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ABSTRACT This paper proposes an improved Sparrow SearchAlgorithm based on the self-avoiding random
walk strategy as a fuzzy control method (SAWS-SSA) for rig winch motors in the complex oil rig electric
control industry. The SAWS-SSA aims to accurately describe the system dynamics and improve the motor
performance despite the large number of control-winch variables. During the startup of the three-phase
asynchronous motor of the winch, the error value between the current feedback and thyristor trigger angle
coupled with the periodic change rate was used as the input for the fuzzy control start. The fuzzy rules
progressively reduce the components of the excitation current and iteratively calculate the difference between
the input and feedback of the active power until the motor speed and torque are stabilized. To reduce the
evaluation time of the optimization search, we optimized the heuristic affiliation function variables using
an improved sparrow search algorithm equipped with a self-avoidance random walks strategy. Experimental
verification confirms that SAWS-SSA outperforms other control algorithms in terms of the statistical error
in the instantaneous dynamic response of the oil rig winch under a constant load and at different speeds.

INDEX TERMS Fuzzy control, self-avoiding random walks strategy, sparrow search algorithm, fuzzy rules.

I. INTRODUCTION
The control of oil industry drilling rigs is primarily motor-
driven. An electronic control system is the primary equipment
used to regulate the entire drilling-rig system. Currently,
the market offers two types of systems: DC electric control
and AC frequency conversion speed control. The frequency
conversion speed control system has become a prevalent
electrical transmission option owing to its precise and highly
variable closed-loop control speed deviation performance,
which is less than 3%, and its anti-jamming performance,
which results in relative harmonics of the voltage output of
less than 5% [1], [2], [3], [4]. The AC frequency-conversion
electric control system of the drilling rig was operated
using multiple diesel generator sets parallel to the grid or
high-voltage grid power supply. The system outputs 600V
3ϕ50Hz AC power from the AC busbar, which is then
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converted into 810VDC power through the rectifier cabinet.
The 810VDC is subsequently converted to 0-600VAC, fre-
quency 0-150Hz continuously adjustable AC power by the
inverter unit, which drives the motor to run. However, a non-
linear system dynamics model for three-phase asynchronous
motors becomes difficult to describe when the torque and
speed change frequencies are too fast [5]. Commonly used
control methods in the petroleum industry include direct
start control, pulse-width modulation (PWM) control, and
vector control. Although several algorithms are available for
adjustingmotor speed, drilling pressure, and other parameters
under specific loads, the stability, accuracy, and rapidity of
the PID algorithm continue to dominate. Consequently, PID
and its enhanced algorithms remain the best options for such
adjustments. As on-site machines and equipment increase,
a large and complex machine-electric-hydraulic cooperative
control system emerges, resulting in a stronger correlation
between control parameters and a higher degree of cou-
pling between the multivariate input and output systems.
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Traditional parameter adjustment algorithms are no longer
advantageous. Therefore, development of new control strate-
gies and algorithms for highly complex systems is urgently
required for practical engineering applications.

Traditional winchmotors use vector frequency control with
a core PID algorithm, resulting in a high control complex-
ity and a relatively large cumulative error. This approach
only allows for decoupling of the current excitation and
torque components. Artificial intelligence iterative optimiza-
tion parameter search algorithms have achieved positive
results in speed regulation, drilling pressure stabilization,
and harmonic filtering, including neural network algorithms
[6], [7]. However, full-scale applications require a large
amount of data for learning and training, particularly for data
acquisition, preprocessing, and cleaning. Therefore, the reli-
ability of the results must be verified for a significant amount
of time [8], [9], [10]. The fuzzy control algorithm overcomes
the drawbacks of the artificial intelligence algorithm when
sudden changes occur in the real-time feedback signal of a
rig winch. Moreover, owing to the variable-based decoupling
principle (DVDP) and variable substitution principles (VSP),
it is not necessary to establish mathematical models for this
highly nonlinear system [11]. Nevertheless, the accuracy of
the fuzzy control algorithm depends on the optimal affiliation
function design and relevant fuzzy rules [12]. Usually, when
parameter setting is conducted exclusively by human expe-
rience, it can cause unnecessary wastage of the equipment
operation time.

