting and classifying stomach precancerous lesions
through endoscopy image analysis. The review will provide
a comprehensive understanding of the significance of GANs
in detecting cancerous lesions and their impact on improving
the performance of DL models in this area. The informa-
tion obtained from the state-of-the-art literature review will
bring us closer to determining the best GAN approach for
stomach precancerous lesion detection. Our objective is to
evaluate and compare the effectiveness of classical dataset
augmentation methods and GAN-based dataset augmentation
techniques on the performance of DL models.

In the end, this literature review will provide valu-
able insights into the current state of GANs in enhancing

DL models for detecting stomach precancerous lesions and
contribute to developing more effective DL models in this
area.

B. CONTRIBUTIONS
Use This study undertakes a literature review to evaluate the
current state of the usage of GANs in enhancing DL models
for the detection and classification of stomach precancerous
lesions through endoscopic image analysis. Research ques-
tions are formulated to address the identified issues and try to
provide a comprehensive understanding of the problem and
pave the way for future research by answering the following
questions:

Q1:How often and effectively are GANs used to improve
the classification performance of stomach precancerous
lesions through dataset augmentation in endoscopic image
analysis?

Q2: How do we best apply GANs to improve pattern
detection in endoscopic images?

Q3: Do the results obtained with dataset augmentation
through GANs surpass the ones obtained with classical data
augmentation?

II. RELATED WORK
In recent years, there has been a remarkable surge of interest
and activity in the domain of generative dataset augmenta-
tion for medical images. Researchers and practitioners have
begun to recognize the potential of generative DL models in
augmenting medical image datasets, leading to a burgeon-
ing body of research and exploration. This resurgence in
interest signifies a pivotal turning point in the field, as it is
increasingly recognized as a promising avenue for advancing
medical image analysis and enhancing the performance of
related models. Therefore, this section aims to bridge this gap
by presenting a collection of pertinent studies that delve into
the application of generative DL models within this domain.
By exploring these studies, we aim to acquire a thorough and
nuanced understanding of the advancements, challenges, and
potential benefits of leveraging generative DL techniques to
augment medical image datasets. This analysis will provide
valuable insights that inform future research endeavors and
facilitate the development of practical approaches in genera-
tive dataset augmentation for medical images.

A. REVIEWS
Li et al. [22] investigated the research status of GANs in the
context of medical images. The study analyzed several GAN
methods commonly applied in the medical image domain.
It examined the applications of GANs for medical image
synthesis and adversarial learning in various medical image
tasks. The study also discussed the existing open challenges
and identified future research directions in this field, aim-
ing to provide insights into the potential advancements and
opportunities for GANs in medical image analysis and syn-
thesis. The study highlights several challenges of usingGANs
in medical imaging, including datasets, training methods,
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reliability, and legality. Additionally, it discusses future direc-
tions for unsupervised learning, advancements in addressing
clinical needs, and the necessity for GANs tailored explicitly
for medical imaging applications.

In applying generative dataset augmentation to medical
images, Chen et al. [23] conducted a comprehensive and
systematic review encompassing various topics, including the
benefits of different augmentation models, loss functions,
and evaluation metrics. Additionally, the study examined
105 research papers specifically focused on medical image
augmentation. These papers were categorized based on the
specific anatomical regions represented in the images. The
review also documented the medical image datasets utilized
in the studies, the loss functions employed during model
training, and the quantitative evaluation metrics applied for
image augmentation. Overall, GAN-based medical image
augmentation was recognized as a promising approach to
effectively address the challenge of limited training samples
in medical image diagnosis and treatment models.

Garcea et al. [24] conducted a systematic literature review
to examine the data augmentation strategies employed in the
medical domain and their impact on the performance of clin-
ical tasks, including classification, segmentation, and lesion
detection. The study encompassed a rigorous analysis of over
300 articles published between 2018 and 2022. The review’s
findings underscore the effectiveness of data augmentation
techniques across different organs, imaging modalities, tasks,
and dataset sizes. Furthermore, the study identifies potential
directions for future research in data augmentation in the
medical domain.

B. PRACTICAL WORKS
In a more practical approach, Bissoto et al. [25] critically
reviewed using GANs for data augmentation and anonymiza-
tion in skin lesion analysis. The study shed light on the
persisting challenge of data scarcity in this domain despite
high-quality public datasets. The findings suggest caution in
adopting GANs for medical applications, as favorable results
primarily surfaced in out-of-distribution test sets. Notably,
preliminary experiments uncovered noise and experimental
protocol flaws in GAN-based data augmentation, emphasiz-
ing the complexity of transforming synthetic images into
reliable performance enhancements. Furthermore, GANs,
with their substantial computational requirements, bear the
potential to introduce biases and spurious correlations. While
GAN-based data anonymization showed promise, particu-
larly for out-of-distribution data, further research is required
to evaluate their effectiveness in preserving patient privacy.
These insights encourage researchers to exercise prudence,
carefully assess the justification for GAN usage, and explore
avenues for enhancing the reliability of GANs in data
augmentation and anonymization. Despite the challenges,
exploring scenarios where GANs enhance results can provide
valuable insights into fundamental aspects of DL within the
context of skin lesion analysis.

The study by Motamed et al. [26] addresses the critical
challenge of training CNNs effectively with limited data.
Data augmentation techniques are commonly used to enhance
the generalizability of neural networks; however, traditional
methods have limitations in generating plausible alterna-
tive data. The paper introduces GANs to generate new data
effectively. The proposed GAN-based augmentation method
is designed explicitly for chest X-ray images, focusing on
detecting pneumonia and COVID-19 cases. Comparative
experiments are conducted, pitting the GAN-based augmen-
tation against Deep Convolutional GAN (DCGAN) and tradi-
tional augmentation methods such as rotation and zoom. The
results showcase the superiority of the proposed GAN-based
augmentation method, particularly in improving sensitivity
and specificity. Statistical analysis, including the calculation
of the area under the ROC curve (AUC), demonstrates the
significance of this augmentation approach in enhancing the
performance of GANs for anomaly detection in chest X-
rays. In summary, the study presents IAGAN as a promising
semi-supervised GAN-based augmentation method, showing
statistical significance in improving GAN’s performance for
detecting pneumonia and COVID-19 anomalies in chest X-
ray images.

