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ABSTRACT The computation of the Moore–Penrose generalized inverse is a commonly used operation
in various fields such as the training of neural networks based on random weights. Therefore, a fast
computation of this inverse is important for problems where such neural networks provide a solution.
However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a
significant amount of processing and execution time. In this paper, we propose a parallel computing method
for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices.
The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and
is implemented on a shared-memory architecture. The results show a significant reduction in computation
time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single
execution thread), our method achieves a reduced computation time compared with other previously reported
algorithms. Consequently, our approach provides a promising solution for the efficient computation of the
Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios.

INDEX TERMS High-performance computing,Moore–Penrose generalized inverse matrix, neural networks
with random weights, parallel computing, Strassen algorithm.

I. INTRODUCTION
The Moore–Penrose generalized inverse is a valuable tool in
various science and engineering fields [1]. Neural networks
are a powerful approach in machine learning. Their effective-
ness has been demonstrated in a wide range of applications,
including pattern recognition, decision making, and complex
process optimization [2]. The problems of overdetermination
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or underdetermination are encountered in the assignation and
adjustment of neural network random weights and neurons
in the hidden layer, making it challenging to obtain optimal
solutions using conventional methods [3]. In this context,
the Moore–Penrose generalized inverse is valuable because it
provides a robust and effective method for finding solutions
in large-scale database environments [2].

In the realm of numerical computing and the computation
of theMoore–Penrose generalized inverse, several algorithms
have been proposed to improve the efficiency, accuracy,
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and computation time. Courrieu [4] introduced an algorithm
based on a full-rank Cholesky factorization, demonstrating
significantly faster results than those obtained from previ-
ously proposed algorithms, especially for large-size matrices.
Baksalary and Baksalary [5] developed a specific formula for
the computation of theMoore–Penrose generalized inverse of
column-partitioned matrices. Petković and Stanimirović [6],
[7] introduced a comprehensive recursive method for calcu-
lating outer generalized inverses of a given squarematrix. The
authors integrated the efficient Strassen matrix multiplication
and inversion algorithm into their method and developed a
partially recursive algorithm that can compute various classes
of generalized inverses.

Toutounian and Ataei [8] proposed an algorithm based
on the conjugate Gram-Schmidt process for the computa-
tion of the Moore-Penrose generalized inverse of arbitrary
matrices, including symmetric and rectangular matrices.
Their numerical experiments demonstrated that the resulting
pseudoinverse is accurate, and its computation time is
significantly lower than that of other methods, especially for
large sparse matrices. Katsikis and Pappas [9] introduced
a computational method for computing the Moore–Penrose
generalized inverse. Their method is applicable to both square
and full-rank m × n matrices. Later, in collaboration with
Petralias [10], they extended their findings to encompass all
types of matrices using QR factorization, thereby enhancing
the accuracy of the method and enabling its application
to both dense and sparse matrices. That same year, Marco
and Martínez [11] presented an algorithm based on QR
factorization for several classes of totally positive matrices
that are ill-conditioned.

Li and Li [12] introduced a family of iterative meth-
ods for calculating an approximate inverse of a square
matrix using quadratic convergence. Chen and Wang [13]
expanded these iterative methods and demonstrated that
the resulting sequence converges at a superior rate toward
the Moore–Penrose generalized inverse of a matrix.
Stanimirović et al. [14] presented iterative approaches for
computing the outer inverse of a matrix that originates from
the second Penrose condition and exhibits linear or quadratic
convergence. Behera et al. [15] studied various generalized
inverses of tensors within the contexts of commutative and
noncommutative rings. The authors also proposed algorithms
for computing the inner inverse, Moore–Penrose generalized
inverse, andweightedMoore–Penrose generalized inverse for
tensors in a noncommutative ring setting.

More recently, Stanojevi’c et al. [16] proposed an algo-
rithm based on the generalized Cholesky factorization and
the Strassen matrix inversion algorithm, which has been
specifically designed for parallel computing architectures,
particularly for using graphics processing units (GPUs)
in the compute unified device architecture. Their results
showed significant advantages when GPUs are employed for
large-size matrix computations. Similarly, Ma et al. [17],
Stanimirovć et al. [18], [19], [20], Chen and Ji [21], and

Aldhafeeri et al. [22] worked on the computation of the
Moore–Penrose and other generalized inverses.

In this paper, we introduce a novel approach for the compu-
tation of the Moore–Penrose generalized inverse of full-rank
matrices for shared-memory architectures. Our methodology
aims to overcome the problems posed by large-size matrices
by exploiting the advantages of parallel computing and the
recursive Strassen algorithm and improve the performance
and accuracy in matrix inverse computations. The main
contributions of our work are as follows:
• Development of an efficient algorithm for the computa-
tion of the Moore–Penrose generalized inverse matrix:
We introduce a novel algorithm specifically designed
to compute the Moore–Penrose generalized inverse of
full-rank matrices of size m × n, where m ̸= n.
Our methodology is based on the well-known Strassen
algorithm, which is used to compute the inverse of
a nonsingular matrix, and can be used in practical
applications in various scientific fields.