Control optimization techniques are currently prevalent
in industrial settings. Fuzzy control algorithms have been
extensively studied from various perspectives to fine-tune
the control parameters for efficient operation of the equip-
ment. Lin and Dong [13] established less conservative
stability conditions for T-S fuzzy systems with time-varying
delays to verify the feasibility and superiority of these
systems. Kuyu et al. [14] proposed a new algorithm that
combines a backtracking search algorithm (BS) with a dif-
ferential evolutionary algorithm (DE). The hybrid strategy
ensures diversity of the initial population by applying diver-
sity loss and stagnation detection mechanisms. Moreover,
the adaptive modification strategy added to the variation
operator of the new algorithm enables higher search capa-
bility. Kamarposhti et al. [15] proposed a whale intelligent
algorithm to optimize the parameters of the fuzzy control
algorithm, aiming to accurately track the maximum power of
the system and obtain more effective power. Jamal et al. [16]
proposed an adaptive fuzzy controller-based backtracking
algorithm to drive a three-item asynchronous motor to obtain
the minimum error of the affiliation function to improve the
motor performance in terms of speed and torque variation.
Guo et al. [17] selected a hyperbolic tangent function with a
fuzzy boundary to replace the traditional tangent function and
used an improved differential evolution algorithm to optimize
the fuzzy rules to reduce the chattering and overshoot of the
permanent magnet synchronous motor. Nsal and Aliskan [18]
used a heuristic algorithm to optimize the output function

of a fuzzy logic controller (FLC), combined with a genetic
algorithm (GA) and gravitational search algorithm (GSA)
to optimize the control performance of the FLC to obtain
accurate changes in the PMSM speed control performance
and electromagnetic torque. Albalawi et al. [19] proposed
a torque control principle that can be directly applied to
an asynchronous motor. The power converter was quickly
mapped to the change in the torque. The ant colony search
algorithm was used to optimize the fuzzy PID to improve
the response time of the asynchronous motor and provide
the best performance in terms of the speed and torque.
Melin et al. [20] established a GT2 FLS model based on
two-level categorical membership function fuzzy sets to
obtain a set of Gaussian membership functions to improve
the computational performance of fuzzy logic controllers.
The optimal control has been extensively investigated by
numerous researchers. However, this program has certain
constraints and cannot satisfy the diverse working condi-
tions of intricate control systems. To overcome this issue,
self-avoiding random walk strategies are employed to avoid
becoming trapped in local optima and to facilitate the search
for a globally optimal solution.

The main contributions of this paper are as follows.
(1) To develop a unique fuzzy control model for a drilling

rig winch motor and apply it to data collected from standard
publicly accessible resources.

(2) To propose an improved sparrow search algorithm
based on the self-avoiding random walk strategy as a fuzzy
control method (SAWS-SSA) and compare the optimal speed
control performance using various benchmark functions
under constant load, regulating speed through the winch fre-
quency converter with pulse-width modulation technology.

(3) To demonstrate the superiority of the proposed model
over different machine-learning optimizations.

The remainder of this paper is organized as follows.
In Section I, we discuss the related work of the various
existing works on fuzzy control algorithms and intelli-
gent optimization algorithms. Section II describes the pro-
posed methodology using a brief mathematical model of
self-avoiding random walk strategies and sparrow search
algorithm. Section III presents the results obtained by per-
forming experiments using the proposed model on the
datasets collected from the CRWU datasets and compares
them with existing models to demonstrate the performance
superiority of the proposed SAWS-SSA model. Finally,
Section IV concludes the study.

II. METHODOLOGY
The proposed method uses a drilling rig at depths below
5,000m, with a current suspension weight input of 30t
(approximately 294kN). The winch motor had a power of
approximately 800 kW and featured two braking resistors
at 1200kW. To achieve optimal drilling speed, the system
adjusts the feed-forward input of the inverter analog quantity
by using the difference between the actual speed and the
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recommended drilling speed, which should be between
0.8 and 1.2 times the recommended speed.

FIGURE 1. Block diagram of vector control.