In medical image analysis, the importance of substantial
annotated data for the success of DL methods, particularly
CNNs, is undeniable. However, obtaining sufficient data
remains a significant challenge, especially for specific med-
ical learning tasks. Addressing this limitation, Xu et al. [27]
presents a novel data augmentation solution called semi-
supervised attention-guided CycleGAN (SSA-CycleGAN).
This approach leverages cycle-consistency GANs to gener-
ate synthetic tumor and normal medical images from their
counterparts. A semi-supervised attention module is also
introduced to enhance the model’s ability to capture crit-
ical details, resulting in more realistic synthetic images.
Experimental studies across three medical image datasets
with limited MRI images demonstrate the effectiveness of
SSA-CycleGAN in augmenting data. It excels in adding or
removing tumor lesions and generating realistic tumor and
normal images.

Furthermore, SSA-CycleGAN surpasses classic data aug-
mentationmethods in ResNet18-basedMRI image classifica-
tion tasks, emphasizing its potential to enhance classification
performance. Notably, this work distinguishes itself by focus-
ing on generating full-sized medical images and addressing
the challenge of generating abnormal images robustly, mak-
ing it a promising approach for data augmentation in the
medical domain. Future extensions may explore tumor/lesion
segmentation applications and expand to other medical
domains needing improved training performance through
generated abnormal images.

Overall, the existing medical image synthesis technology
is highly reliable, and combining GANs with other medical
image models demonstrates promising outcomes. Conse-
quently, GANs possess significant potential and promising
prospects for further development in medical imaging.
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The current section gives us a compelling image that the
field of generative dataset augmentation for upper gastroin-
testinal endoscopic images has been inadequately explored in
recent years regarding the positive evaluation of its influence
on model performance. Surprisingly, only a few reviews have
been conducted in this domain, and more notably, no prior
studies have been found investigating the application of
generative dataset augmentation for endoscopic images of
precancerous lesions in the stomach.

III. LITERATURE REVIEW METHODOLOGY
A. ELIGIBILITY CRITERIA
The eligibility criteria (outlined in Table 1) were established
to identify relevant studies that address the research questions
and exclude studies that are not applicable. These criteria
were explicitly designed to capture the relevant literature
while limiting the number of documents to those specific to
addressing research questions. Implementing these criteria
before conducting the literature search helps minimize bias
in the selection process [28]

TABLE 1. Inclusion (IC) and exclusion (EC) criteria.

1) IDENTIFICATION PHASE
Three well-established databases were included in the
search phase: IEEE Xplore, Web of Science, and MED-
LINE (through PubMed). The search was conducted through
Titles/Abstracts/Keywords. After several iterations, the final
version of the query was the following:

(‘‘Generative Adversarial Network’’ OR ‘‘Convolutional
Neural Network’’ OR ‘‘Generative Models’’ OR ‘‘Data
Augmentation’’ OR ‘‘Deep Learning’’ OR ‘‘Machine
Learning’’) AND (Intestinal OR Gastr∗ OR Stomach)

AND (cancer∗ OR lesions OR ‘‘Atrophic Gastritis’’ OR
’’metaplasia’’ OR Dysplasia) AND (Endosc∗)

The search was conducted on Jun. 14, 2023, and ranged
from documents available from 2017 to 2023. A total of
1448 documents were added to the screening phase. To main-
tain the contemporaneity and relevance of our findings,
a restriction was applied to the search process, confining
the scope exclusively to papers published since 2017. This
approach guarantees the inclusion of the most recent DL
algorithms in our results.

FIGURE 3. Study selection flow diagram.

IV. RESULTS
This section will present our results based on the eligibility
criteria outlined in Section III. We will begin by providing
a brief motivation for each problem, followed by a critical
examination of the algorithmic solutions reviewed, including
a thorough analysis of the datasets used, the number of sam-
ples, modalities, classes, and the authors’ reported results.
The outcomes of this review will be summarized in Table 2
and Table 3.

A. SCREENING PHASE
The initial search in the three databases retrieved 1448 docu-
ments, of which 660 were duplicates, resulting in 788 unique
works for the screening phase. The duplicates were identified
through individual titles and abstract reading. The screening
phase excluded 768 documents (through exclusion criteria),
resulting in 20 documents for full-text reading.

B. ELIGIBILITY PHASE
The resulting papers underwent a full-text assessment guided
by the exclusion criteria to assess their eligibility. The exclu-
sion criteria excluded six of the 20 documents left from
the screening phase. The papers that fulfilled the eligibility
criteria were processed to extract all the data necessary to
answer the proposed research questions and conduct a quality
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assessment. Given the limited number of studies investigat-
ing the application of GANs for dataset augmentation in
the classification of precancerous stomach lesions, studies
were included in this review despite needing to focus on
these lesions explicitly. These studies were chosen due to the
similarity in methods, datasets, and problem areas addressed,
which were deemed relevant to our research (IC3). Thus,
of the initial 1284 documents, 14 were deemed for data
extraction for the scope of this literature review.

C. CLASSICAL DATA AUGMENTATION
Data augmentation is a technique employed to artificially
increase the size of a dataset by applying various modifi-
cations to the original images. This strategy is particularly
useful in medical imaging as it can improve the performance
of machine-learning models by increasing data available for
training and reducing overfitting. In the literature, a series
of approaches for detecting and classifying gastrointestinal
lesions using DL techniques have been proposed, utilizing
data augmentation techniques to counteract the issue of insuf-
ficient sample availability. These techniques include image
rotation, image inversion, color transformation, and noise
addition. A summary of the works that have proposed these
processes of data augmentation can be found in Table 2.

