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ABSTRACT Today’s organizations have been embracing digital transformation to boost the quality of
living within IoT-based smart-sustainable environments (e.g., healthcare, factories, vehicles, etc.). At the
same time, augmenting the network infrastructure surface with billions of new devices accommodating
myriad applications creates the need for network automation through different technologies, such as
Software-Defined Networking (SDN), Network Function Virtualization (NFV), and Big Data Analytics
(BDA). However, to devise an end-to-end self-driving and autonomous network, the manual configuration
of network parameters and devices should be limited or even vanished. The recently emerged Intent-based
Networking (IBN) paradigm introduces an additional building block enabling the network to adapt its
settings automatically according to high-level user demands (intents) while hiding low-level details of
the underlying infrastructure (e.g., configurations in millions of network devices). This paper initiates a
deeper discussion regarding service automation over a Hospital 4.0 environment, from translating user
requests to service profiling (unstructured intent refinement), deployment, and assurance. First, we discuss
the design challenges of joining an intent-based framework as a convenient plane to an SDN-based platform.
Following, we focus on an intelligent intent refinement system based on the Named Entity Recognition
(NER) approach, an application of Natural Language Processing (NLP). This IBN-NER system deploys an
extensible network policy model and the pre-trained Google’s BERT (Bidirectional Encoder Representations
from Transformers) algorithm, fine-tuned with a Healthcare 4.0 dataset. The proposed intent refinement
framework is evaluated via extensive simulations with an incremental number of heterogeneous intents.
Our simulation results show promising performance with only one epoch for all dataset sizes and all policy
model entities tested. For example, with 5000 intents, our system provides the highest accuracy with 86%;
meanwhile, the well-known benchmarks in the NER problem, namely BiLSTM-CRF, BiLSTM, and LSTM,
with ten epochs, provide 57%, 31%, and 26%, respectively.

INDEX TERMS Healthcare 4.0, intent-based networking, network automation, intent refinement, service
policy mapping, named entity recognition.

I. INTRODUCTION
Smart environments, particularly the ones related to Industry
4.0, are fundamentally changing services and production
worlds. For example, the health domain and its whole
ecosystem is moving towards healthcare 4.0 by embracing
key enabling technologies, such as the Internet of Things
(IoT), Cyber-Physical Systems (CPS), and data analysis,
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among others. With this transformation, global spending
on healthcare is expected to increase to $18.28 trillion
worldwide by 2040 to build up agility and effectiveness in
all directions [1], [2].

At the same time, the emergence of network softwarization
and enhanced device programmability and monitoring
offer the pedestal for autonomic management. Thus,
an autonomous network, or self-driving network, has become
a strong worldwide interest for service providers to fully
automate massive heterogeneous network infrastructures
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[3]. This automation should cover all aspects of network
design (i.e., configuration, optimization, healing, etc.) while
adapting to an ever-increasing infrastructure scale. The latter
is of utmost importance for IoT and smart environments (e.g.,
hospitals, factories, campuses, homes, and offices), where
the number of devices and applications disfavors human
intervention and manual configuration. To this end, various
industrial companies, such as Cisco [4], IBM [5], Juniper
[6], etc., are already making efforts to design end-to-end
autonomous networks to ensure efficient, reliable, and secure
management of massive smart environments.

Automating network management operations is conducted
by different technologies, such as Software-Defined Net-
working (SDN), Network Function Virtualization (NFV), and
Artificial Intelligence (AI) models. Intent-Based Networking
(IBN) is a novel paradigm that can be proved to be a critical
component towards fulfilling the arrival of a next-generation
management system, which is the zero-touch service and
network management (ZSM) [7], [8].
IBN allows users to express in a declarative way (e.g.,

human-natural language) general high-level interests or
concerns (e.g., service, performance, data storage, etc.)
and in an autonomous way to configure the underlying
network infrastructure according to users’ intents. It is
beyond a game changer, where using advanced data analytics
mechanisms, intents are translated into network policies
(i.e., executable scripts) and implemented with the power
of IT automation into the network to enhance the agility
of IT infrastructure in every possible aspect. In particular,
IBN creates a closed-loop automation system, including
the processes of intent expression, intent refinement, intent
activation, and intent assurance, that replaces error-prone and
manual network configurations with intelligent and advanced
softwarized mechanisms [9].

Even though IBN is a promising solution and despite
the efforts of major international standards organizations
(e.g., IETF [10]) and industries (e.g., Cisco [11] and
Huawei [12]) to define a proper reference model, almost
every IBN component is still in its infancy. Yet, IBN
is critical for developing future applications over a com-
pletely autonomous network, particularly with the new
emerging network scenarios coming from different tech-
nologies, such as smart environments, IoT, CPS, and 6G
networks.

One of the critical initial components in designing IBN
is the intent expression interface. This interface will allow
any type of user (from a simple end-user to a network
administrator) to express what they want from the network.
There are two typical sorts to express an intent, either through
a human-readable form (i.e., a Graphical User Interface)
to define the type of service/application along with some
high-level and qualitative requirements (e.g., Quality of
Service, security, etc.), or via natural language. However,
the latter fashion requests more sophisticated techniques
based on Natural Language Processing (NLP) to infer the
intent [13].

In this paper, we consider the intent-based natural language
input. Additionally, we introduce a high-level reference
intent-based networking architecture that can leverage a fully
programmable network infrastructure. Its design is based
on the requirements of IoT-based smart environments, e.g.,
Healthcare 4.0 as a use case, to meet an end-to-end self-
driving network. In particular, we propose an intelligent intent
refinement engine to automatically translate user-defined
intents (‘‘what to do’’) into network policies (‘‘how to do
it’’). It is noteworthy that intent refinement involves the first
two steps of a typical IBN platform (i.e., intent expression
and policy translation) that enable the map of intents from
a declarative language to a machine-readable policy. Most
of the existing research proposals for IBN flunk against
the validation of intent translation, and they lack in perfor-
mance evaluation (e.g., [13] and [14]). Thus, in this paper,
a deeper discussion regarding IBN-based service automation
is initiated, from the inference of user intents and service
profiling to their deployment and assurance, while focusing
especially on the intent refinement steps of the closed
loop. Moreover, we address the IBN-NLP challenge using
the Named Entity Recognition (NER) approach, utilizing
artificial intelligence techniques and pre-trained models for
effective resolution [15]. This approach surpasses traditional
methods, such as knowledge graphs, by leveraging deep
contextual understanding and adaptability to diverse datasets,
resulting in superior precision, efficiency, scalability, and
versatility for handling heterogeneous intents within a
large-scale smart environment.