• Algorithm optimization for shared-memory architec-
tures: We address the issue of computational efficiency
by developing an algorithm optimized for shared-
memory architectures. This allows us to efficiently
exploit the resources available in these architectures,
resulting in significantly reduced computation times and
better hardware utilization.

• Application to large-size matrices: An important contri-
bution of this study is the successful implementation of
the algorithm for the computation of theMoore–Penrose
generalized inverse of large-size matrices. Numerical
experiments demonstrate that the proposed algorithm
can efficiently handle large-size matrices, making it a
valuable tool for applications involvingmassive data and
complex problems.

These contributions signify a substantial advancement in
the computation of the Moore–Penrose generalized inverse
by providing an efficient and suitable solution for dealing
with large-scale problems in shared-memory architectures.
This work paves the way for new opportunities in practical
applications across science and engineering, especially those
that need to implement neural networks with randomly
initialized weights, where the efficient handling of full-rank
matrices with varying dimensions is crucial for achieving
accurate and swift results.

The remainder of the paper is organized as follows.
In Section II, we introduce the definition of the Moore–
Penrose generalized inverse and provide a detailed descrip-
tion of the Strassen algorithm, which is used for the
computation of the Moore–Penrose generalized inverse of a
nonsingular matrix. In Section III, we present our parallel
computing method for the computation of theMoore-Penrose
generalized inverse. In Section IV, we present and analyze
the results obtained from our numerical experiments. Finally,
in Section V, we present the conclusions and highlight the
main contributions of our work.
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II. NOTATION AND PRELIMINARIES
In this section, we introduce the notation for the Moore–
Penrose generalized inverse and the Strassen algorithm,
which is used to compute the inverse of a nonsingular matrix.
Using this theoretical foundation, we present our method for
the computation of the Moore–Penrose generalized inverse
of large-dimension full-rank matrices, thereby addressing
the computational challenges encountered in real-world
applications.

A. FULL-RANK TRIANGULAR MATRICES
A matrix A ∈ Rm×n is considered to be a full-rank matrix if
its rank, denoted in the literature as rank(A), is equal to the
minimum value between m and n, that is:

rank(A) = min(m, n). (1)

This implies that in a full-rank matrix, all columns (or rows)
are linearly independent, and there is no linear combination
of columns (or rows) that can yield a null column (or row) [2].

B. MOORE–PENROSE GENERALIZED INVERSE
A nonsingular matrix A ∈ Rn×n has a unique inverse
X ∈ Rn×n that satisfies the following condition:

AX = XA = In, (2)

where, In represents the identity matrix of order n. However,
various applications in applied mathematics necessitate an
inverse for singular or rectangular matrices. In this context,
the generalized inverse or pseudoinverse of A has been
introduced as a matrix X, also denoted as X = A−1, which
satisfies the following criteria [23]:
(i) It exists for a broader class of matrices than that of

nonsingular matrices.
(ii) It exhibits some of the properties of the traditional

inverse.
(iii) It reduces to the traditional inverse when matrix A is

nonsingular.
The Moore–Penrose generalized inverse is a type of

generalized inverse [24]. ForA ∈ Rm×n, there exists a unique
matrix X ∈ Rn×m that satisfies the following conditions,
known as Penrose conditions [25]:

AXA = A (3)

XAX = X (4)

XA = (XA)T (5)

AX = (AX)T (6)

where (XA)T and (AX)T are the transpose matrices of XA
and AX, respectively. X is commonly known as the Moore–
Penrose generalized inverse and denoted as A† [1], [24].

C. STRASSEN ALGORITHM
In 1968, Strassen [26] introduced an innovative algorithm
for matrix multiplication. This algorithm surpasses the tradi-
tional approach of Naïve algorithm for matrix multiplication

by performing only 7 multiplication operations instead of
the 8 required [27]. This approach results in a significant
improvement in computational efficiency. Let A,B ∈ Rn×n

be two block-partitioned matrices. The number of scalar
operations required to compute the matrix product C = AB
using the standardmultiplicationmethod is 2n3−n2 = O(n3).
However, the matrix multiplication algorithm introduced by
Strassen has a complexity of O(nlog

2 7) ≈ O(n2.807) [6].
Furthermore, the Strassen algorithm can compute the

inverse of a nonsingular matrix A ∈ Rn×n with the
same complexity as the standard matrix multiplication. This
method is based on the block decomposition of matrix A and
the corresponding decomposition of its ordinary inverse [6].
Let A ∈ Rn×n be a block-partitioned matrix as follows:

A =
[
A11 A12
A21 A22

]
, A11 ∈ Rk×k , (7)

where A and A11 are nonsingular matrices, and k represents
the integer quotient of n/2. Its inverse is given as:

A−1 =
[
X11 X12
X21 X22

]
, X11 ∈ Rk×k . (8)

Matrices X11, X12, X21, and X22 are computed as
follows [26]:

1. R1 = A−111 7. X12 = R3R6
2. R2 = A21R1 8. X21 = R6R2
3. R3 = R1A12 9. R7 = R3X21
4. R4 = A21R3 10. X11 = R1 − R7
5. R5 = R4 − A22 11. X22 = −R6

6. R6 = R−15

(9)

where R1, . . . ,R7 are temporary matrices. Here,
R5 = −(A12 − A21A−111 A12) = −(A/A11); that is, R5 is
the minus Schur complement of A11 [6]. If A and A11
are nonsingular matrices, then R5 = −(A/A11) is also a
nonsingular matrix [28]. Equation (9) is applicable if A11
and the Shur complement (A/A11) are nonsingular. Because
temporary matrices R1 and R6 are inverses of other matrices,
they are computed recursively until the dimensions of the new
matrix become 1× 1.
A notable limitation of this method for calculating

the inverse of a nonsingular matrix is its high memory
consumption. This challenge arises due to its necessity
of storing temporary matrices during algorithm execution
(Equations (7) and (9)). The effect of memory consumption
depends on the size of the involved matrices and recursion
depth. It becomes particularly pronounced in the case of
large-scale matrices. The algorithm divides the original
matrices into smaller submatrices, thereby substantially
increasing the amount of data that needs to be stored in
memory [6], [29]. As the recursion depth increases, the
numbers of generated sub and auxiliary matrices increase,
thereby raising the demand for memory. This increases
memory usage can be a concern in resource-limited systems.
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III. PROPOSED METHOD
In this section, we introduce our parallel computing method
for the computation of the Moore–Penrose generalized
inverse. As mentioned in Section I, various computa-
tional methods have been developed for the computation
of the Moore–Penrose generalized inverse [4], [5], [8],
[9], [10], [16]. In this paper, we develop a parallel
computing algorithm for shared-memory architectures. This
algorithm employs the method presented by Katsikis and
Pappas [9]. The authors proposed a method for computing
the Moore–Penrose generalized inverse of a tensor-product
matrix, which can also be applied to full-rank rectangular
matrices. In this method, the corresponding Gram matrix
comprising two linearly independent vectors is computed and
then the square linear system is solved, specifically using
the mldivide (\) operator in MATLAB. However, in our
approach, this linear system is solved using the Strassen
algorithm, which is designed for computing the inverse of
nonsingular matrices.

In this regard, let A ∈ Rn×m be a full-rank matrix.
The Moore–Penrose generalized inverse is defined as fol-
lows [23]:

A†
=


(
ATA

)−1
AT , si rank(A) = n,

AT
(
AAT

)−1
, si rank(A) = m.

(10)

Equation (10) describes two scenarios based on the rank
of matrix A. If its rank equals the number of columns n, the
left inverse is obtained by multiplying the transpose of A by
itself, resulting in a full-rank square matrix. If the rank of A
matches equals the number of rows m, the right inverse is
obtained by multiplyingA by its transpose, also resulting in a
full-rank square matrix. In both cases, the full-rank property
ensures that the resulting matrices obtained from the product
and inverse multiplication operations are invertible and have
unique solutions. This is essential for the Moore–Penrose
generalized inverse to preserve its outstanding properties
such as the projection capability and minimization of the
Euclidean norm of the solution [25].

To compute the inverses of matrices ATA and AAT ,
we apply the Strassen algorithm described in Section II.
Hereafter, we outline the proposed strategy of applying
parallel computing to the Strassen algorithm. Subsequently,
we present our parallel computing methodology for the
computation of (10), which is based on the reuse of the
parallel algorithms designed for the operations involved in
the Strassen algorithm.

A. PARALLEL METHOD FOR COMPUTING THE INVERSE
OF A NONSINGULAR MATRIX
To calculate the inverse of a nonsingular matrix A ∈ Rn×n,
we employ the Strassen algorithm presented in the previous
section. The computation process of the Strassen algorithm
can be divided into three steps: 1) block partitioning of
the original matrix, as described in (7); 2) performing the

Algorithm 1 Algorithm for partitioning a matrix A ∈ Rn×n

(Equation (7)).
INPUT:

A ∈ Rn×n ←Matrix to be partitioned into blocks.
initialRow← Starting row of the new matrix.
finalRow← Ending row of the new matrix.
initialCol ← Ending column of the new matrix.
finalCol ← Starting column of the new matrix.
numThreads← Threads for parallel execution.

OUTPUT:
Apq ∈ Rk×k ← Submatrix extracted from the original matrix.

k = finalRow−initialRow = finalCol − initialCol.
p and q represent the position of the submatrix.

1: #pragma omp parallel for num_threads (numThreads)
2: for i = initialRow to finalRow do
3: for j = initialCol to finalCol do
4: Apq(i− intialRow, j− initialCol)← A(i, j);
5: end for
6: end for

7: return Apq ∈ Rk×k ;

operations described in (9); 3) assembling matricesX11,X12,
X21, and X22 as described in (8). Hereafter, we introduce
the proposed parallel computing algorithm for executing the
three steps required by the Strassen algorithm.