1) ALGORITHMS
Standard, well-known data augmentation methods were used
by five works considered in this review, including image
rotation [29], [30], [31], [32], [33], image flipping [33], image
cropping [29], [32], image inversion [31], color transforma-
tion and noise addition [31].

A common approach observed by Itoh et al. [30],
Yan et al. [32], and Qiu et al. [33] was the use of trans-
fer learning along with fine-tuning techniques to increase
the model’s performance and dispute the lack of available
data. A pre-trained model was obtained using a large dataset
of ImageNet natural images and freezing the shallow net-
work for fine-tuning. Transfer learning has emerged as a
popular approach for enhancing the performance of deep
CNNs in computer vision tasks. By leveraging the knowledge
learned from pre-trained CNNmodels on large-scale datasets,
transfer learning enables fine-tuning the model to a new
task using a smaller dataset. This approach can significantly
boost the model’s performance and alleviate the scarcity of
training data. Fine-tuning allows the model to adapt to the
specific characteristics of the new task while still retaining
the generic features learned from the pre-trained model. This
results in improved accuracy compared to training a model
from scratch with a limited dataset. Furthermore, transfer
learning reduces the risk of overfitting and can reduce the
training time required to perform well. These advantages
make transfer learning using fine-tuning a valuable approach
for CNNs in practical applications with limited training
data [34], [35], [36].

On a different approach, Ham et al. [37] conducted a study
utilizing AutoAugment to identify the most suitable data

augmentation approach for a specific dataset, followed by
an additional augmentation technique using Grad-CAM. The
authors introduced an image augmentation method based on
Grad-CAM to preserve lesion characteristics while enhanc-
ing anomaly classification performance based on the work
previously made by [38]. This approach improved the clas-
sification performance of all the models evaluated. The
AutoAugment increases data by applying geometric trans-
formations, such as rotation, to images. These changes can
cause severe transformations and slow down training, lead-
ing to poor weight convergence and limited performance
improvement.

In contrast, the Grad-CAM augmentation method creates
an image by synthesizing the Region of Interest (ROI) in the
original image, thus allowing for augmentation while pre-
serving the original image’s color and lesion morphological
characteristics. This allows for increasing the data signifi-
cantly without interfering with the training convergence. The
Grad-CAM augmentation method also allows for a more sig-
nificant data increase than the general augmentation method.
The study extracted ROI from 551 selected images, increas-
ing 655 abnormal images to 360,905.

In their work, Chae and Cho [39] employed Multi-Filter
AutoAugment (MFAA) in conjunction with AutoAugment
to enhance the Vision Transformer’s classification perfor-
mance for identifying healthy tissue, gastric lesions, and
early GC. They recognized that although AutoAugment aids
in data augmentation, it can introduce erroneous or mis-
placed features in the augmented data, potentially impeding
performance or failing to yield substantial improvements.
To address this challenge, the authors proposed MFAA as a
solution. MFAA incorporates a data filtering procedure that
utilizes the classification model trained with original data to
process the augmented data generated by AutoAugment. The
weights of the classification model retain the crucial feature
information necessary for classifying the target object. Lever-
aging this insight, the authors filtered the augmented data,
allowing only the relevant data generated by AutoAugment to
remain. This methodology ensures that only the augmented
data containing the appropriate features are retained, over-
coming the limitations posed by the indiscriminate use of
all augmented data. Furthermore, classification models rely
on distinct architectural designs and objectives to extract
and employ diverse features for object classification. Tak-
ing advantage of this aspect, the authors employed various
classification models for filtering. This approach selectively
retains augmented data with essential features for object
classification, presenting the primary advantage of MFAA.
Two classification models, ViT and BiT, were trained and
used for MFAA, and notable performance improvements
were achieved in the classification of healthy tissues, gas-
tric lesions, and early GC using the training data for the
classification model. The results demonstrated an impressive
F1-score of 0.92 and an AUC of 0.97. These findings high-
light the approach’s efficacy in enhancing the accuracy and
precision of the classification task across all target categories;
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TABLE 2. Classical Data Augmentation reviewed articles. Acronyms used: Image Modality (IM); Institutional Review Board (IRB); White light endoscopy
(WLE); Narrow band imaging (NBI); Magnifying endoscopy with NBI (ME-NBI); Region of interest (ROI); Area under the ROC Curve (AUC); Intersection over
Union (IoU); Data Augmentation (DA); Accuracy (Acc); Sensitivity (S); Specificity (Sp); Precision (P); Recall (Rc); F1-score (F1).
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moreover, the effectiveness of the proposed method extended
beyond the original dataset used for training. Significant
performance improvements were observed when applied to
additional gastroscopy data obtained from an independent
institution. This outcome underscores the robustness and
generalizability of the method, as it demonstrated consistent
success in classifying external data sources.

In line with the significance of training data quality and
quantity for CAD systems, Lee and Cho [40] proposed a
novel data augmentation technique. Their approach involved
synthesizing abnormal and normal endoscopic images using
Poisson blending, aiming to generate visually natural images
that capture the pronounced intensity variation along lesion
boundaries. By adopting this method, the authors sought to
improve the training data by introducing more realistic and
diverse samples. The proposed technique yielded remark-
able results, as the EfficientNetV2 model trained with the
augmented dataset achieved the highest classification per-
formance across all evaluation metrics. Notably, this model
exhibited an average improvement of approximately 29%
compared to the model trained solely on the original dataset.
Such a substantial enhancement in classification performance
underscores the effectiveness of the proposed data augmen-
tation technique.