The contributions of this paper are summarized as follows:

• An IBN-enabled architecture applied to a hospital
4.0 use case is introduced for the first time. The archi-
tecture combines the benefits of a fully programmable
SDN-based network and IBN, while considering real-
istic intents that stem from various healthcare aspects
such as patient care, health professionals, and resources.
The latter builds a dataset with a massive number of
heterogeneous intents crucial to the efficiency of the
intent refinement engine.

• An NLP-based intelligent intent refinement is designed
following a fine-grained Named-Entity Recognition
(NER) approach, a crucial form of NLP, to extract
and map keywords (called named-entities) from an
unstructured intent to a network policy model. This
IBN-NER problem is addressed by using, for the
first time, to the best of our knowledge, Google’s
emerging NLP model called Bidirectional Encoder
Representations from Transformers (BERT) [16]. The
model is fine-tuned on a large corpus of labeled entities
with 40000 intents specific to smart healthcare network
tasks.

• An exhaustive simulation is conducted considering
various dataset sizes of simultaneous heterogeneous
intents, and the proposed intent refinement system is
evaluated in terms of processing time and accuracy with
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global and granular measures. Compared to well-known
benchmarks in the NER domain (i.e., LSTM, Bi-LSTM,
and BiLSTM-CRF [13]), our simulation results show
promising performance with only one epoch, different
intent dataset sizes, and policy’s entities.

The remainder of this paper is organized as follows. Section II
discusses relevant related works in intent-based networking
research. Section III presents an IBN-enabled Healthcare
4.0 use case over a generic fully-programmable network
architecture. Section IV introduces the deployment of the
intelligent IBN refinement system. Section V assesses the
performance of the proposed approach. Finally, the paper
concludes and discusses future works in Section VI.

II. RELATED WORK
This section highlights relevant existing works from the
perspective of intent-based networking and explores how
intent-based systems receive users’ intents as input. Addi-
tionally, a brief discussion is provided regarding network
automation in the healthcare domain.

A. INTENT-BASED NETWORK PARAMETER INPUT
Most of the existing approaches leverage and extend the
capabilities of SDN by enhancing its northbound interface
to accept the intents. For example, in [14], the authors
presented an intent-based network for data forwarding
in software-defined vehicular edge computing. The intent
processing is performed using an ONOS intent controller
and an ML approach (convolutional neural network) that
categorizes incoming intents into three priority traffic classes
routed through different paths. Similarly, in [17], the
IBN-enabled ONOS interface was used to set up different
network configurations to enhance 5G service management.
Furthermore, Sanvito et al. [18] extended the ONOS intent
framework to compile multiple intents simultaneously, which
were lately translated into network routes. Nevertheless,
current SDN-based IBN proposals enable to submit intents
only using the command line interface, the RESTful interface,
or a native Python API that not all users within an intelligent
environment (i.e., doctors in a hospital) are able to use.

Instead of using an SDN interface, the intent could also be
submitted through more friendly Graphical User Interfaces
(GUI) in the form of drop-down menus. For instance, the
authors in [19] proposed an IBN framework in the context
of 5G network slicing. Specifically, the users can express
network intents via a GUI with different fields corresponding
to the deployment, management, and monitoring of network
resources [20]. Even though this GUI-based approach enables
easy intent generation and policy mapping, it is restrictive in
terms of options and does not allow the end-user to provide
any other input with different levels of detail or granularity.

B. INTENT-BASED NATURAL LANGUAGE INPUT
Although the above approaches make steps towards abstract-
ing the network requirements, they are quite rigid and usually

targeting network specialists. Thus, lately, a natural language
approach started to emerge as a means to express intent. For
example, the authors, in [21], utilized Amazon voice-assisted
technologies and a Latent Dirichlet Allocation (LDA) NLP
approach to perform the intent refinement. The framework
includes intents related to five network scenarios, namely
authentication, network security, performance, access con-
trol, and self-healing. However, with the IBN problem, intents
are presented with simple and short sentences; meanwhile,
the LDA approach is generally unsuitable for document topic
modeling if the dataset is too small, documents’ lengths are
too short, or there are too many topics within the dataset.
Bensalem et al. [22], [23] presented intent-based network-
ing in information and communications technology (ICT)
supply chain networks. They extracted information from
unstructured intents and stored them in JSON files inferred
with an ML recommender that estimates the computational
performance of different ML-based techniques (Singular
ValueDecomposition and Stochastic Gradient Descent). Sim-
ilarly, in [24], the authors proposed intent-based solutions
for automatic network orchestration through the application
of Graph Neural Networks (GNN) and Long Short-Term
Memory (LSTM) techniques. However, in [22] and [24],
the authors did not provide extensive analysis of the
deployed intent datasets, IBN-engineering systems, and their
corresponding performances. In [13], Ouyang et al. reviewed
the key-enabling technologies of the IBN while focusing
on intent refinement schemes differentiated according to
target users, input methods, and refinement approaches.
Furthermore, they designed an intent refinement system
based on NLP and deep learning techniques, showing the
outperformance of the Bidirectional-LSTM andCoordination
Random Field (BiLSTM-CRF) compared to the LSTM-CRF
model. However, they did not provide details about the use
cases and policy models, while the system performance
lacked meticulous evaluation.

C. NETWORK AUTOMATION IN HEALTHCARE AND IoT
Until now, almost all of the existing IBN approaches cover
generic network scenarios and disregard the domain that an
IBN system will be applied. In the context of IoT, there
are only a few preliminary works that study the use of IBN
(i.e., [25], [26]) without considering any use case scenario
or a natural language expressed intent. Regarding healthcare,
there have recently been some efforts towards automating
its network infrastructure through the integration of SDN in
order to facilitate network management and reduce manual
configuration [27]. However, the authors provide a high-level
architecture and do not consider the integration of IBN, SDN,
and healthcare. It is thus clear that IBN is still in its first
development steps and not yet considered in the automation
of smart environments, particularly healthcare. Accordingly,
and to the best of our knowledge, in this paper, we present a
first-of-its-kind architecture and intent refinement approach
targeting a healthcare use case. Additionally, in contrast with
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FIGURE 1. Intent-based network automation architecture over a Hospital 4.0 as a use case for smart environments.

other existing NLP approaches, we propose for the first time
the use of BERT to facilitate intent capturing and translation.