1) ALGORITHM FOR MATRIX BLOCK PARTITIONING
The first step in executing the Strassen algorithm is to divide a
nonsingular matrixA ∈ Rn×n into four submatricesA11,A12,
A21, and A22, where A11 ∈ Rk×k is a nonsingular matrix and
k represents the integer quotient of n/2. Algorithm 1 obtains
a matrix A ∈ Rn×n as input; it also obtains the rows and
columns where the partition begins and ends as well as the
threads that will execute the operation. Subsequently, each
thread independently and in parallel extracts the values of
each row, considering the start and final positions. Finally, the
extracted rows are assembled to obtain submatrixAij ∈ Rk×k .
At this point, k is defined as the dimension of the submatrix
and corresponds to the number of rows and columns extracted
from the original matrix.

2) ALGORITHM FOR MATRIX ADDITION, SUBTRACTION,
AND MULTIPLICATION
Once the original matrix is partitioned into blocks using
Algorithm 1, it is necessary to perform the operations
described in (9). These operations involve matrix subtraction
and multiplication as well as the recursive computation of
the inverse of a nonsingular matrix. In this regard, we now
present the proposed parallel computing algorithms that effi-
ciently perform the additions, subtraction, and multiplication
operations, which will be used later in the parallel computing
algorithm for the computation of the inverse of a nonsingular
matrix.

Algorithm 2 is used for both matrix subtraction and
addition. This methodology is applied similarly to both cases.
The algorithm obtains two matrices A,B ∈ Rm×n, where m
and n can be equal, as an input; it also obtains the threads that
will execute the operation. Since the values of the resulting
matrix are independent, we assign the operations of each row
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Algorithm 2 Algorithm for matrix addition and subtraction.
INPUT:

A ∈ Rm×n ← First matrix in the addition or subtraction.
B ∈ Rm×n ← Second matrix in the addition or subtraction.
numThreads← Threads for parallel execution.

OUTPUT:
C ∈ Rm×n ← Resultant matrix of the addition or subtraction.

1: #pragma omp parallel for num_threads (numThreads)
2: for i = 1 to m do
3: for j = 1 to n do
4: C(i, j)← A(i, j)± B(i, j);
5: end for
6: end for

7: return C ∈ Rm×n;

Algorithm 3 Algorithm for matrix multiplication.
INPUT:

A ∈ Rm×n ← First matrix in the multiplication.
B ∈ Rn×p ← Second matrix in the multiplication.
numThreads← Threads for parallel execution.

OUTPUT:
C ∈ Rm×p ← Resultant matrix of the multiplication.

1: #pragma omp parallel for num_threads (numThreads)
2: for i = 1 to m do
3: for j = 1 to p do
4: double sum = 0.0;
5: for k = 1 to n do
6: sum+ = A(i, k) ∗ B(k, j);
7: end for
8: C(i, j)← sum;
9: end for
10: end for

11: return C ∈ Rm×p;

to a thread for parallel execution. In this way, each thread
is responsible for adding or subtracting the values of a row
to calculate the corresponding values of the same row in the
resulting matrix. Finally, the values are assembled to return
a matrix C ∈ Rm×n, which is the result of the addition or
subtraction.

Algorithm 3 is used for matrix multiplication. The
algorithm obtains two matrices A ∈ Rm×n and B ∈ Rn×p

as an input; it also obtains the threads that will execute
the operation. In this case, each thread is responsible for
multiplying the elements of a row from the first matrix
by all the elements of the second matrix. These operations
are performed by each thread independently and in parallel.
Finally, the values obtained from each thread are assembled to
obtainmatrixC ∈ Rm×p, which is the result of multiplication.
In addition to the matrix subtraction and multiplication

operations described in (9), we need to perform a sign change
in the values of the temporary matrix R6. To perform this
operation, we use a methodology similar to that implemented
in Algorithm 2. In this case, the sign-change algorithm
obtains a matrix A ∈ Rm×n as an input; it also obtains the
threads that will execute the operation. Subsequently, each
thread is responsible for performing the sign change on the
values of a row by multiplying each value by –1. Finally, the
results obtained from each thread are assembled to return a
matrix B ∈ Rm×n, which is the result of the sign-change
operation.

Algorithm 4 Algorithm for assembling the resulting
matrices.

INPUT:
X11 ∈ Rk×k
X12 ∈ Rk×n−k
X21 ∈ Rn−k×k
X22 ∈ Rn−k×n−k
numThreads← Threads for parallel execution.

OUTPUT:
X ∈ Rn×n ← Resultant matrix of the assembly.