The other works reviewed in this section [29], [31]
relied on more classic data augmentation methods, such as
image rotation, cropping, inversion, color transformation, and
noise addition. The improvement of the classification perfor-
mance was primarily obtained through improvements in the
algorithm of the classification models. It is shown in Table 2
that different combinations of classical data augmentation
were utilized for dataset expansion. All the works resorted to
different CNN frameworks for their classification challenge,
applying different changes for a more specific network.

Different methods of dataset preprocessing were observed
in the papers reviewed. Some of the dataset preparations for
the training phase included the cropping of redundant image
parts [33], for example, black frames of the selected original
images for the development of the ID system [32]. In a differ-
ent work, realized by Hatami et al. [29], the images available
on the dataset presented a size of 460×475, and resources to
the ROI and processes such as crop and rotation by image pre-
processing experts ended up reaching 3673 images with a size
of 32 × 32. Finally, in two of the works reviewed [31], [32],
the endoscopic images were randomly divided into K groups
as a form of cross-validation to help prevent overfitting.

It is worth mentioning that only the Yan et al. [32] work
resorted to some explainable AI to help us understand and
interpret predictions made by the CNN model. Attention
maps were generated using the Grad-CAMmethod, allowing
us to observe where on the image was a higher contribution
to the classification decision given.

2) DATASETS
Medical imaging datasets are often small due to the high cost
and complexity of collecting and annotating medical data.

Data augmentation can be used to artificially increase the size
of the dataset, which can help to improve the performance
of DL models. All the considered works used private data to
train and validate the models. The datasets varied consider-
ably in size, the types of imaging modalities, and the number
of classes associated with different anatomical landmarks
(see Table 2). Dataset size ranged from a few hundred (e.g.,
596 in [30]) to hundreds of thousands (e.g., 369,905 in [37])
of images after the implementation of data expansion.

Various reviewed works used different criteria for selecting
images for their datasets. They all included upper endoscopic
images focused on the stomach and obtained written consent
from patients or protected their identities for ethical reasons.
While some works prioritized obtaining high-quality images
only [33], others focused on the specific endoscopic tech-
nique used for acquiring the images [37]. In Yan et al. [32]
work, both criteria were followed, as only images obtained
with NBI or ME-NBI without any blurring, lack of focus,
halation, or mucus were accepted from their dataset.

Each dataset’s total number of classes was small (2-5).
Itoh et al. [30] focused on detecting Helicobacter pylori
infection in the stomach by constructing a CNN optimized for
the purpose in question by learning endoscopic images. Only
two classes were present, ‘‘Positive’’ and ‘‘Negative’’ for HP
infection. In the case of [31], the model can output five classi-
fication results: advanced ‘‘Gastric Cancer’’, ‘‘Early Gastric
Cancer’’, ‘‘precancerous lesions’’, ‘‘normal’’, and ‘‘benign
lesions’’.

In the works reviewed, the datasets were composed of dif-
ferent image modalities, where some considered only white
light endoscopy (WLE) frames [30], [37], [39] while oth-
ers considered narrow-band imaging (NBI) and magnifying
endoscopy with NBI (ME-NBI) data [32], [33]. Furthermore,
three need to define from what endoscopic technique the
dataset was obtained [29], [31], [40].

D. DATA AUGMENTATION USING GANs
The use of GANs to generate high-quality endoscopic images
could be used as a method to reduce dataset bias by gener-
ating new images to generate large amounts of data for the
performance improvement of DL models.

A summary of the works that have proposed GAN
approaches as a method of expanding datasets can be found
in Table 3. It is worth mentioning that all of the works
presented in Table 3 were the result of the applied method-
ology in Section III. Three of the six works presented do
not directly discuss stomach precancerous lesions [42], [43],
[44]. However, they seemed worth analyzing due to their
relevant methodology using GANs on augmenting datasets
containing endoscopic images and the lack of available bib-
liography concerning precancerous stomach lesions.

1) ALGORITHMS
The selected studies apply GANs for medical dataset expan-
sion, followed by a DL algorithm to classify or detect
cancerous lesions. To improve the model’s generalization
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TABLE 3. Data Augmentation through GANs reviewed articles. Acronyms used: Image Modality (IM); High-definition white-light endoscopic (HD-WLE),
Blue light imaging (BLI), and Linked color imaging (LCI), Data Augmentation (DA); Accuracy (Acc); Sensitivity (S); Specificity (Sp); Precision (P); Recall (Rc);
F1-score (F1).

ability and reduce the risk of over-fitting, Cui et al. [45]
collected a data set of gastroscopy images and enhanced it.
An improvedDCGANmethodwas combinedwith traditional
methods to expand the finely annotated early GC data set.
The Mask R-CNN+BiFPN model was proposed to enhance
feature fusion and improve the detection effect of early GC
lesions. This paper improves the feature pyramid network
(FPN) in Mask R-CNN into a BiFPN network. BiFPN net-
work was first proposed as a weighted bidirectional feature
pyramid network, an efficient bidirectional cross-scale con-
nection and weighted feature fusion network.

The DCGAN architecture replaces pooling layers with
fully convolutional ones. It produces high-quality results
while stabilizing training more effectively than the origi-

nal GAN approach. This model or improved versions of
it were used by several of the works considered in this
review ([43], [44], [46], [48]). Kim et al. [46] combined
the DCGAN model with 25 optimized augmentation policies
for the CIFAR-10 dataset through AutoAugment to augment
the data, and gastroscopy images were classified as normal
or abnormal through the Xception network. Sasmal et al.
[44] used the DCGAN architecture to train each polyp class
separately, using the same 3-fold cross-validation process
and data partition. In all the steps of the learning proce-
dure, a complete separation between train and test subsets
was taken. After the generator had learned each polyp class
data distribution separately, it was able to synthesize new
examples by using an input vector of Gaussian distributed
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samples, i.e., noise. The classification was done using a
fully trained CNN to classify endoscopic polyps. A variation
of this model was also used by de Souza Jr et al. [43] to
cope with the small number of samples and to evaluate the
robustness of data-augmented databases concerning Barrett’s
esophagus and adenocarcinoma using different CNN archi-
tectures. To fulfill that purpose, they considered the DCGAN
architecture for the data augmentation due to its simple
implementation and high generalization, as well as two CNN
architectures, i.e., LeNet-5 and AlexNet.