III. INTENT-BASED NETWORK AUTOMATION
ARCHITECTURE OVER A HOSPITAL 4.0
In this section, an IBN-enabled architecture is proposed over
a Hospital 4.0 as a real-life use case for smart environments.
This architecture can facilitate a wide range of intents,
enabling the assurance of heterogeneous services within
the digital healthcare ecosystem and supporting generic
networkmanagement operations. Furthermore, we review the
persistent need to integrate an intent-based approach into
a fully-programmable architecture to achieve an end-to-end
self-driving network.

Indeed, the healthcare ecosystem, especially in the
post-COVID-19 era, is undergoing an accelerated dig-
ital transformation towards Healthcare 4.0 [28]. This

transformation offers a diverse spectrum of high-quality
healthcare services, including, for example: remote patient
monitoring through the use of IoT devices for tracking
patient health [29]; telemedicine to enable remote healthcare
services and consultations [30]; Electronic Health Records
(EHR) for efficient storage and management of patient’s
medical records [31]; healthcare data analytics (e.g., medical
imaging) for data-driven decision-making [32]; and Health
Information Exchange (HIE) for secure sharing of medical
data among healthcare providers and institutions [33], [34].
These are just a few examples of the multifaceted changes
taking place in healthcare and achieved through real-time
monitoring of patients, healthcare experts/workers, and all
hardware and software resources. As shown in Table 1,
all Healthcare 4.0 applications are characterized by specific
requirements, such as security, QoS provisioning, and real-
time access. In the meantime, certain applications also need
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TABLE 1. Example of Healthcare 4.0 application scenarios with their
corresponding requirements.

additional requirements, such as privacy for patient records,
mobility and remote access for medical experts, and fault
management for resource control [2]. Hence, the designed
intent dataset is based on a list of network scenarios, including
service performance, cloud storage, security, authentication,
access control, and self-healing.

Figure 1 shows an intent-based network automation archi-
tecture over a Hospital 4.0 (as a use case) while considering
the dynamic and complex natures of such an ecosystem.
The first layer of this prototype displays the healthcare
services deployed through a combination of communications
technologies and medical expertise. It connects a wide
variety of heterogeneous facilities [28], such as healthcare
CPSs, IoT medical devices and robots, clinical appliances,
device gateways, and billing systems, all assisted with an
intent-based input system utilized by simple users and
network administrators that only indicate what needs to be
done with human-natural language.

On a lower level, the IBN automation layers are designed
with their corresponding intelligent systems for heteroge-
neous intent refinement and policy activation and assurance.
The intent-based platform is designed as a convenient
northbound layer to the typical SDN-based paradigm,
including its control, forwarding, and application planes. This
architecture enables us to reach an end-to-end self-driving
network by deploying various network functionalities, such
as data analytics, QoS provisioning, resource optimization,
energy awareness, and self-defense. It is also noteworthy
that among the key enabling technologies for this digital
infrastructure, the proposed architecture supports virtu-
alization, high-performance connectivity, and Edge/Cloud
software, enabling reliable and flexible data management
between experts [35], [36], [37], [38]. Let us consider the
following example as an IBN-based scenario:
Remote diagnosis and robotic-assisted surgery: To per-

form surgery for a patient who is located in Montreal
(Canada) and unable to travel to the United States, an expert

Algorithm 1 .From Intent Refinement to Assurance
Input: IL ▷ Intent list
Input: PM ▷ Policy model for various networking aspects
Input: PD ▷ Network declarative policy (Initially is empty)
Input: RM ▷ SDN-based available network resource
Output: Scripts ▷ Actions related to network resource
configuration
Intent Refinement to Assurance (IL ,PM ,PD,RM )
1: while all intents I ∈ IL have not been processed do
2: Mapping I to PD using AI engines and PM
3: Real-time RM updating ▷ Continuous SDN topology

monitoring (resources and demands)
4: Assess RM to infer if PD could be fulfilled
5: if PD could be fulfilled then

▷ Configure network resources with PD to satisfy I
Scripts← PD

6: else
▷ Report PD as violated to plan resolution based

on updated RM and the intent I flexibility.
7: Return Scripts
End of Intent Refinement to Assurance

surgeon in Cambridge may ask ‘‘We need a robust con-
nectivity in room 1 for remote robotic-assisted surgery.’’
Hence, the IBN platform should map this intent to a network
policy related to slicing, where the dedicated network slices
ensure high bandwidth, ultra-high speeds, and almost zero
latency to enable real-time remote surgery. In more detail,
as shown in Figure 1 and summed in Algorithm 1, the
intent refinement plane receives this intent as a human
utterance. It infers it to define in a granular manner how
best to implement this request in the network infrastructure.
An AI-based translation engine extracts and analyses the
intent’s key elements (e.g., words) that will be later mapped
via an intent-policy model PM to a simplified structured
intent (declarative network policy PD), which is used as
actionable scripts for implementation by the Policy resource
management module, Algorithm 1, line 2. In the meantime,
the SDN controller continuously monitors network status RM
and makes assertions to verify any conflicts between the
policy (refined intent configuration) and the actual network
state (Algorithm 1, lines 3-5). Policy’s activation is optimized
and rigorously evaluated for assurance, including potential
trade-offs and conflicts of interest. Hence, the platform
achieves the IBN-based closed-loop system, consisting of the
three main deployment steps: Refinement, Activation, and
Assurance.

IV. INTENT REFINEMENT MODEL
This section discusses the proposed intelligent IBN refine-
ment system. In particular, we design a fine-grained NER
approach, a crucial form of NLP, to i) extract keywords
(called named-entities) defining application requirements
and their network behavior from user utterances (unstructured
intents), ii) convert them to specific configurations via an

VOLUME 11, 2023 136569



Y. Njah et al.: Toward Intent-Based Network Automation for Smart Environments

extensible policy model to be set up through the management
schema on the available network resources.