1: #pragma omp parallel for num_threads (numThreads)
2: for i = 1 to n do
3: for j = 1 to n do
4: if i < k then
5: if j < k then
6: X(i, j)← X11(i, j);
7: else
8: X(i, j)← X12(i, j− k);
9: end if
10: else
11: if j < k then
12: X(i, j)← X21(i− k, j);
13: else
14: X(i, j)← X22(i− k, j− k);
15: end if
16: end if
17: end for
18: end for

19: return X ∈ Rn×n;

3) ALGORITHM FOR ASSEMBLING THE RESULTING
MATRICES
After obtaining submatrices X11, X12, X21, and X22 via the
operations described in (9), it is necessary to assemble them
to obtain the inverse of the nonsingular matrix A ∈ Rn×n.
Algorithm 4 obtains submatrices X11 ∈ Rk×k , X12 ∈

Rk×n−k , X21 ∈ Rn−k×k , and X22 ∈ Rn−k×n−k as an input; it
also obtains the threads that will execute the operation. Here,
n represents the dimension of the assembled matrix, and k is
the integer quotient of n/2. Following the same methodology
as in the previous algorithms, each thread is responsible for
assembling one row of the resultingmatrix. Upon completion,
the algorithm returns matrix X ∈ Rn×n, which is the result of
assembling the four submatrices.

In general, in Algorithms 1 through 4, we observe that
the values in each row of the output matrices are obtained
independently and in parallel using a specifically assigned
thread. In line 1 of each algorithm, the program assigns
a thread to execute the loop in line 2. The number of
simultaneous executions is constrained by the number of
threads allocated for the algorithm execution. Once a thread
completes one loop, it is assigned a new task from those
waiting in the queue. In this way, multiple tasks can be
executed in parallel. Below, we present the implementation
of Algorithms 1 through 4 for the calculation of the inverse
of a nonsingular matrix.

4) INVERSE OF A NONSINGULAR MATRIX USING THE
STRASSEN ALGORITHM
A three-step process must be followed to compute the
inverse of a nonsingular matrix using the Strassen algorithm.
First, we divide the original matrix into four submatrices,
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Algorithm 5 Algorithm for computing the inverse of a
nonsingular matrix using the Strassen algorithm.

INPUT:
A ∈ Rn×n ← Nonsingular matrix.
numThreads← Threads for parallel execution.

OUTPUT:
X ∈ Rn×n ← Inverse of the original matrix.

1: if n = 1 then
2: X(1, 1)← 1.0/A(1, 1);
3: return X ∈ Rn×n;
4: else
5: int k = n/2;
6: A11 ← subMatrix(A, 1, k, 1, k, numThreads);
7: A12 ← subMatrix(A, 1, k, k + 1, n, numThreads);
8: A21 ← subMatrix(A, k + 1, n, 1, k, numThreads);
9: A22 ← subMatrix(A, k + 1, n, k + 1, n, numThreads);
10: R1 ← invStrassen(A11, numThreads);
11: R2 ← multiplyMatrices(A21,R1, numThreads);
12: R3 ← multiplyMatrices(R1,A12, numThreads);
13: R4 ← multiplyMatrices(A21,R3, numThreads);
14: R5 ← subtractMatrices(R4,A22, numThreads);
15: R6 ← invStrassen(R5, numThreads);
16: X12 ← multiplyMatrices(R3,R6, numThreads);
17: X21 ← multiplyMatrices(R6,R2, numThreads);
18: R7 ← multiplyMatrices(R3,X21, numThreads);
19: X11 ← subtractMatrices(R1,R7, numThreads);
20: X22 ← changeSign(R6, numThreads);
21: X← assemblyMatrices(X11,X12,X21,X22, numThreads);
22: return X ∈ Rn×n;
23: end if

as described in (7). Next, we perform the operations
described in (9). Finally, we assemble the results obtained
in the previous stage, following the procedure described
in (8). To perform these calculations in parallel, we employ
Algorithms 1 to 4.

Algorithm 5 operates on a nonsingular matrix A ∈ Rn×n

and obtains the threads that will execute the process in parallel
as an input. Where n = 1, the algorithm returns the inverse
value of a single element of A (lines 1 to 3). When n > 1,
the algorithm proceeds to calculate k = n/2, where k
represents the integer quotient of n/2 (line 5). Subsequently,
by applying Algorithm 1, the input matrix is divided into four
submatrices, as described in (7) (lines 6 to 9). Temporary
matrices R1 and R6 (lines 10 and 15, respectively) are
calculated recursively. In turn, temporary matrix R5 and
submatrix X11 (lines 14 and 19, respectively) are obtained
using Algorithm 2. R2,R3,R4,X12,X21, and R7 (lines 11,
12, 13, 16, 17, and 18, respectively) are computed using
Algorithm 3. For submatrixX22 (line 20), an approach similar
to that of Algorithms 2 and 3 is employed, where each
thread performs the sign change in the rows assigned by
the program. Once submatrices X11,X12,X21, and X22 are
available, they are assembled using Algorithm 4 (line 21).
Finally, Algorithm 5 returnsX ∈ Rn×n, whereX is the inverse
of the original input matrix.

A flowchart of Algorithm 5 is illustrated in Fig. 1. The
processes shown in blue are executed using a single thread,
and the processes shown in green are performed using p
threads, which are specified in the algorithm input. The
process marked with an asterisk (*) indicates a recursive call
in the algorithm.

FIGURE 1. Computation of the inverse of a nonsingular matrix using the
Strassen algorithm. The processes shown in blue are executed using a
single thread, and the processes shown in greed are performed using p
threads, which are specified in the algorithm input. The process marked
with ∗ indicates a recursive call of the algorithm.