While DCGAN presents the advantage of being suitable
for a wide range of applications, other GAN architectures
offer different features in their concepts. Sams and Shomee
[42] set the objective of proposing GAN-based methods to
fight the lack of substantial amount of data required to use in
any DL-based detection algorithms for polyp detection. Their
work initially used a StyleGAN2-ada to generate random
polyp masks, followed by a conditional GAN that was used to
translate these composite images into synthetic polyp images.
The StyleGAN2-ada is then used to create composite images
with healthy GI images. At the same time, the conditional
GAN (cGAN) in this work adds a constraint model variable
to guide the data generation process, making the conver-
gence to a specific target faster. To evaluate the effect of
synthetic images on detecting polyps from gastrointestinal
tract images, the YOLOv4 object detection model was used.

In this section, the works reviewed involved, in some
cases, the strict filtering, processing, and annotation of the
dataset [45]. In the work done by de Souza Jr et al. [43],
two different dataset preprocessing methods were applied to
each respective approach: the image-based and the patch-
based approach. For the first approach, the preprocessing
step considered resizing the images to feed the data augmen-
tation and the classification networks. For the patch-based
approach, the images were split into patches, with the idea
of covering the entire image with a sliding window of 200 ×

200 pixels and overlapping 50 pixels in horizontal and vertical
directions. Finally, in two of the works reviewed [43], [44],
the endoscopic images were randomly divided into K groups
as a form of cross-validation to help prevent overfitting.

2) DATASETS
The considered works reviewed in this section use a mix
of private and public datasets. All the works in this section
considered only WLE frames except the work done by de
Souza Jr et al. [43], where there is a combination of WLE and
NBI images. Furthermore, in Sams and Shomee [42], there
needs to be a mention of the endoscopic technique in which
the dataset was obtained. Even though the initial number of
samples presented in each dataset from the reviewed articles
differs considerably, all of them suffer an increase of more
than double the final number of samples through synthetic
data generation. The same variability was observed in size,
the types of imaging modalities, and the number of classes
associated with different anatomical landmarks from each
dataset studied.

V. DISCUSSION
Based on the findings reported in Section IV, in this section,
we describe the main trends revealed by the analysis of the
works reviewed for the impact of classical data augmentation
and GANs in gastric lesion detection and lesion characteri-
zation. Moreover, we set the pillars for a roadmap towards
applying GANs in generating synthetic data for detecting and
classifying gastric precancerous lesions.

A. CLASSICAL DATA AUGMENTATION
For medical images, the small volume of data and the need
for specialist physician assistance in labeling often make the
collection of data sets difficult, and it is often impossible to
collect a large number of images. To improve the model’s
generalization ability and reduce the risk of over-fitting, data
enhancement should be used to expand the data. Classi-
cal augmentation techniques on endoscopic images mainly
include affine transformations such as translation, rotation,
scaling, flipping, shearing, color transformation, and noise
addition.

The authors used the augmentation methods applied to the
works reviewed in section IV to contradict the lack of data
available. The considered works report an average classifica-
tion performance with sensitivity and specificity values often
more than 89%, which indicates the relevance of AI algo-
rithms for gastric lesion detection and the need for some data
augmentation methods on the respective datasets. Ham et al.
[37] achieved a performance improvement of 0.835 and
0.903 in terms of F1 score and AUC on their Xception model
through a data augmentation approach using Grad-CAM.
In the case of Yan et al. [32], the initial number of images
acquired needed to be increased to train the CNN models.
The gastric GIM dataset was augmented to increase the
training samples’ size and improve the ID system’s robust-
ness. Overall, in medical image classification and detection,
data augmentation has shown that it is an effective method
for improving the performance of CNN algorithms. Also,
by synthesizing images with realistic intensity variations and
blending abnormal and normal samples, Lee and Cho. [40]
method effectively enriched the training dataset. The result-
ing model showcased superior classification capabilities,
demonstrating the significant impact of the augmented data
on the CAD system’s performance. Nevertheless, some lim-
itations can be registered when applying data augmentation
methods on a dataset, e.g., improvements in image synthesis
methods are required for more realistic augmented images
and the support of transfer learning through fine-tuning.

It was impossible to draw statistically significant conclu-
sions regarding the performance obtained by the different
methods considered for the augmentation of the dataset.
This was due to the significant differences in the datasets
used for training and validations. These differences involve
the number of images used, the number of classes consid-
ered restrictions in the imaging modalities adopted, and the
pre-selection of informative frames. Thus, the performance of
the different classification tasks cannot be directly compared.
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However, as highlighted in Ham et al. [37], Itoh et al. [30]
and Yan et al. [32], there is a pressing need for more efficient
data augmentation methods in the medical field. One critical
challenge classical data augmentation methods face is the
limited generalization of the augmented dataset’s outcomes.
Many ID systems utilized in the reviewed papers rely on
high-quality images for training and testing CNN classifiers.
While this approach ensures accuracy, it may lead to limited
generalization when faced with the variability of real-world
data, which often includes lower-quality images. To address
this limitation, [32] proposed incorporating poor-quality
images in the data augmentation process. By introducing
such images, they aim to enhance the generalization capabil-
ities of ID systems. In particular, they suggest synthesizing
new endoscopic images with a high Signal-to-noise Ratio
(SNR), achieved through the utilization of additional GAN
architectures such as CycleGAN or Multi-Scale Gradients
GANs. These advanced GAN-based models can generate
high-quality yet diverse synthetic images that bridge the gap
between the need for high SNR images and the benefits of
introducing variation through data augmentation. By thought-
fully integrating such synthetic images into training datasets,
researchers can improve the robustness and generalization
of CNN classifiers in the challenging domain of stomach
precancerous lesion identification.