A. SELF-AVOIDING RANDOM WALKS STRATEGY MODEL
The self-avoidance wandering strategy refers to a Markov
Chain Model and random walks model based on lattice nodes
[21], [22], [23]. This strategy assigns equal probabilities to all
points in a multidimensional space that starting from a given
point and not intersecting. If 9 ⊂ Zd is a stochastic process
and ξ1, ξ2, · · · , ξn satisfies the definition of an independently
distributed random variable, then the practical application is
dominated by the nearest-neighbor model and the extended
model. The specific mathematical expressions for these mod-
els are shown in Equations (1) and (2).

9 =

{
x ∈ Zd : ||x||1 = 1

}
(1)

9 =

{
x ∈ Zd : 0 < ||x||∞ ≤ L

}
(2)

where L is a large integer. In a d dimensional dot grid, x
begins at the initial position and uses the n-step vectors Sn =

(ξ0, ξ1, · · · , ξn) to reach the endpoint of an n-step walk at that
point. For any integer i ∈ [1, n], there is ξi − ξi−1 ⊂ ψ . The
set of n-walks is defined by Equation (3).

Sn =

⋃
x∈Zd

ξn(0, x) (3)

The Zd lattice space is defined by n-step walks ξ ∈ Sn at x
points. The integer s, t satisfies the condition 0 ≤ s < t ≤ n,
the mathematical model of the random path.

Us,t (ξ ) =

{
−1, ξ (s) = ξ (t)
0, ξ (s) ̸= ξ (t)

(4)

A random number between λ ∈ [1, n] is added to each
path vector as the Boltzmann weight factor of ξ , as shown in
Equation (5). ∏

0≤s<t≤n

(1 + λUst (ξ )) (5)

Equation (6) defines the entire self-avoidance random
walking process.

Cλ
n =

∑
x∈Zd

∑
ξ∈Sn

∏
0≤s<t≤n

(1 + λUst (ξ )) (6)

If λ = 0, all paths are assigned the same weight, which
is called a simple random walk. If λ = 1, and if and only
if each walk path accesses the grid point at most once, this
method is called a self-avoiding walk. If λ ∈ (0, 1), repeating
the path through the grid node reduces the weight. However,
this behavior is not avoided. This method is known as a weak
self-avoidance walk.

According to the vector paradigm, Cλ
n satisfies the

sub-vector multiplication rule shown in Equation (7).

Cλ
n+m ≤

∑
ξ∈Sn+m

∏
0≤s<t≤n

(
1 + λUst

) ∏
n≤s′<t ′≤n+m

(
1 + λUs′t ′

)
×

∑
ξ∈Sn+m

∏
0≤s<t≤n

(
1 + λUst

)
×

∏
n≤s′<t ′≤n+m

(
1 + λUs′t ′

)
≤ Cλ

n C
λ
m (7)

If there exists an a1, a2, · · · , an, · · · , am ∈ R such that
an+m ≤ an + am is satisfied for any m and n, then as shown
in Equation (8).

lim
n→∞

an
n

= inf
n≥1

an
n

∈ [−∞,+∞] (8)

The existence of αλ satisfying lim log cλ
n

/
n equal logαλ

and logαλ ≤ log cλ
n

/
n, can be derived by combining Equa-

tions (7) and (8), as shown in Equation (9).

αλ = lim
n→∞

(
cλ
n

)1/n
, cλ

n ≥ αn
λ

(9)

In the special case where λ = 1, α = α1 is denoted by. The
effective coordination number α is affected by both vector
dimensions d and L in the extended model. However, the
nearest neighbor model calculates the relationship described
in Equation (9) by counting the positive coordinate directions
and corresponding walking points.

dn ≤ cn ≤ 2d(d − 1)n−1, d ≤ α ≤ 2d − 1 (10)

In Equation (10), when d = 2, the infimum is known, that
is α ∈ [2.625622, 2.679193].
According to Hara scholars [24], asymptotic 1/d expan-

sions exist for the connectivity constant of a self-avoiding
tour across all orders by assuming that the residual term is of
the same order of magnitude as the first omitted term in the
inverse dimensional (also known as 1/d expansion) expan-
sions, and proved that the effective number of collocations
α(d) in the Zd space in the nearest-neighbor model expands
asymptotically on the 1/2d power when d → ∞. In addition,
there exists ai ∈ Z , i = −1, 0, 1, . . . , such that:

α(d) ∼

∞∑
i=−1

ai
(2d)i

(11)
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The expression of variable α(d) at constant i equals
α(d) = a−1(2d) + a0 + · · · + ai−1(2d)−(i−1)

+ O(d−i),
and the constant term O(d−i) varies based on the value
of i. O(d−i) denotes the constraint term, which is less
than negligible when the model is sufficiently complex and
dimensional. Although it was expected that the asymptotic
radius of convergence of Equation (11) would be zero, the
convergence analysis indicated that the approach would be
divergent.