B. PARALLEL COMPUTING METHOD FOR THE
COMPUTATION OF THE MOORE–PENROSE
GENERALIZED INVERSE
Using the above-described algorithms, we present our
parallel computingmethod, which is used for the computation
of the Moore–Penrose generalized inverse of a full-rank
matrix A ∈ Rm×n. Algorithm 6, obtains the input matrix and
as an input; it also obtains the threads that will execute the
operation. Initially, the rank of the matrix is checked (lines
1 and 8); then, the operations described in (10) are performed
according to each case. To transpose a matrix (lines 2 and 9),
we follow an approach similar to that used in Algorithms 2
and 3, where each thread is responsible for transposing
the rows assigned by the program. Next, we perform the
operations described in (10) using Algorithms 3 and 5.
Finally, Algorithm 6 returns the Moore–Penrose generalized
inverse of a full-rank matrix.

A flowchart of Algorithm 6 is illustrated in Fig.2. The
processes shown in green are executed using p threads,
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Algorithm 6 Algorithm for computing the Moore–Penrose
generalized inverse.

INPUT:
A ∈ Rm×n ← Rectangular matrix of full rank.
numThreads← Threads for parallel execution.

OUTPUT:
A† ∈ Rn×m ←Moore–Penrose generalized inverse of the original matrix.

1: if m > n then
2: AT ← transposeMatrix(A, numThreads);
3: ATA← multiplyMatrices(AT ,A, numThreads);
4: (ATA)−1 ← invStrassen(ATA, numThreads);
5: (ATA)−1AT ← multiplyMatrices((ATA)−1,AT , numThreads);
6:
7: return A† ∈ Rn×m;
8: else
9: AT ← transposeMatrix(A, numThreads);
10: AAT ← multiplyMatrices(A,AT , numThreads);
11: (AAT )−1 ← invStrassen(AAT , numThreads);
12: AT (ATA)−1 ← multiplyMatrices(AT , (ATA)−1, numThreads);
13:
14: return A† ∈ Rn×m;
15: end if

FIGURE 2. Computation of the Moore–Penrose generalized inverse of
full-rank rectangular matrices. The processes shown in green are
executed using p threads, which are defined in the algorithm input. The
process shown in orange represents the computation of the inverse of
nonsingular matrices using the Strassen algorithm.

which are defined in the algorithm parameters, and the
process shown in orange represents the computation of the
inverses of nonsingularmatrices using the Strassen algorithm.

IV. NUMERICAL EXPERIMENTS
In this section, we present the numerical experiments
conducted to validate the proposed method. All experiments
were implemented on a server equipped with 2×Intel(R)
Xeon(R) Gold 6238R CPUs @2.20GHz, 56 physical cores,
and a 128-GB of RAM in a Debian GNU/Linux 5.10.0-19-
amd64 ×86_64 Operating System. The code was written
in C++ programming language using OpenMP to enable
parallel processing with shared memory. The #pragma
omp parallel for sentence in OpenMP enables the
execution of each iteration of the following for using

TABLE 1. Proposed method and other sequential algorithms reported in
the literature used for the computation of the Moore-Penrose generalized
inverse.

a different thread. The threads are then executed on the
available core according to the criteria of the operating
system.

The matrix coefficients that were double-precision
floating-point numbers were randomly selected from the real
interval [−1, 1]. The random matrices were subsequently
tested to ensure that A and A11 are nonsingular matrices,
as presented in (7). The algorithm accuracy was evaluated
using the 2-norm of error matrices for the four Penrose
conditions (Equations (3)–(6)), and the execution time was
recorded in seconds.

A. SEQUENTIAL COMPUTATION OF THE
MOORE–PENROSE GENERALIZED INVERSE
We conducted sequential computing experiments utilizing
some of the most widely reported methods in the literature.
These methods include the tensor product of two vectors [9]
based on LU factorization, singular value decomposition
(SVD) [24], full-rank Cholesky factorization [4], column-
partitioned matrix [5], and QR factorization [30]. Further-
more, we conducted experiments based on the proposed
method, which employed the Strassen algorithm using a
single thread. The comparison of various algorithms is listed
in Table 1. In the experiments, we used full-rank matrices
with a size of 2k , where k = 8, . . . , 12. Furthermore, similar
to previous report, we used full-rank matrices of size m× n,
where m = 2n (overdetermined matrices, where n = 2k ) and
n = 2m (underdetermined matrices, where m = 2k ) [4], [8].
Tables 2 and 3 present the results for matrices with sizes

m = 2n and n = 2m, respectively. The results are
in the 10−15–10−10 range for all cases, demonstrating a
notable accuracy for all algorithms. However, the execu-
tion time varies significantly among the various methods.
The differences in execution time are generally small for
small-sized matrices but become significant as the matrix
size increases. Using the proposed method, the computation
of the Moore–Penrose generalized inverse is achieved in
the shortest possible time. This is important not only in
the real-time analysis of large datasets but also in the
optimization of available computational resources.