B. DATA AUGMENTATION USING GANs
Generative DL techniques, specifically GANs, have been
widely investigated in generating synthetic data in recent
years. The objective of GANs is to learn the underlying
distribution patterns of input data through a set of images and
subsequently generate new samples that closely resemble the
learned distribution. GANs have gained significant attention
in medical applications due to their potential to generate
synthetic data. The study of the applicability of GANs for
synthetic data augmentation and its effect on classification
performance was reviewed in section IV, Table 3, of this
work.

Two of the works reviewed adopt the use of some classic
data augmentation methods to complement the synthetization
of data via Generative models ( [45], [46]). At the same
time, the other four relied solely on synthetic data generated
by the GANs to augment the dataset used. Kim et al. [46]
achieved the best classification performance in the Xception
proposed model when the DCGAN and the 25 augmentation
policies were implemented to augment the training data. The
same was observed in the work presented by Cui et al. [45],
where the improved DCGAN was first used to expand the
unsupervised data of the first type of lesions in the fine
labeling data. After the expansion, all images were expanded
in a ratio of 1:5 using classical data augmentation. The final
accuracy achieved by the classification models of this work
was 85.10% and 89.42%.

The performances of the models reviewed verified the
advantage of using synthetic data over classical data augmen-
tation. Sasmal et al. [44], when training the CNN used for

polyp classification with only data generated with GAN, i.e.,
using synthetic data augmentation, the classification accuracy
for the public dataset namedDB1 and the private dataset, DB2
(DB1 75%, DB2 88.33%) was found to be higher compared
to the dataset where only classical data augmentation was
used (DB1 61.29%, DB2 69.7%). de Souza Jr et al. [43] also
achieved better classification performance from the synthetic
dataset, where 25%, 50%, and 75% of the synthetic sam-
ples were randomly added to the original training set. The
more synthetic samples were added for learning purposes,
the higher the model’s accuracy. Such a finding reinforces
the impact of high-quality data on the model’s generalization
when dealing with endoscopic imaging. The same results
were observed in Sams and Shomee. [42], where the peak
results on the Precision, Recall, F1-score, and IoU level of
detection of polyps from the GI tract of the YOLOv4 were
obtained in the dataset containing the most significant num-
ber of synthetic polyp images (84%; 74%; 79% and 64.83%).

However, having access to significant amounts of synthetic
data is only sometimes correlated with better performance.
In the work realized by Kanayama et al. [48], when the
number of synthesized images input to the training dataset
was changed, the model achieved the highest Average Pre-
cision score when 20,000 synthesized images were added
(0.632 ± 0.013), and the performance of the model was low-
ered when added a more significant number of images. This
indicates that the synthesized images have biases, and this
causes poor effects when an excessive number of synthesized
images is added.

It is also worth noting that de Souza Jr et al. [43] eval-
uated whether generating synthetic patches or the whole
image is more effective when augmenting the dataset with
synthetic data augmentation. The proposed approach in this
work was validated over two datasets of endoscopic images,
with the experiments conducted over the full and patch-split
images. The best results were obtained using the patch-based
approach. The same statement holds for both classes of inter-
est, i.e., Barrett’s esophagus and adenocarcinoma. Working
with patches allows us to access considerably larger datasets,
strongly influencing the GANs training step. It is also crit-
ical to define that the generation of full images presents
a high computational cost, while patch generation requires
less computational power due to the lower output resolution.
Patches consider local information only while using the full-
image content, which may make the learning process prone
to errors during the approximation of the distribution of the
pixels that belong to healthy and cancerous regions. The same
method of generating synthetic patches was implemented by
Kanayama et al. [48], where the dataset bias was lessened
because the method allows lesion patches to be attached to
various parts in normal images.

Heterogeneity in the kinds of cancerous lesions classes
considered in the different worksmakes it difficult to compare
their performance fairly. Other differences involve the num-
ber of images used and the number of anatomical landmarks
considered. However, one common factor can be observed
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in all the works reviewed, which is the improvement of the
classification performance of the DL model with the addi-
tion of GAN-generated Synthetic Data. The literature study
revealed a consistent trend of improved results when utilizing
synthetic data augmentation generated by GANs compared
to traditional data augmentation techniques. Despite some
studies incorporating both methods, it was observed that
the utilization of GANs alone for dataset expansion yielded
satisfactory results and superior performance compared to
traditional methods. ThemainGAN framework utilized in the
reviewed papers was the DCGAN framework, even though
some level of transformation on the original framework of
the DCGAN was applied to make it more specific for the
dataset in hands. To generate data through DCGAN, there is
a limitation in that the more significant the amount of data,
the more diverse and high-quality data can be generated.

A DCGAN constitutes a foundational architecture within
the GAN framework. They distinguish themselves using
deep convolutional layers in the generator and discrimi-
nator networks. Renowned for their simplicity and effec-
tiveness, DCGANs are a robust baseline for numerous
image-generation tasks. To ensure the successful training of
DCGANs, several prerequisites must be considered. These
include access to a moderately sized dataset characterized by
sufficient diversity.