A. APPLYING NER TO THE IBN-NLP PROBLEM
To identify the IBN-related information, a policy model
is introduced, which is represented as a 5-tuple of entity
labels as follows: 〈user, application goal/utility, network
action, target equipment, timeframe〉. This policy model,
as shown in Figure 2, enables compiling an unstructured
user intent into a structured one. Hence, the ‘‘user’’ entity
presents the intent definers at various abstraction layers.
It could be technical users with specialized knowledge of
networks (e.g., network administrators, operators, service
providers, etc.), or non-technical users without specialized
knowledge of networks (doctors, nurses, finance department,
etc.). The field related to the ‘‘application goal/utility’’
supports users’ demands, services, and objectives (e.g.,
remote diagnosis, data storage and accessing, etc.), while the
‘‘network action’’ entity presents the service and network
management requirements to fulfill the intent. The model
is flexible enough to support a wide variety of network
and service management actions (e.g., QoS provisioning,
orchestration, authentication and privacy, self-healing, and
defense). On the other hand, the ‘‘target’’ field represents
the targeted infrastructure (e.g., domain, hospital campus,
region, provider, etc.) to deploy the user’s intent. Finally,
the ‘‘timeframe’’ entity defines the period during which the
required service is scheduled to occur. It is noteworthy that
all entities should be displayed within a user’s utterance.
Otherwise, a default setup will be applied. For example,
if the expert surgeon asks, ‘‘We need a robust connectivity in
room 1 for remote diagnosis.’’, a possible entity identification
would be: {user: ‘expert surgeon’}, {goal: videoconfer-
encing with ‘remote diagnosis’}, {network action: QoS
provisioning with ‘robust connectivity’}, {target: slice 1 with
‘room1’}, {timeframes: now with ‘default selection’}.
Table 2 shows the statistics of our dataset, which contains
40000 intents annotated manually with 1671 user enti-
ties, 1563 goal/utility entities, 3736 network action enti-
ties, 1981 target equipment entities, and 2029 timeframe
entities.

B. APPLYING BERT TO THE IBN-NER PROBLEM
We address this IBN-NER problem using Google’s BERT
model, an open source and one of the most successful
machine learning neural network-based frameworks for
performing NLP tasks [16]. Figure 3 shows the deployed
BERT-based architecture.

BERT is based on the transfer learning paradigm, where
two separate stages are adopted: pre-training and fine-
tuning. It is an encoder-only model, which includes several
encoder blocks used initially for the pre-training phase.
First, each intent is split into a sequence of individual
tokens (entity-level tokenization) and padded to a maximum
sequence length (e.g., 512 tokens per sequence with BERT).
Each tokenized intent is annotated with the special tokens

FIGURE 2. Policy model based on structured-intent.

TABLE 2. Intent dataset and policy entities.

’[CLS]’ and ’[SEP]’ to indicate each sequence’s start and
end, respectively. Following, each token in the sequence
is projected into embeddings (sequential numeric vectors
encoding semantic information) and fed as input to the
encoder block. Before passing input embeddings to the
transformer encoder, it adds the positional embeddings
(position vectors) to process natural language sequences.

The first layer in the encoder block is a multi-head self-
attention layer that determinesmultiple relationships between
the embeddings by calculating a weighted average of all
these encoded input vectors with a linear combination that
pays attention to the similarity score between embeddings.
Formally, the attention creates three main vectors: queriesQ,
keysK , and valuesV to extract feature representations, while
the output vector is a weighted sum of V , where the
weight specified for each value is identified by the dot
products of the query with all the keys, which can be
defined as:

Attention(Q,K ,V ) = softmax
(QKT
√
n

)
V , (1)

where n denotes the dimension of K andV and KT is the
transpose of theK keys. Themulti-head self-attention linearly
processes Q, K , and V multiple times via different weight
matrices, i.e., WQ,WK and WV respectively. Its output
is another linear transformation via learnable parameters
WO of the concatenation of heads. Hence, the multi-head
self-attention can be defined as:

MultiHead(Q,K ,V ) =
[
head1, . . . , headh

]
WO, (2)

headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
,

(3)

where h denotes the total number of heads. Then, the
second layer in the encoder block is the feed-forward
neural network module, which makes a higher representation
for the attention outputs by adding non-linearity in the
system, so it can learn complex relationships between
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FIGURE 3. BERT-based named-entity recognition architecture for intent-based network refinement.

embeddings. At the production of these two layers, the
encoder block applies ‘‘add and norm’’ layers to make
normalization and provide the hidden state vectors to the
input of each next layer, respectively. Thus, after going
through 12 encoder blocks (BERT-base model), the system
provides output embeddings that can be contextualized,
where the same token will have different output embed-
dings depending on its surrounding terms. These output
embeddings are also obtained due to the deployment of the
Masked Language Model (MLM), one of BERT’s significant
innovations.

The MLM addresses the problem of ‘see itself’ that trains
the model to predict any token based on the sequence’s
context. It is done by randomly selecting a percentage of
the input tokens (e.g., 15%) during training and handling
them with the masking operations. Hence, of that percentage
(i.e., 15%), 80% are replaced with a special [MASK] token,
10% are randomly replaced by other arbitrary tokens, and
the remaining 10% of the chosen tokens are kept unchanged.
Specifically, as shown in the bottom left of Figure,3, given an
input intent I of n tokens, theMLM replaces the ith token with
a special [MASK ] token, resulting in a new sequence X given
by X =

[
x1, , . . . , , xi−1, [MASK ], , xi+1, , . . . , xn

]
.

The objective of MLM is to predict the original token, xi
that is masked, given its surrounding context, while learning
a probabilistic model pθ that minimizes the following loss
function:

LossMLM =
∑

xi∈Xmask

−log
(
pθ (xi)

∣∣X)
. (4)

Once BERT is trained on a vast unlabeled corpus (Books
consisting of 800M words and English Wikipedia consisting

of 2500M words), we fine-tune it with a labeled intent
dataset related to service and network management over
an intelligent healthcare environment, as discussed in the
previous section. Hence, another major innovation of BERT
is its ability to be fine-tuned for a specific domain, where
the pre-trained MLM could be further trained for particular
downstream NLP tasks using a small amount of labeled
data. For example, consider a prediction task where y ∈
γ is the target variable, e.g., the healthcare label. Fine-
tuning uses gradient descent to modify the pre-trained
parameters θ and learn a new set of parameters 8 in order to
minimize:

Lossfinetuning =
∑
X∈D

−log
(
pθ,8(y

∣∣X )), (5)

where p(y|x) is the ground-truth distribution and D is the
data distribution of the downstream task. This fine-tuning
operation allows BERT’s parameters to be adjusted to better
suit the healthcare management network and rarely requires
training the model from scratch, which is tremendous,
particularly because the healthcare data are limited, sensitive,
and not publicly available for privacy reasons.