The variation in computation time using different algo-
rithms when m = 2n is shown in Fig. 3. The differences in
computation times become more pronounced with increasing
value of k . The computation time of the SVD-based
algorithm is notably longer than those of other algorithms.
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TABLE 2. Sequential computation time for obtaining the Moore–Penrose generalized inverse and 2-norm of the four Penrose conditions in full-rank
matrices. The size of matrices is m × n, where m = 2n and Rank = n.

FIGURE 3. Computation time for obtaining the Moore–Penrose
generalized inverse of full-rank m × n matrices with m = 2n and
Rank = n. All methods employ 2k -rank matrices, where k = 8, . . . , 12.

This substantial difference in computation time is attributed
to the inherent complexity of the SVD procedure.
Furthermore, the BlockGinv algorithm exhibits an increase in
computation time, although not as significant as that observed
in the SVD-based algorithm. By contrast, the method using
the tensor product of two vectors and our method, which is
based on the Strassen algorithm, are the fastest. These results
demonstrate that the algorithm based on LU factorization
and our method can calculate theMoore–Penrose generalized
inverse with lesser complexity than other algorithms.

FIGURE 4. Computation time for obtaining the Moore–Penrose
generalized inverse for full-rank m × n matrices with n = 2m and
Rank = m. All methods employ 2k -rank matrices, where k = 8, . . . , 12.

Similar results were obtained for n = 2m (see Fig. 4).
However, in this scenario, algorithms based on QR fac-
torization exhibit shorter computation times than other
algorithms. This difference in performance arises from the
inherent properties of the two categories of matrices. For
n = 2m, the matrices have more columns than rows, which
increases the efficiency of the QR factorization process. The
specific characteristics of these matrices reduce the number
of operations required for factorization and, consequently,
for the computation of the Moore–Penrose generalized
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TABLE 3. Sequential computation time for obtaining the Moore–Penrose generalized inverse and 2-norm of the four Penrose conditions in full-rank
matrices. The size of matrices is m × n, where n = 2m and Rank = m.

inverse. In contrast, for m = 2n, the matrices have more
rows than columns, which affects the efficiency of QR
factorization in terms of necessary operations. Consequently,
the computation times of the Moore–Penrose generalized
inverse increase.

In general, the accuracy achieved for all algorithms is
quite high, considering that the errors in the four Penrose
conditions are 10−15 to 10−10. However, regarding the
computation time, our method, which employs the Strassen
algorithm, is the fastest in both scenarios (overdetermined and
underdetermined matrices). This is very significant in real-
time applications.

B. PARALLEL COMPUTATION OF THE MOORE–PENROSE
GENERALIZED INVERSE
Considering the results obtained from sequential computing
experiments for various matrix dimensions (both overde-
termined and underdetermined), we conducted our parallel
computing experiments for m = 2n, and hence rank = n.
In this context, we conducted initial numerical experiments
using the proposed parallel computing method to determine
the threshold of matrix dimensions at which our algorithm,
which employed threads p = 3, 6, 12, 24, 48, surpasses

the efficiency of the single-threaded case. To achieve this,
we computed the Moore–Penrose generalized inverses of
matrices with random ranks by varying the rank value in the
range 50–400 range using increments of 50 in each iteration.
Apart from the computation time, we conducted an accuracy
analysis of the result when the program was executed using p
threads.

Table 4 presents the 2-norm of the first Penrose condition,
which is the most susceptible to errors among the four
conditions. A fluctuation in the 10−14 – 10−13 range is
observed, which is consistent with the values obtained from
the sequential computing experiments. It is worth noting that
the 2-norm results obtained using a single thread are identical
to those obtained using p threads. These results demonstrate
that in our method, the accuracy is not compromised when
the number of execution threads increases. Thus, a level
of accuracy comparable to that of sequential computing
algorithms previously reported in the literature is maintained.

Regarding the computation time, there is variability, which
depends on the matrix rank and the execution threads used.
In matrices with a rank of n = 50, our method, which
employs execution threads, is slower than its corresponding
sequential computing method (1 execution thread). However,
our algorithm becomes faster as the matrix rank increases.
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TABLE 4. Computation time required for obtaining the Moore–Penrose generalized inverse and 2-norm of the four Penrose conditions in full-rank
matrices using p threads. The size of matrices is m × n, where m = 2n and Rank = n. The 2-norm corresponds to the first (most error-sensitive) Penrose
condition.

TABLE 5. Computation time for obtaining the Moore–Penrose generalized inverse for large-sized full-rank matrices using p threads. The size of matrices
is m × n, where m = 2n and Rank = n. Each thread is executed exclusively on one core.

FIGURE 5. Speed-up of the Moore–Penrose generalized inverse for
full-rank matrices. The size of matrices is m × n, where m = 2n and
Rank = n. The blue line indicates that the computation time is the same
when using a single thread. The speed-up is defined as T (1)/T (p), where
T (1) is the running time for a sequential algorithm (executed on one core
with one thread) and T (p) is the running time for a parallel algorithm.