Furthermore, tuning critical hyperparameters such as
learning rates and batch sizes is imperative to attain stable
training outcomes. Cui et al. [45] recognized the importance
of optimizing the architecture of the DCGAN generator for
proficient image generation. They initially configured the
convolutional layers with dimensions of 1024, 512, 256, 128,
and 3. However, they refined this architecture, adjusting it
to 512, 256, 128, 64, and 3, which played a pivotal role
in achieving notable outcomes. In the DCGAN architecture
by Sasmal et al. [44], they employed a unique design that
included a fully connected layer reshaped to dimensions
of 8 × 8 × 1024, along with the incorporation of five
fractionally-strided convolutional layers. This unique archi-
tectural configuration significantly contributed to generating
high-fidelity synthetic polyp images.

Furthermore, the accompanying discriminator network
featured four convolutional layers, enhancing its ability
to discriminate between genuine and synthetic images.
In both de Souza Jr et al. [43] and Kanayama et al. [48]
studies, the emphasis was placed on hyperparameter opti-
mization rather than detailed architectural modifications.
Kanayama et al. [48] work prioritized the fine-tuning of
hyperparameters, specifically adopting a learning rate of
0.0002 and a minibatch size of 64. Although the study did
not delve into extensive architectural specifics, this opti-
mization strategy likely played a pivotal role in achieving
superior results. Similarly, Souza Jr et al. [43] investigated
the influence of batch size and other hyperparameters within
the DCGAN-based data augmentation framework. While
this research did not explicitly outline architectural alter-
ations, it centered on the empirical exploration of varying

batch sizes, particularly examining batch sizes of 16 and
32 samples. This exploration yielded valuable insights into
the nuanced effects of batch size on the resulting output.
Notably, both studies underscored the critical importance of
hyperparameter optimization as a fundamental factor con-
tributing significantly to their favorable research outcomes
Sams and Shomee. [42] used a different approach, set-
ting them apart from conventional methods. Their approach
entailed a multifaceted utilization of GANs, combining
the capabilities of StyleGAN2-ada, CycleGAN, and cGAN
frameworks. StyleGAN2-ada, known for its style-based gen-
erator, enabled precise control over image attributes, which is
crucial for creating diverse and high-quality synthetic images.
CycleGAN, on the other hand, excels in image-to-image
translation tasks, making it valuable for synthesizing real-
istic images. Including a conditional GAN further extended
their capabilities, allowing for generating images with spe-
cific desired characteristics. Therefore, the StyleGAN2-ada
introduced a novel architectural paradigm, incorporating a
data augmentation layer with 18 transformations before the
discriminator layer. While not elaborated in exhaustive detail,
this innovative modification markedly improved the gener-
ation of diverse and lifelike polyp masks, mimicking the
intricacies of real polyps. This advancement substantially
elevated the quality and diversity of synthetic data, form-
ing the foundation for subsequent phases of their research.
Moreover, their study seamlessly integrated the CycleGAN
framework, featuring an extended generator and discrimina-
tor architecture, to synthesize realistic polyp images from
composite inputs. Notably, the generator network was metic-
ulously designed, commencing with a 7 × 7 convolutional
layers, followed by 15 ResNet blocks and fractional-strided
convolutional layers. Although precise architectural specifics
were not provided, these modifications to the CycleGAN
framework likely contributed significantly to generating
high-fidelity synthetic polyp images. Additionally, Sams
and Shomee. [42] harnessed the power of a cGAN with
tailored hyperparameter settings, including a cycle consis-
tency weight (λ) of 50 and gradual learning rate reduction.
They introduced identity mapping loss, optimally weighted
at 0.3 times the cycle loss, to ensure the faithful repro-
duction of color profiles from source images within their
synthetic polyp images. This identity mapping loss, repre-
sented as Liden (G, F), was pivotal in preserving consistent
color profiles. In the end, this amalgamation of architectural
enhancements, meticulous hyperparameter optimization, and
the judicious integration of StyleGAN2-ada, CycleGAN,
and cGAN frameworks, alongside the utilization of identity
mapping loss, played a pivotal role in advancing the qual-
ity, diversity, and realism of synthetic polyp images. These
innovations ultimately culminated in heightened research
outcomes, underlining the transformative potential of GANs
in medical image synthesis.

There were also different approaches utilized by the
authors regarding whether it is more effective to generate
synthetic patches or the whole image. One advantage of
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working with patches instead of whole image approaches in
GAN models is that it allows for more fine-grained control
over the generated images. By working with smaller patches
of images, the GAN model can focus on specific regions
or details of the image rather than trying to generate the
entire image at once. This can lead to more realistic and
higher-quality generated images, as the model can pay more
attention to the specific features and characteristics of the
patches it works with. Additionally, working with patches can
reduce the computational requirements of the GAN model,
as it processes smaller amounts of data at a time. This can
be useful in cases where computational resources are limited,
or the dataset is particularly large.

One of the possible limitations when utilizing GANs for
dataset augmentationwas found in thework presented here by
Kanayama et al. [48], where they encountered a phenomenon
known as ‘mode collapse.’ Mode collapse occurs when a
GAN generates a limited subset of the potential output space,
failing to capture the full diversity of the underlying data
distribution. This limitation can result in the production of
synthetic data that needs more variability, potentially hinder-
ing the ability of DL models to generalize effectively. In his
case, this issue stemmed from the limited size of the lesion
image dataset employed.

In this sense, there is a clear opportunity for applying more
modern and sophisticated generative DL architectures that
could provide increased results in detecting and classifying
stomach precancerous lesions through endoscopy image anal-
ysis. In this field, novel contributions in the development of
machine learning algorithms for dataset augmentation can be
envisioned in the following directions:

1. Beyond classical data augmentation: Classical data
augmentation is a great tool to approach the com-
mon problem of lack of quality data in the medical
field. However, generative DL architectures are pow-
erful tools for data set augmentation that can provide
more realistic, diverse, and high-quality synthetic data
compared to classical data augmentation techniques.
Ultimately, this can improve machine learning models’
performance and robustness.