V. SIMULATION AND RESULT ANALYSIS
This section presents the simulation settings of the exper-
iments and assesses the performance of the proposed
framework against the state-of-the-art IBN-NLP algorithms
from the pertinent literature.

A. SIMULATION SETTINGS
All experiments were conducted on a PC running an
Intel Core i7 CPU @3.60GHz with 32.0 GB of memory.
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TABLE 3. Overall performance (BERT within 1-3 epochs and the benchmarks within 10-30 epochs.)

We implement the proposed BERT-based IBN scheme
using the PyTorch-Transformers library [41]. Meanwhile,
LSTM-based NER benchmarks described below are imple-
mented using Python’s Scikit-Learn [42], Tensorflow [43],
and Keras [44] libraries. Regarding the dataset, as men-
tioned in Section IV, we trained the models using 40
000 labeled intents with more than 1000000 different
words. Table 2 shows the statistics of the dataset used,
which was split into two subsets, one containing 80% of
the instances for training and another containing 20% for
testing.

We adopt the BERT-base architecture, which includes
12 transformer blocks, 12 attention layers, and 110 million
parameters. The BERT-based model is fine-tuned for a
maximum of 3 epochs only while randomly masking 15%
of all tokens within each sequence. As benchmarks, the
LSTM, BiLSTM, and BiLSTM-CRF models are used since
they are considered in the IBN literature as the most
successful algorithms for NER tasks [13]. Specifically, the
BiLSTM algorithm is built as a combination of two LSTM
compound layers for forward and backward context inputs
to capture the entire essence of the intent. Meanwhile, the
BiLSTM-CRFmodel adds a Conditional Random Field layer
to the BiLSTM scheme to infer the inter-dependency of
each location, particularly with the neighboring labels in
a sequence. The 5-fold cross-validation approach was used
to determine the appropriate hyperparameter combination.
Furthermore, the LSTM-based models were built using three
layers while setting the number of hidden units to 75 and the
embedding vector size to 128. Finally, the Adam optimizer
with a learning rate of 0.005 was used, along with the
Softmax as an activation function, and the sparse categorical
cross-entropy (for LSTM and BiLSTM) and Keras-Contrib
(for CRF-layer) as loss functions to optimize the output
layer.

To evaluate the BERT-based intent refinement plat-
form, we examine the performance from different aspects,
including the training time and the refinement accuracy
(precision, recall, and F1-score), while addressing five sizes

FIGURE 4. Overall performance of BERT with 1 epoch and the
benchmarks with 10 epochs.

of datasets: 5000, 10000, 20000, 30000, and 40000 entries.
To observe the convergence to optimal solutions, a range
of [10 to 30] epochs, with a step of 10, was examined for
the three LSTM-based models. In the following and for
better visualization, the results are outlined with gradient
colors (blue and yellow) from 0% to 100% according to
the corresponding metric. For example, the darkest blue
(Table 3) and yellow (Table 4) cells highlight poor prediction
results, while the lightest cells represent the highly accurate
results.

B. RESULTS AND OBSERVATIONS
Table 3 presents the overall performance of all schemes
(BERT within 1-3 epochs and the benchmarks within
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TABLE 4. Policy model’s entity inspection with 1 epoch for BERT and 10 epoch for the benchmarks.

10-30 epochs). Figure 4 considers the results with 1 epoch
for BERT and 10 epochs for the benchmarks. As shown
in Table 3 and Figure 4a, for all different dataset sizes,
the BERT model provides uniformly the best accuracy
results as compared to the three LSTM-based schemes (i.e.,
BiLSTM-CRF, BiLSTM, and LSTM). For instance, with
only 1 epoch and datasets of 5000 and 40000 intents,
BERT provides the highest accuracy with 80% and 86%,
respectively. Meanwhile, with 10 epochs, BiLSTM-CRF,
BiLSTM, and LSTM provide 57%, 31%, and 26% for
5000 intents, and 81%, 81%, and 76% for 40000 intents,
respectively.

The use of Healthcare 4.0 as a specific case study offers
accurate predictions with BERT, even if it is fine-tuned
with a small dataset. We can see that BERT significantly
outperforms other methods in small datasets (5000 intents),
which is a merit since specific data (e.g., Healthcare 4.0)
are usually limited, sensitive, and not publicly available for
privacy reasons. However, the three LSTM-based techniques
are very susceptible to the dataset size, where the higher
accuracy results are obtained with the largest dataset (40000
entries). Furthermore, the smaller the dataset size, the more
epochs for training are required with these benchmarks. For
example, to infer 5000 intents, the LSTM model provides
simply 26% of accuracy with 10 epochs and requires
30 epochs to provide 67%. Meanwhile, the fine-tuned BERT
model offers 80% accuracy with 5000 intents and only
1 epoch. Thus, the BERT model is independent of the

dataset size and starts to converge to the optimal accuracy
results from only one epoch. For instance, with 1 epoch
and 40000 intents, BERT registers an enhancement of 7%,
5%, and 6% precision, recall, and F1-score, respectively,
compared to 5000 intents. In the meantime, the three
LSTM-based models’ results change intensely from one
dataset size to another and from a number of epochs to
another.

On the other hand, as expected and displayed in Table 3
and Figure 4b, the processing time for all the implemented
schemes augments with the increase of the dataset size.
However, the fine-tuning time of the BERT method is longer
than the training time of the BiLSTM-CRF, BiLSTM, and
LSTM methods due to the high computational complexity.
BERT is a large language model including a lot of weights
to be updated for each different NLP task. Accordingly,
considering the factor of processing time, we fine-tuned
BERT with the smallest number of epochs, namely, only one.
Generally speaking, the downside of longer processing time,
particularly the fine-tuning time, for BERT is not worrisome
since this phase can take place only once, or be periodically
updated in an offline fashion with new datasets on the Cloud
while usingmulti-core GPUswith parallel systems. From this
perspective, it should also be taken into consideration that
the generic BERT model is frequently updated by Google,
and it incorporates the changes of our daily language. Thus,
an occasional fine-tuning of BERT with new healthcare
intents will also familiarize the NER model with the
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neologisms and jargon of healthcare networks, patients,
doctors, etc.