For example, for a matrix rank of n = 100, our algorithm is
faster when using 3 and 6 execution threads compared to that
using a single thread but becomes slower when using 12 or
more threads. When using 12 and 24 execution threads, our
algorithm surpasses its sequential computing version in terms
of speed when the matrix rank is n ≥ 200. Ultimately, for
our algorithm employing 48 execution threads to be efficient
compared with its sequential computing version, the matrix
rank should be n ≥ 250. This is clearly shown in Fig. 5. The
blue line indicates that the computation time is the same with
that when using a single thread.

C. PARALLEL COMPUTING WITH LARGE-SIZE FULL-RANK
MATRICES
To assess the performance of our algorithm, we conducted
experiments with large matrices. Similar to the previous case,
we conducted experiments using p execution threads, where

FIGURE 6. Speed-up of the Moore–Penrose generalized inverse for
large-size full-rank matrices. The size of matrices is m × n, where m = 2n
and Rank = n. The speed-up is defined as T (1)/T (p), where T (1) is the
running time for a sequential algorithm (executed on one core with one
thread) and T (p) is the running time for a parallel algorithm.

p = 3, 6, 12, 24, 48, and compared the results with those
obtained from sequential computing (1 execution thread).
Additionally, we used randomly generated full-rank matrices
with dimensions m × n, where m = 2n and Rank = n. The
matrix sizes ranged from n = 5, 000 to n = 25, 000 with
increments of 5, 000 columns. In this scenario, we analyzed
the calculation time and the speed-up. Table 5 presents the
calculation time results obtained using our approach with p
execution threads. Fig. 6 shows the speed-up of our approach
compared to its sequential computing version.

The results presented in Table 5 exhibit a consistent
pattern: as the matrix size increases, there is a noticeable
decrease in computation time for all scenarios. The advantage
of our approach is shown in Fig. 6. We observe that the
speed-up steadily increases, meaning that, as the number
of execution threads increases, the speed-up also increases,
resulting in a significant improvement in execution efficiency.
These results are largely attributed to the Strassen algorithm
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(Algorithm 5). The Strassen algorithm steps are executed
sequentially, but each step is performed using a set of parallel
threads. The use of parallel computing in these steps is
the primary reason for the high speed-up observed in our
experiments.

These results indicate a significant advancement in the
computing efficiency of the Moore–Penrose generalized
inverse by exploiting the power of parallel computing in
a shared-memory architecture. The clear improvement in
computation time and its speed-up, which is proportional
to the number of execution threads, emphasize the potential
of this strategy in applications requiring a fast and accurate
calculation of the Moore–Penrose generalized inverse of
full-rank large matrices.

V. CONCLUSION
The computation of the Moore–Penrose generalized inverse
is a significant operation in the field of artificial intelligence,
particularly for training neural networks with randomly
initialized weights, given the computational cost it entails.

In this work, we proposed and developed a parallel
computing algorithm, based on the Strassen algorithm.
Our algorithm computes the Moore–Penrose generalized
inverse of full-rank rectangular matrices in a shared-memory
hardware architecture. Initially, we assessed the performance
of our method in a sequential computing environment (using
a single core) by comparing it against that of other algorithms
reported in the literature. In this environment, our method
demonstrated its superiority in terms of computation time
for the Moore–Penrose generalized inverse compared with
previously reported algorithms. To assess the accuracy of our
method, we evaluated the four Penrose conditions using the
2-norm. The results showed that our algorithm maintains a
level of accuracy comparable to that of the other algorithms
employed in the study.

In a parallel computing environment, the results demon-
strated the efficiency of our algorithm when employing
multiple execution threads, especially when the matrix size
equals or exceeds 250 rows or columns, depending on
the type of matrix (overdetermined or underdetermined).
Additionally, our experiments showed an important aspect:
the inherent accuracy of our algorithm remains intact as the
number of execution threads increases, providing significant
performance stability. In the case of large matrices, our
algorithm can improve the speed-up by increasing the number
of execution threads. These results not only validate the
efficiency of our algorithm in large-scale parallel computing
scenarios but also indicate its suitability for maintaining
a robust accuracy, further enhancing its applicability to
practical applications and theoretical analyses in the context
of the Moore–Penrose generalized inverse and full-rank
matrices.

Our proposal is inspired by the operation of neural
networks with random weights and is thus a valuable
reference to applications utilizing these neural networks.
However, the proposed method may not suit applications

dealing with target matrices exhibiting different character-
istics, such as singular matrices. Moreover, our approach
involves the generation of temporary matrices, necessitating
an architecture with sufficient memory capacity.

In the future, a promising direction will be to integrate
our method into random weight-based neural networks. This
is particularly important as numerous architectures of these
neural networks incorporate Moore–Penrose generalized
inverse calculations, which often involve substantial matrix
dimensions. Considering the current scale of databases and
the increasing complexity of learning models, the efficient
optimization of these calculations is essential. By integrating
our methodology into this context, we could potentially
enhance the efficiency and performance of large-scale matrix
computation operations, contributing to the scalability and
practical feasibility of these cutting-edge applications.
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