In physical statistics, critical exponents describe the behav-
ior near critical points. It has been experimentally proven that
critical exponents have universal properties and are related
solely to the spatial dimension of the system independent of
its state. For the self-avoiding walk strategy, when λ > 0,
the universal concept is extended to the application of a
constant λ .
Assume the existence of a critical constant η for differ-

ent d , such that all λ ∈ (0, 1] satisfy both the nearest
neighbor model and the extended model, as shown in
Equation (12).

cλ
n ∼ Aξn

λ
nη−1 (12)

where A, ξ, η are standard numerical values. Let
lim
n→∞

f (n)
/
g(n) = lim

n→∞
cλ
n

/
Aξn

λ
nη−1

= 1, be the projected
value of the critical parameterM, as shown in Equation (13).
The predicted critical value η is given by Equation (13).

η =



1 d = 1
43/

32 d = 2
1.16 . . . d = 3
1 d = 4
1 d ≥ 5

(13)

The self-avoiding walk strategy focuses on the core prob-
lem of evaluating the best position using efficient search
abilities, judging convergence under different dimensions,
and obtaining the global optimal position.

B. SPARROW SEARCH ALGORITHM
The sparrow search algorithm is known for its strong opti-
mization abilities, simple structure, minimal control param-
eters, and fast convergence speed compared to traditional
optimization search algorithms [25], [26], [27], [28]. The
sparrow search algorithm mainly simulates the sparrow for-
aging process called the explorer-follower process, enhances
the early warning detection mechanism, and identifies the
sparrows that discover areas with better food sources, provid-
ing those areas and following their directions. The remaining
individuals acted as followers, and randomly, 10% to 20%
of the individuals were selected for investigation and early
warning sparrows. There is also competition for food among
sparrows within the population. In situations of danger, for-
aging behavior is abandoned.

We assume that the number of sparrow populations is
expressed in the matrix form in Equation (14).

X =


x11 x21 . . . x

d
1

x12 x22 · · · xd2

· · · · · ·
. . . · · ·

x1n x2n · · · xdn

 (14)

where d represents the dimension of the variable to be opti-
mized, n represents the number of sparrows, and the fitness
value f of each sparrow is expressed by Equation (15).

Fx =


f
[
x11 x

2
1 · · · xd1

]
f
[
x12 x

2
2 · · · xd2

]
· · ·

f
[
x1n x

2
n · · · xdn

]
 (15)

Prior to establishing a mathematical model, it was neces-
sary to establish certain rules. Typically, the explorer has a
considerable energy reserve and assumes the responsibility
of searching for areas with abundant food as well as pro-
viding foraging areas and directions to followers. During the
model establishment, the energy reserve level of an individ-
ual sparrow depends on its fitness value. If the alarm value
exceeds the safety threshold, the leader directs followers to
forage in other areas. The foraging position deteriorates with
decreasing energy reserves of followers. Within the SSA,
an explorer with better fitness prioritizes obtaining food. The
explorer’s position is updated during each iteration according
to Equation (16).

X t+1
i,d =

X ti,d · exp(
−i

α · itermax
) R2 < ST

X ti,d + Q R2 ≥ ST
(16)

where X ti,d denotes the d dimensional position of the i
individual in the generation of population t generation,
α ∈ (0, 1] denotes a uniform random number in the range
of 0 to 1, itermax denotes the maximum number of iterations,
Q denotes a random number obeying a standard normal distri-
bution,R2 denotes thewarning value taking the value of [0, 1],
and ST denotes the safety value taking the value of [0.5, 1].
When R2 < ST , the environment was safe, the foraging area
expanded, and the value gradually became uniform as the
number of iterations increased. When R2 ≥ ST , it means that
an explorer has already found the danger and turns to other
areas to forage; that is the explorer is randomly moved to the
current position according to the normal distribution, and its
position converges to the optimal position.