2. Generative models for data augmentation: Generative
models can be utilized to address the dearth of publicly
available data and the lack of representation of multiple
lesion classes by synthesizing images of lesions. GANs
can generate synthetic data that is highly similar to real-
world data, which can lead to better performance in
classification and detection tasks.

3. Test of new GANs: Most works reviewed in this paper
resorted to the DCGAN framework for dataset expan-
sion. However, it is essential to note that different
types of GANs are available, such asWasserstein GAN,
cGAN, and others, each with unique characteristics and
capabilities. There is a need to emphasize the impor-
tance of evaluating the performance of different types
of GANs in the classification improvement of stomach
precancerous lesions. The use of conditional cGANs is

suggested, as the samples generated with this type of
GAN are annotated and of high quality for further train-
ing DL models. This could improve the performance,
robustness, and generalization of the results.

VI. CONCLUSION
This literature review evaluated the current state of the
usage of GANs in enhancing DL models for the detection
and classification of stomach precancerous lesions through
endoscopic image analysis. Twelve articles were considered
relevant per the inclusion criteria, where a few were included
even though they did not focus specifically on stomach pre-
cancerous lesions. This gave us the perception that this area is
attractive for future research. From the studies identified with
this review, we were able to answer the proposed questions as
follows:

• Q1: How often and effectively are GANs used to
improve the classification performance of stomach
precancerous lesions through dataset augmentation in
endoscopic image analysis?

• R: A limited number of available studies have explored
the utilization of generative models for dataset aug-
mentation, specifically in the context of stomach pre-
cancerous lesions. Among the reviewed works, various
GAN frameworks, including DCGAN, StyleGAN, and
CycleGAN, have been employed to synthesize new data
for augmenting the dataset of stomach precancerous
lesions. These GAN-based approaches have demon-
strated promising results, contributing to improvements
in the performance of DL classificationmodels. Notably,
using GANs for dataset expansion has increased diver-
sity in the augmented data, ultimately enhancing the
robustness and generalization capabilities of DL mod-
els. Some classification models achieved accuracy rates
of up to 90% when trained on datasets that included
synthetic images. The classification results improved in
most cases asmore synthetic imageswere integrated into
the dataset.

• Q2: How do we best apply GANs to improve pattern
detection in endoscopic images?

• R: The optimal application of GANs for enhancing
pattern detection in endoscopic images depends on the
specific characteristics of the images and patterns in
question. When considering GAN-based improvements,
assessing whether generating synthetic patches or entire
images is more suitable is essential. Additionally, the
practical application of GANs for enhancing pattern
detection in endoscopic images is contingent on various
factors, with a crucial consideration being the cus-
tomization of GAN architecture and hyperparameters.
While established baseline architectures can serve as a
valuable starting point, it is paramount to recognize that
each dataset and pattern detection task may necessitate
personalized adjustments. The unique characteristics
of endoscopic images, such as variations in lighting,
tissue types, and lesion appearances, demand a tailored
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approach. This leads to the realization that there is no
universal ‘one-hit formula’ when employing GANs in
this context. In the works we have reviewed, it becomes
evident that researchers often embark on a journey of
architectural and hyperparameter customization to align
the GAN model with the specific nuances of their
dataset. Moreover, hyperparameters like learning rates,
batch sizes, and regularization terms are not standard-
ized but meticulously adjusted to balancemodel stability
and convergence. This level of personalized adaptation
extends to conditional GANs, where setting cycle con-
sistency weights and identity mapping loss factors is
guided by the specific color and pattern requirements
of endoscopic images. The successful application of
GANs in endoscopy necessitates recognizing that the
architecture and hyperparameters should be fine-tuned
to meet the distinct challenges posed by each dataset and
pattern detection task.

• Q3: Do the results obtained with dataset augmentation
through GANs surpass the ones obtained with classical
data augmentation?

• R: An examination of the comparative effectiveness
of GANs and traditional data augmentation techniques
reveals nuanced outcomes across different scenarios,
consistently showcasing the advantages of synthetic data
over classical augmentation. Specifically, when models
were trained for specific tasks using solely GAN-
generated data, superior performance was observed,
outperforming datasets augmented only with classical
methods. Comparable trends were noted in other works,
where increased utilization of synthetic samples consis-
tently led to elevated model accuracy, precision, recall,
F1-score, and IoU levels when compared to datasets aug-
mented through classical methods. The notable superior-
ity of GANs in these comparative analyses emphasizes
their potential for more effective augmentation, reinforc-
ing the significance of synthetic data in enhancingmodel
performance. However, it is crucial to acknowledge that
the correlation between access to significant amounts of
synthetic data and improved performance is not univer-
sal. Some works found an optimal balance, achieving
better results with a specific quantity of synthesized
images, while excessive synthesis led to diminished per-
formance. This highlights the nuanced nature of data
augmentation, emphasizing the need for a thoughtful
approach that recognizes the varying effectiveness of
GANs and classical augmentation methods based on
dataset characteristics and model requirements.

It is important to note that the use of GANs for data aug-
mentation is still an evolving field, and there are limitations to
consider, such as computational complexity and the potential
for mode collapse. Nevertheless, the work presented in this
literature review shows that GANs are a viable alternative to
classical data augmentation techniques and offer significant
potential for improving the performance of DL models to
classify stomach precancerous lesions in endoscopic images.

Future research in the application of GANs for enhancing DL
models in stomach precancerous lesion classification could
explore novel GAN architectures beyond the DCGAN frame-
work. While the reviewed works predominantly employed
DCGAN, the exploration of alternative architectures such as
conditional GAN, Wasserstein GAN, and Big GAN holds
promise for further improving the classification performance.
This avenue of investigation could provide valuable insights
into the comparative effectiveness of different GAN archi-
tectures in augmenting endoscopic datasets of precancerous
stomach lesions.
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