Table 4 evaluates how each algorithm performed with each
entity of the 5-tuple policy model, presented in Section IV.
To do so, the evaluation is performed according to precision,
recall, and F1-score metrics for each entity with different
dataset sizes and with 1 epoch for BERT and 10 epochs
for the benchmarks. It should be noted that similar results
were extracted for 20 and 30 epochs, especially as the
dataset size increased. However, for illustration purposes
and length limitations, only the results with 10 epochs are
presented.

Similarly to Table 3, the BERT performance is found to be
substantially better as compared to the benchmark models.
Specifically, with 5000 intents, BERT provides precision,
recall, and F1-score results in the range of [60% - 100%] for
all 5 distinct entities with only 1 epoch. The BiLSTM-CRF
is the second-best algorithm in terms of classification
correctness and provides results equal to or greater than 33%,
20%, and 25% of precision, recall, and F1-score, respectively.
These BiLSTM-CRF results are slightly better than BiLSTM
(29%, 9%, 15%); meanwhile, LSTM achieves the worst
accuracy performance. It is highlighted that BERT has these
outcomes because it is based on a general pre-trained model
that is later fine-tuned with healthcare network data. It should
also be noted that with all dataset sizes, BERT achieves
better and more equitable identification results for all
entities.

In contrast, the LSTM-based techniques provide unbalance
accuracy results for entity identification. For example, the
‘‘target network equipment’’, one of the critical entities
in the policy model, registers extremely low (or even
zero) accuracy results (represented by dark yellow cells
with LSTM, BiLSTM, and BiLSTM-CRF in Table 4).
Similar observations could be drawn for the entity ‘‘network
action’’ (i.e., QoS, data security, etc.), which provides
better performance with the increase of the dataset size
compared to the rest of the entities, e.g., from 41%, 78%,
88% of precision with LSTM, BiLSTM, and BiLSTM-CRF,
respectively, with 5000 to 95% for the three models with
40000 intents. Meanwhile, the BERT-based model converges
to optimal solutions with all entities from 5000 intents
to 40000 intents, highlighting its independence from the
dataset size for fine-tuning due to its general pre-training
characteristic.

In conclusion, processing intents’ sequences with a bidi-
rectional approach (from left to right and right to left simul-
taneously) always outperforms the unidirectional approach
(LSTMmodel). Then, adding a CRF layer over the Bi-LSTM
model improves performance since CRF conducts context
correlation through a probabilistic graphmodel while predict-
ing entities. Meanwhile, BERT, the deep bidirectional model,
outperforms the other methods and provides the best perfor-
mance in most of the entities and data sizes due to different
merits: Firstly, it is based on a pre-trained model that has
accumulated knowledge of huge language corpora. Secondly,

it is capable of being fine-tuned on specific domain datasets.
Thirdly, it implements the masked language model, which
performs word prediction originally hidden in a sequence.
Finally, a more technical reason is that BERT leverages the
transformer architecture with additional self-attention layers
that process the intent’s sequence as a whole rather than a
word-by-word, uses positional embedding, and estimates the
similarity scores of words, even if they are distant in the
intent.

VI. CONCLUSION
IBN has become a strong candidate for the automation
of current and future network deployments. In this paper,
a new IBN-enabled healthcare architecture was introduced,
showing the main components and their interaction towards
creating an intelligent and flexible smart network. Following,
the emphasis was placed on the interfacing of the healthcare
network with its users by allowing them to express their
network requirements through a human natural language.
To this end, and to allow the automatic translation and
mapping of the users’ utterances to network policies,
we designed an intelligent intent refinement system based
on the BERT model. The particular model was fine-tuned
on a large corpus of labeled entities within 40000 intents
specific to smart healthcare network tasks. The attained
results revealed that although the processing time of the
BERT-based intent refinement method is higher due to the
high computational complexity, it considerably outperforms
well-known benchmarks in terms of analytical accuracy
with only 1 epoch and for a various range of dataset
sizes.

It is noteworthy that even thoughwe presented aHealthcare
4.0 use case in this work due to its strong global good
related to the quality of human life and well-being, the
proposed IBN platform could be deployed over different
smart environments. As part of our future work, we plan to
implement optimization strategies, such as parallelism and
pruning techniques, to enhance the speed of the BERT-based
scheme without compromising its accuracy. Then, we intend
to analyze the proposed scheme in a real-life testbed (e.g.,
smart factory and hospital 4.0). Furthermore, we aim to
extend our system design by addressing policy conflict
resolution and ensuring related services assurance through
scheduling and planning schemes. Subsequently, the whole
platform will establish the IBN-based closed-loop system,
consisting of the three main deployment steps: Refinement,
Activation, and Assurance.

ACKNOWLEDGMENT
The authors would like to thank Institut de Cardiologie de
Montréal (ICM) and the Centre Hospitalier de l’Université
de Montréal (CHUM) for their invaluable input.

REFERENCES
[1] ScienceDaily.Global Spending onHealth is Expected to Increase to $18.28

Trillion Worldwide by 2040. Accessed: Jul. 20, 2023. [Online]. Available:
https://www.sciencedaily.com/releases/2016/04/160414095539.htm

136574 VOLUME 11, 2023



Y. Njah et al.: Toward Intent-Based Network Automation for Smart Environments

[2] J. Al-Jaroodi, N. Mohamed, and E. Abukhousa, ‘‘Health 4.0: On the
way to realizing the healthcare of the future,’’ IEEE Access, vol. 8,
pp. 211189–211210, 2020.

[3] E. Coronado, R. Behravesh, T. Subramanya, A. Fernández-Fernández,
M. S. Siddiqui, X. Costa-Pérez, and R. Riggio, ‘‘Zero touch management:
A survey of network automation solutions for 5G and 6G networks,’’
IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2535–2578, 4th Quart.,
2022.