The location update formula for the follower is presented
in Equation (17).

X t+1
i,d =

Q · exp(
X tworst − X ti,d

i2
) i > n/

2

X t+1
P +

∣∣∣X ti,d − X t+1
P

∣∣∣ · A+
· L i ≤ n/

2

(17)

where XP represents the optimal explorer position, and Xworst
represents the global worst position. If A is a 1×d matrix,
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where the value of each element is Rand{1, 1}, then A+
=

AT (AAT )−1. When i > n
/
2, its value is obtained bymultiply-

ing a standard normally distributed random number with an
exponential function. The i follower with lower fitness needs
to go to other regions to obtain more energy reserves due to
food shortages. When i ≤ n

/
2, the difference between the

current and optimal values in the same dimension is small.
Individuals were randomly selected for investigation and

early warning, and their location updates are shown in
Equation (18).

X t+1
i,d =


X tbest + β ·

∣∣X ti,d − X tbest
∣∣ fi > fg

X ti,d + K ·


∣∣∣X ti,d − X tworst

∣∣∣
(fi − fw) + ε

 fi = fg
(18)

where Xbest represents the current global optimal position
and β is a step control parameter that follows a normal
distribution.K ∈ [−1, 1] is a random number. fi represents the
current individual fitness value, fg and fw represent the global
optimal fitness value and the worst fitness value, respectively.
ε has an extremely small numerical value that prevents the
denominator from being zero.

The sparrow search algorithm exhibits high search accu-
racy and robustness in the multi-objective optimization
process. However, the convergence speed of the algorithm for
the entire objective function is affected when the parameters
are set differently, which makes it prone to local optimal
solutions. This can lead to uncertainty in the results of large
search spaces. Hence, it is necessary to develop an approach
to improve the convergence and optimal solution ability of
sparrow search algorithms in various search spaces.

C. FUZZY CONTROL BASED ON SAWS-SSA ALGORITHM
The swarm intelligence optimization algorithm SSA is based
on sparrow foraging and anti-hunting. The SAWS strategy
was employed to increase the SSA’s global optimization
search capability and enhance its optimal path. The ini-
tial population positions have different search capabilities,
according to the basic principles of SSA. The SAWS-SSA
global explorer was tentatively determined by evaluating the
average values of the best paths. The explorer’s flight step
and convergence ability are used to attract the remaining fol-
lowers to achieve SAWS-SSA global optimal solution and the
best path. Equation (19) shows the random attractor equation
for the step explorer.

piterxd =
k iterxd · Best(Piterxd ) + miterxd · (siterxd /M )

niterxd · SF
(19)

where the parameters used include x = 1, 2, . . . , N for
the number of populations, d = 1, 2, . . . , D for the problem
dimension, iter = 1, 2, . . . , T for the maximum number of
iterations, k,m, n for the number of uniform distributions of
rand(0, 1), respectively, Best(piterxd ) for the optimal explorers
under different populations, siterxd for the optimal path distance,

M for the optimal number of paths under different popula-
tions, and SF for the scaling factor. The value of SF is usually
approximately 12, and should not be too large or too small.

It is assumed that the explorers of each population exhibit
self-walking behavior. The double exponential distribution
can reflect the exponential distribution of two different posi-
tions and follows the Laplace distribution, making it appro-
priate for describing sparrow search behavior. Equation (20)
shows that the probability density function is expressed
as FP(p).

FP
(
piter+1
xd

)
=

1

(L iterxd )
1/2

exp(−
|Best(Piterxd ) − piterxd |

L iterxd
) (20)

where L iterxd represents the binomial distribution and FP(p)
changes with iteration. The attractor equation following
iter + 1 is using the Monte-Carlo method, as shown in
Equation (21).

Piter+1
xd = piterxd ±

1
2
L iterxd ln(1

/
δxd

) (21)

where variable δxd represents a uniformly distributed ran-
dom number between 0 and 1. The convergence rate of the
SAWS-SSA is controlled by enhancing the attribute features
using the contraction-expansion coefficient β. Equation (22)
expresses β.

β = βmin + (itermax − iter) ·
βmax − βmin

itermax
(22)

where itermax = T denotes the maximum number of
iterations, iter denotes the current number of iterations,
βmin denotes the initial value of the contraction-expansion
coefficient, and the general value is less than 0.6. βmax repre-
sents the end value of the contraction-expansion coefficient,
which is greater than 0.8. β is linearly reduced during the
entire iteration process. Combined with Equations (19)-(22),
the expression of updated position of the sparrow explorer is
shown in Equation (23).

Piter+1
xd = piterxd ± β

∣∣∣∣ 1M ∑
siterxd − Piterxd

∣∣∣∣ ln(1/δxd ) (23)

SAWS-SSA can overcome the limitations of SSA and
enhances the accuracy and search capability by using an
exponential distribution function to globally converge the
search for new explorer locations and by evaluating the
criterion.

Fuzzy control is a type of rule-based nonlinear control
designed using heuristic knowledge and linguistic decision
rules. Fuzzy control algorithms were used to control the
inverter voltage and frequency, which resulted in an improved
ramp-up time for the controlled motor and enhanced the
robustness of the system. Fuzzy speed control includes sev-
eral parameters, such as the affiliation function, rule base,
and fuzzy rules. Optimizing these parameter values improves
the efficiency of fuzzy speed control. Triangle and trape-
zoidal affiliation functions were utilized to express the speed
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error (e) and error variation (de) of the three-phase asyn-
chronous motor, as presented in Equations (24) and (25).

εe(e) =


e− A0
A1 − A0

A0 ≤ e ≤ A1

A2 − e
A2 − A1

A1 ≤ e ≤ A2
(24)

εde(de) =


e− B0
B1 − B0

B0 ≤ de ≤ B1

A2 − e
A2 − A1

B1 ≤ de ≤ B2
(25)

where the shape of the curve is determined by the parame-
tersA0,A1,A2,B0,B1,B2. TheMamdani Fuzzy Rulemethod
employs an if-then language description to establish rules that
determine the fuzzy relationship between the input (e, de)
and output speed (ωs) because of its simplicity and practi-
cality. Evaluating the minimum value of the objective func-
tion yields an optimal membership function. Equation (26)
defines the objective function.

OF = min(
1
z

M∑
m=1

∣∣ω′
− ω

∣∣) (26)

where z is the number of sample spaces, ω′ is the reference
rotational speed, and ω is the actual rotational speed.

The SAWS-SSA addresses the deficiencies of the SSA,
which is prone to slow convergence, local optima, and sen-
sitivity to the output parameters. This algorithm employs a
mathematical model to enhance the global search capabil-
ity using a self-avoiding exponential random walk strategy
with a constant step size to avoid the uncertainty and per-
turbations generated by the search path and to increase the
speed of the optimization search until iteration completion.
The SAWS-SSA was designed, and its step response signals
were tested with the same population size (50) and number
of iterations (300). Furthermore, the performance of this
algorithm was compared with those of the ACO, GSA, PSO,
and SAWS-SSA algorithms to establish their effectiveness
and consistency.

III. EXPERIMENT AND ANALYSIS
A. DATASETS AND EXPERIMENT SETTING
The hardware used in the experiment consisted of
Windows 10 Professional, Intel(R) Core (TM) i7 2.3 GHz
processor, and MATLAB 2018b/Simulink software. The
SAWS-SSA algorithm proposed in this study avoids uti-
lizing the traditional exhaustive heuristic method to obtain
the affiliation function values. Instead, ten sets of baseline
functions were used to examine the precision and adaptability
of the algorithm on the CRWU datasets presented in Table 1.
These datasets include the Drive End, Fan End, and Baseline
measurements of the motor at 12k/48k sampling frequency.
To enhance the generalization ability of the datasets, the
data were reorganized using shuffle() and batch() functions
in Python. Because the datasets comprise normal and faulty
samples, the effectiveness of the SAWS-SSA was verified

TABLE 1. Benchmark function description.

by extracting motor speed parameters under normal samples
based on various motor loads.