[4] Cisco. Network automation. Accessed: Jul. 20, 2023. [Online].
Available: https://www.cisco.com/c/en/us/solutions/automation/network-
automation.html

[5] IBM. IBM Knowledge Center. Accessed: Jul. 20, 2023. [Online].
Available: https://www.ibm.com/us-en?lnk=m

[6] Juniper.Network Automation. Accessed: Jul. 20, 2023. [Online]. Available:
https://www.juniper.net/us/en/solutions/automation.html

[7] ETSI. Zero Touch Network & Service Management (ZSM). Accessed:
Jul. 20, 2023. [Online]. Available: https://www.etsi.org/technologies/zero-
touch-network-service-management

[8] M. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter, S. Jiang,
and L. Ciavaglia, ‘‘Autonomic networking: Definitions and design goals,’’
Internet Res. Task Force (IRTF), Tech. Rep. RFC: 7575, 2015.

[9] A. Leivadeas and M. Falkner, ‘‘A survey on intent-based networking,’’
IEEE Commun. Surveys Tuts., vol. 25, no. 1, pp. 625–655, 1st Quart.,
2023.

[10] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, ‘‘Intent-based
networking-concepts and definitions,’’ Internet Res. Task Force (IRTF),
Tech. Rep. RFC: 9315, 2020.

[11] Cisco. Intent-Based Networking. Accessed: Jul. 20, 2023. [Online].
Available: https://www.cisco.com/c/en_ca/solutions/intent-based-
networking.html

[12] Huawei. Intent-Based Nemo Overview. Accessed: Jul. 20, 2023. [Online].
Available: http://www.watersprings.org/pub/id/draft-hares-ibnemo-
overview-01.html

[13] Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani, ‘‘A brief survey and
implementation on refinement for intent-driven networking,’’ IEEE Netw.,
vol. 35, no. 6, pp. 75–83, Nov. 2021.

[14] A. Singh, G. S. Aujla, and R. S. Bali, ‘‘Intent-based network for
data dissemination in software-defined vehicular edge computing,’’
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5310–5318,
Aug. 2021.

[15] L. Hu, Z. Liu, Z. Zhao, L. Hou, L. Nie, and J. Li, ‘‘A survey of
knowledge enhanced pre-trained language models,’’ IEEE Trans. Knowl.
Data Eng., early access, Aug. 30, 2023, doi: 10.1109/TKDE.2023.
3310002.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[17] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, and
M. Namane, ‘‘Benchmarking the ONOS intent interfaces to ease 5G ser-
vice management,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1–6.

[18] D. Sanvito, D. Moro, M. Gullì, I. Filippini, A. Capone, and A. Campanella,
‘‘Enabling external routing logic in ONOS with intent monitor and
reroute service,’’ in Proc. 4th IEEE Conf. Netw. Softwarization Workshops
(NetSoft), Jun. 2018, pp. 332–334.

[19] K. Abbas, T. A. Khan, M. Afaq, and W.-C. Song, ‘‘Network slice
lifecycle management for 5G mobile networks: An intent-based
networking approach,’’ IEEE Access, vol. 9, pp. 80128–80146,
2021.

[20] X. Zheng, A. Leivadeas, and M. Falkner, ‘‘Intent based networking
management with conflict detection and policy resolution in
an enterprise network,’’ Comput. Netw., vol. 219, Jan. 2022,
Art. no. 109457.

[21] A. Yichiet, J. K. Y. Min, G. M. Lee, and L. J. Sheng, ‘‘Intent-based
network policy to solution architecting recommendations,’’ Int. J. Bus.
Data Commun. Netw., vol. 17, no. 1, pp. 55–74, Jan. 2021.

[22] M. Bensalem, J. Dizdarević, and A. Jukan, ‘‘Benchmarking various ML
solutions in complex intent-based network management systems,’’ 2021,
arXiv:2111.07724.

[23] M. Bensalem, J. Dizdarevic, F. Carpio, and A. Jukan, ‘‘The role
of intent-based networking in ICT supply chains,’’ in Proc. IEEE
22nd Int. Conf. High Perform. Switching Routing (HPSR), Jun. 2021,
pp. 1–6.

[24] T. Ahmed Khan, K. Abbas, J. J. Diaz Rivera, A. Muhammad,
and W.-C. Song, ‘‘Applying RouteNet and LSTM to achieve network
automation: An intent-based networking approach,’’ in Proc. 22nd
Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Sep. 2021,
pp. 254–257.

[25] W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli, F. Foresta,
F. Callegati, and R. Verdone, ‘‘Intent-based management and orchestration
of heterogeneous openflow/IoT SDN domains,’’ in Proc. IEEE Conf. Netw.
Softwarization (NetSoft), Jul. 2017, pp. 1–9.

[26] F. Aklamanu, S. Randriamasy, and E. Renault, ‘‘Demo: Intent-based 5G
IoT application network slice deployment,’’ in Proc. 10th Int. Conf. Netw.
Future (NoF), Oct. 2019, pp. 141–143.

[27] S. Badotra, D. Nagpal, S. N. Panda, S. Tanwar, and S. Bajaj, ‘‘IoT-enabled
healthcare network with SDN,’’ in Proc. 8th Int. Conf. Rel., INFOCOM
Technol. Optim., Jun. 2020, pp. 38–42.

[28] Md. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, ‘‘Internet
of Things: Device capabilities, architectures, protocols, and smart appli-
cations in healthcare domain,’’ IEEE Internet Things J., vol. 10, no. 4,
pp. 3611–3641, Feb. 2023.

[29] A. I. Siam, M. A. El-Affendi, A. A. Elazm, G. M. El-Banby,
N. A. El-Bahnasawy, F. E. A. El-Samie, and A. A. A. El-Latif, ‘‘Portable
and real-time IoT-based healthcare monitoring system for daily medical
applications,’’ IEEE Trans. Computat. Social Syst., vol. 10, no. 4,
pp. 1629–1641, Jan. 2023.

[30] C. Andrikos, G. Rassias, P. Tsanakas, and I. Maglogiannis, ‘‘An enhanced
device-transparent real-time teleconsultation environment for radiolo-
gists,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 1, pp. 374–386,
Jan. 2019.

[31] K. Riad, R. Hamza, and H. Yan, ‘‘Sensitive and energetic IoT access
control for managing cloud electronic health records,’’ IEEE Access, vol. 7,
pp. 86384–86393, 2019.

[32] K. Peng, P. Liu, M. Bilal, X. Xu, and E. Prezioso, ‘‘Mobility and
privacy-aware offloading of AR applications for healthcare cyber-physical
systems in edge computing,’’ IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5,
pp. 2662–2673, Oct. 2023.