B. RESULTS AND DISCUSSIONS
The motor performance is influenced by several factors, such
as load, interference, and control mode, which result in non-
linear trends in data such as speed and torque. To demonstrate
the effectiveness of the SAWS-SSA, we evaluated its validity
on the ten nonlinear benchmark functions mentioned earlier.
We obtained the global optimal solution for these functions.
Figure 2 displays a three-dimensional graphical representa-
tion of the benchmark functions. F1 represents a continuously
non-convex function with numerous local minima. However,
it possesses a single global minimum with a fixed value of
zero. F2 is a classical multimodal minimization test func-
tion. When tending to infinity in the domain of definition,
this function produces a large number of differentiable local
extrema along the direction of the independent variables,
which are difficult to optimize. F3 is a continuous and unscal-
able function with a function value of 1. F4 is a nonlinear
function with multiple local minima as well as globally. F5 is
a continuous function with multiple local minima, two of
which are global minima. F6 is a function that is continuously
differentiable and non-integrable. F7 is a concave-convex
combination of functions. F8 is a function that is continuous,
with multiple minima. F9 represents a non-convex function
with a global minimum of 0. F10 is a function that is contin-
uously differentiable and integrable with a global minimum
of −43.315.

To further verify the superior performance of SAWS-SSA
under various benchmark functions, the convergence of
the Ant Colony Search Algorithm (ACO), Gravitational
Search Algorithm (GSA), and Particle Swarm Optimization
Algorithm (PSO) was compared. Figure 3 illustrates the
convergence trend of the F1-F4 optimization iteration num-
ber 300. ACOF1 indicates that the ACO fuzzy algorithm
converges after 25 iterations of the F1 function, resulting in
an optimal fitness value of 0.1218. In contrast, the GSA fuzzy
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FIGURE 2. Benchmarking functions.

algorithm required 161 iterations of the F1 function, resulting
in an optimal fitness value of 0.0183. Meanwhile, the PSO
fuzzy algorithm required 183 iterations of the F1 function,
resulting in an optimal fitness value of 0.0183. Finally, the
SAWS-SSA fuzzy algorithm required only 16 iterations of
the F1 function, resulting in convergence with an optimal
fitness value of 0.0171. A thorough analysis conducted on
the ACO fuzzy algorithm revealed that although it had a
similar number of iterations to that of the SAWS-SS fuzzy
algorithm, its convergence speedwas significantly worse than
that of the SAWS-SSA fuzzy algorithm. The SAWS-SSA
outperformed the other algorithms in terms of the F1 function.
Comparing the convergence trend graph of the F2 function,
it is apparent that the SAWS-SSA has a faster convergence
speed and smaller optimal fitness value than the ACO, GSA,
and PSO fuzzy algorithms. Specifically, while the number of
iterations for all algorithms was similar (132, 164, 182, and
182, respectively), the SAWS-SSA outperformed the others
in terms of convergence speed and fitness value according
to the graph. The PSO fuzzy algorithm displays superior
convergence speed, a higher number of iterations (25), and an
optimal fitness value (0.0149) compared to the ACO, GSA,
and the SAWS-SSA fuzzy algorithms in the F3 function.
In addition, SAWS-SSA achieved optimal performance in the
F4 function.

Figure 2 illustrates that the benchmark functions are mul-
timodal and that functions F5-F10 contain multiple minima.
As the function dimensions increased, the minima exhib-
ited nonlinear growth, emphasizing the importance of the

algorithm’s ability to escape local optima. Table 2 displays
the results obtained over 300 iterations for functions F5
through F10, measuring four aspects: average of best fitness,
median of best fitness, average of mean fitness, and overall
best fitness.

Table 2 shows that the SAWS-SSA algorithm has signif-
icantly better performance in the F5, F9, and F10 datasets.
Meanwhile, the GSA algorithm has the best performance in
the F6 datasets. The results of the SAWS-SSA, ACO, and
PSO optimization searches in the F7 and F8 data are simi-
lar. However, the SAWS-SSA algorithm performs relatively
better.

During field operations, various parameters are adjusted
based on factors such as drill bit size, drilling tools, and
geology. To obtain results that closely resembled those in the
field, the systemwas simulated experimentally. The sampling
time was set to 500ms (t = 500ms) with a maximum of
200 iterations (itermax = 200) and a population size of 50
(n = 50). A warning value of 0.5 (R2 = 0.5) and a safety
value of 0.8 (ST = 0.8) are used, along with a bandwidth of
0.7 (λ = 0.7), compensation coefficient of 0.6 (b0 = 0.6),
and an error coefficient of 0.02 (k0 = 0.02). To simulate the
interference situation in the field more accurately, superposi-
tion of white noise was used as the actual signal input.

The SAWS-SSA algorithm reduces the current component
and calculates the input and feedback difference of the active
power iteratively until the motor speed achieves stability.
Figure 1 depicts a block diagram of the three-phase motor
vector control.
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FIGURE 3. Function convergence characteristics under algorithm.

Although the performance of the SAWS-SSA has been
verified, it is uncertain whether the SAWS-SSA algorithm
is effective after the fusion of the fuzzy control algorithm.
Therefore, in the step response, we compared the accuracy
and effectiveness of the SAWS-SSA algorithm with the fuzzy
control-based ACO, GSA, and PSO algorithms.

Figure 4 shows that the SAWS-SSA algorithm has the best
convergence characteristics. Figure 5 shows the maximum
boundary error variation values of the membership function,
where Ne3, Ne2, and Ne1 describe the size of the boundary
error when the degree of ambiguity is negative, and Pe1, Pe2,
and Pe3 describe the size of the boundary error when the
degree of ambiguity is positive. Figure 6 depicts the variation
in the error of the output value of the membership function.
Nde3, Nde2, and Nde1 refer to the output error size when the
degree of fuzziness is negative, whereas Pde1, Pde2, and Pde3
refer to the output error size when the degree of fuzziness is
positive. Figure 7 illustrates the degree of fuzziness of the
membership function. Specifically, the degree of fuzziness

of NB is significantly negative, NM is moderately negative,
and NS is slightly negative. The degree of fuzziness of Z is
neutral (0), whereas that of PS is slightly positive, PM is mod-
erately positive, and PB is significantly positive. Figures 5-7
show the membership function error and error variation range
between [−3, 3] and the output range of [−6, 6]. Moreover,
we used the SAWS-SSA to determine the best member-
ship function value for three-phase asynchronous motor slip
speeds.

The adaptability of the SAWS-SSA algorithm under a
constant load and changing speed was evaluated using
step response. First, the speed was increased from 1/4
(370 rpm/min) to half speed (750 rpm/min) and then
further increased to full speed (1500 rpm/min) after
1s. The mean absolute error (MAE), root-mean-square
error (RMSE), and standard deviation (SD) are 2.374%,
16.543%, and 16.121%, respectively. Compared to other
algorithms, SAWS-SSA exhibits a lower mean absolute
error (MAE), root-mean-square error (RMSE), and stan-
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TABLE 2. The results after 300 iterations of F5 - F10.

FIGURE 4. Convergence properties of different algorithms.

dard deviation (SD) with minimal overshooting when the
speed suddenly changes. Please refer to Figure 8 for a step
response.

FIGURE 5. The error of membership function.

In summary, the SAWS-SSA algorithm exhibits a
steady-state error below 0.1%, with fast convergence and
high control precision, which confirms its effectiveness.
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FIGURE 6. The error change of membership function.

FIGURE 7. The output of membership function.

FIGURE 8. Comparison curve of step response.

The design concept is elaborated on while integrating other
real signals.

IV. CONCLUSION
The process of controlling the winch in the electronic control
system of the oil drilling rig is complex, and accurately
describing the system dynamics and improving the motor
performance is difficult. This difficulty results in inaccurate
and ineffective motor controls. We used the SAWS-SSA
algorithm, which is based on the self-avoiding random walk
strategy and improved sparrow search method, to iteratively
calculate the input and feedback difference of the active
power. This stabilized and accurately controlled the speed and
torque of the motor. The simulation results demonstrated that
the algorithm designed in this study can improve the control
speed and quickly bring the system parameters to the best
state. This confirms the superiority and effectiveness of the
algorithm and its potential application in the electric control
systems of drilling rigs.
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