[33] L. Zhang, Y. Zhu, W. Ren, Y. Zhang, and K. R. Choo, ‘‘Privacy-preserving
fast three-factor authentication and key agreement for IoT-based E-health
systems,’’ IEEE Trans. Services Comput., vol. 16, no. 2, pp. 1324–1333,
Mar. 2023.

[34] H. Hong, D. Chen, and Z. Sun, ‘‘A practical application of CP-ABE for
mobile PHR system: A study on the user accountability,’’ SpringerPlus,
vol. 5, no. 1, pp. 1–8, Dec. 2016.

[35] G. S. Aujla, R. Chaudhary, K. Kaur, S. Garg, N. Kumar, and R. Ranjan,
‘‘SAFE: SDN-assisted framework for edge–cloud interplay in secure
healthcare ecosystem,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 469–480, Jan. 2019.

[36] D. Bringhenti, J. Yusupov, A.M. Zarca, F. Valenza, R. Sisto, J. B. Bernabe,
and A. Skarmeta, ‘‘Automatic, verifiable and optimized policy-based
security enforcement for SDN-aware IoT networks,’’ Comput. Netw.,
vol. 213, Aug. 2022, Art. no. 109123.

[37] S. N. Matheu, A. Robles Enciso, A. Molina Zarca, D. Garcia-
Carrillo, J. L. Hernández-Ramos, J. Bernal Bernabe, and A. F. Skarmeta,
‘‘Security architecture for defining and enforcing security profiles
in DLT/SDN-based IoT systems,’’ Sensors, vol. 20, no. 7, p. 1882,
Mar. 2020.

[38] F. Naeem, M. Tariq, and H. V. Poor, ‘‘SDN-enabled energy-efficient
routing optimization framework for industrial Internet of Things,’’ IEEE
Trans. Ind. Informat., vol. 17, no. 8, pp. 5660–5667, Aug. 2021.

[39] G. Aceto, V. Persico, and A. Pescapé, ‘‘Industry 4.0 and health: Internet
of Things, big data, and cloud computing for healthcare 4.0,’’ J. Ind. Inf.
Integr., vol. 18, Jun. 2020, Art. no. 100129.

[40] S. Paul, M. Riffat, A. Yasir, M. N. Mahim, B. Y. Sharnali, I. T. Naheen,
A. Rahman, and A. Kulkarni, ‘‘Industry 4.0 applications for medi-
cal/healthcare services,’’ J. Sensor Actuator Netw., vol. 10, no. 3, p. 43,
Jun. 2021.

[41] Linux. Pytorch-Transformers Library. Accessed: Jul. 20, 2023. [Online].
Available: https://pytorch.org/hub/huggingface_pytorch-transformers/

[42] D. Cournapeau. Scikit-Learn Library. Accessed: Jul. 20, 2023. [Online].
Available: https://scikit-learn.org/stable/

[43] Google-Brain. Tensorflow Library. Accessed: Jul. 20, 2023. [Online].
Available: https://www.tensorflow.org/

[44] F. Chollet. Keras Library. Accessed: Jul. 20, 2023. [Online]. Available:
https://keras.io/

VOLUME 11, 2023 136575

http://dx.doi.org/10.1109/TKDE.2023.3310002
http://dx.doi.org/10.1109/TKDE.2023.3310002


Y. Njah et al.: Toward Intent-Based Network Automation for Smart Environments

YOSRA NJAH (Member, IEEE) received the B.Sc.
and M.Sc. degrees in telecommunications from
the National Engineering School of Tunis (ENIT),
Tunisia, in 2012 and 2013, respectively, and the
Ph.D. degree in systems engineering fromÉcole de
Technologie Supérieure (ÉTS), Montreal, Canada,
in 2021. She performed the engineering and
master’s degrees research projects at the School of
Engineering and Architecture of Fribourg (HEIA-
FR), Switzerland. She is currently a Postdoctoral

Fellow with the Software and Information Technology Engineering Depart-
ment, ÉTS. Her current research interests include intent-based network
automation, software-defined networking, performance optimization, traffic
engineering, and network data analytics, with a particular focus on the
Internet of Things and data center networks.

ARIS LEIVADEAS (Senior Member, IEEE)
received the Diploma degree in electrical and
computer engineering from the University of
Patras, in 2008, the M.Sc. degree in engineering
from King’s College London, in 2009, and the
Ph.D. degree in electrical and computer engi-
neering from the National Technical University
of Athens, in 2015. From 2015 to 2018, he was
a Postdoctoral Fellow with the Department of
Systems and Computer Engineering, Carleton

University, Ottawa, Canada. In parallel, he was an Intern with Ericsson
and collaborated with Cisco, Ottawa. He is currently an Associate Professor
with the Department of Software and Information Technology Engineering,
École de Technologie Supérieure (ÉTS), Montreal, Canada. His current
research interests include network function virtualization, intent-based
networking, cloud and edge computing, the IoT, and network optimization
and management. He received the Best Paper Award from ACM ICPE
2018 and 2023 and IEEE iThings 2021; and the Best Presentation Award
from IEEE HPSR 2020.

JOHN VIOLOS is currently a Research Associate
with the Department of Software Engineering and
Information Technology, École de Technologie
Supérieure (ÉTS). Previously, he was a Research
Associate with the National Technical University
of Athens, a Sessional Lecturer with theHarokopio
University of Athens, and a Visiting Lecturer
with the National and Kapodistrian University of
Athens. His current research interests include deep
learning, machine learning, and cloud and edge

computing. He was a member of the European Commission’s Digital Single
MarketWorking Group on the code of conduct for switching and porting data
between cloud service providers.

MATTHIAS FALKNER received the M.Sc. degree
in operations research and information systems
from the London School of Economics and
Political Science, U.K., and the Ph.D. degree in
systems and computer engineering from Carleton
University, Canada. He is currently a Distin-
guished TME with Cisco’s SP Sales CTO Group,
where he focuses on enterprise and SP network
architectures, particularly on the adoption of 5G
technologies for private networks. He also served

as a Consulting Systems Engineer for the Deutsche Telekom Account
Team. Throughout his career at Cisco, he worked on the evolution of
Cisco’s Digital Network Architecture (Cisco DNA), the midrange router
portfolio, specializing in NFV with the CSR 1000v, the ASR 1000, and
IOS XE. His current research interests include intent-based networking, 5G,
virtualization, and traffic modeling.

136576 VOLUME 11, 2023


