
Received 15 October 2023, accepted 23 November 2023, date of publication 30 November 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338445

Linearized State-Space Model-Based Attitude
Control for Rocket With Four Controllable
Fins—Part 1-1: Basic Modeling and Identification
SHINHYUNG KIM 1,(Member, IEEE), ABERA TULLU 2, (Member, IEEE),
AND SUNGHUN JUNG 1, (Member, IEEE)
1Faculty of Smart Vehicle System Engineering, Chosun University, Dong-gu, Gwangju 61452, South Korea
2Department of Smart Air Mobility, Korea Aerospace University, Deogyang-gu, Goyang 10540, South Korea

Corresponding author: Sunghun Jung (jungx148@chosun.ac.kr)

This work was supported by the Gwangju Green Environment Center as ‘‘Research Development Project’’ in 2022 under Grant
22-03-40-41-12.

ABSTRACT In this study, we present, analyze, and validate a linear state-space model for a simplified rocket
with four fins. The model is validated experimentally using a wind tunnel. The proposed model consists of
twomain elements: a rocket body and fins. The body is represented as a cylinder integrated from infinitesimal
sections along the longitudinal direction (x-axis), and each fin is interpreted as an individual rigid body.
Applying a linear state space facilitates the use of linear analysis tools, leading to expedient system stability
assessment and controller design. Stability analysis of the specific model is performed for validation. The
results of the analysis showed that the phase margins of pitching and yawing were 16.9◦, and that of rolling
was 2.21◦. However, the linearized state space carries the risk of discrepancies with the actual dynamics. The
model is experimentally validated in a wind tunnel to reduce risk. The rocket model is affixed to a stationary
jig in a wind tunnel and has four degrees of freedom. This arrangement allows for the verification of a coupled
three-axis rotational model. The results show convergence within an average similarity of 77% in the linear
range, confirming the reliability of the model. The validated model can be used for comprehensive analyses
including control system design, performance optimization, and robustness analysis of a rocket with four
fins in the future.

INDEX TERMS Flight test system, hardware-in-the-loop simulation, model validation, rocket, software-in-
the-loop simulation, state-space model, unmanned aerial vehicle.

ACRONYM
AOA Angle Of Attack.
AOS Angle Of Sideslip.
CM Center of Mass.
CP Center of Pressure.
DCM Direction Cosine Matrix.
DOF Degrees Of Freedom.
DM Delay Margin.
GM Gain Margin.
HILS Hardware-In-the-Loop Simulation.
IMU Inertial Measurement Unit.
PM Phase Margin.
SILS Software-In-the-Loop Simulation.
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NOMENCLATURE

A,B,C State, input, output,
matrix, respectively

No Unit

Ax ,Ay,Az Reference cross-sectional
areas perpendicular to
the xb, yb, and zb axis

m2

Cd0,Cl0,Cs0 Linear function offset
of the drag, lift, and
sideslip coefficient of
the general system

No Unit

Cd0,b Linear function offset of
the body’s drag force
coefficient

0.500 No Unit
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Cd0,fi Linear function offset of the
ith fin’s drag coefficient

0 No Unit

Cdα,Cdβ Partial derivative of the drag
coefficient by α and β,
respectively

No Unit

Cdα,fi,
Cdβ,fi

Partial derivative of the
ith fin’s drag coefficient
by α and β, respectively

No Unit

Cdα,b Partial derivative of the
body’s drag coefficient by α

No Unit

Cdβ,b Partial derivative of the
body’s drag coefficient by β

No Unit

Cdα,f Partial derivative of the fin’s
drag coefficient by α

0 No Unit

Cdβ,f Partial derivative of the fin’s
drag coefficient by β

0 No Unit

Clα,Csβ Partial derivative of the lift
and sideslip coefficient,
respectively

No Unit

Cl0,bj Linear function offset of
the jth body element’s lift
coefficient

0 No Unit

Cl0,fi Linear function offset of the
ith fin’s lift coefficient

0 No Unit

Clα,bj Partial derivative of the
jth body element’s lift
coefficient

0.726 No Unit

Clα,fi Partial derivative of the ith

fin’s lift coefficient
3.261 No Unit

Cs0,bj Linear function offset of the
jth body element’s sideslip
coefficient

0 No Unit

Cs0,fi Linear function offset of the
ith fin’s sideslip coefficient

0 No Unit

Csβ,bj Partial derivative of the
jth body element’s sideslip
coefficient

0.726 No Unit

Csβ,fi Partial derivative of the ith

fin’s sideslip coefficient
0 No Unit

e,U,X,Y Error, input, state, and out-
put vector, respectively

No Unit

em,ep Root mean square and peak
error, respectively

deg

Fa,Fa,bj,
Fa,fi

Aerodynamic force vector
for the general system, jth

element, ith fin, respectively

N

Ffa,fi Aerodynamic force vector
of the ith fin relative to the
local frame

N

Fd,fi,Fl,fi,
Fs,fi

Drag, lift, and sideslip force
of the ith fin relative to the
local frame, respectively

N

Fd,bj,Fl,bj,
Fs,bj

Drag, lift, and sideslip force
of the jth element relative to
the local frame, respectively

N

Fb,Fba,
Fbg

Total, aerodynamic, gravity
force vector of the body

N

Fbj Total force vector of the jth

body element
N

Ffi Total force vector of the ith fin N
Fg,Fg,bj,
Fg,fi

Gravitational force vector for
the general system, jth ele-
ment, ith fin, respectively

N

Fl,Fl,bj,
Fl,fi

Lift force vector for the gen-
eral system, jth element, ith

fin, respectively

N

Fs Sideslip force vector for the
general system

N

I Identity matrix No Unit
i Fin number (for i ∈

{1, 2, 3, 4})
No Unit

J Total moment of inertia tensor kg·m2

Jxx Moment of inertia for rotation
around the x-axis

0.023 kg·m2

Jxy Moment of inertia around the
x-axis when the object rotates
around the y-axis

0 kg·m2

Jxz Moment of inertia around the
x-axis when the object rotates
around the z-axis

0 kg·m2

Jyx Moment of inertia around the
y-axis when the object rotates
around the x-axis

0 kg·m2

Jyy Moment of inertia for rotation
around the y-axis

0.436 kg·m2

Jyz Moment of inertia around the
y-axis when the object rotates
around the z-axis

0 kg·m2

Jzx Moment of inertia around the
z-axis when the object rotates
around the x-axis

0 kg·m2

Jzy Moment of inertia around the
z-axis when the object rotates
around the y-axis

0 kg·m2

Jzz Moment of inertia for rotation
around the z-axis

0.436 kg·m2

j Element number of the body
(for j ∈

[
Lmx ,Lmx − Lbh

]
)

No Unit

Lbj Position vector of the jth ele-
ment relative to the body
frame

m

Lx,bj Position of the jth element on
the x-axis

m

Ly,bj Position of the jth element on
the y-axis

0 mm

Lz,bj Position of the jth element on
the z-axis

0 m

Lh,b Length of the rocket body 1.550 m
Lh,bj Length of the jth element of

the body
m
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Lw,b Reference diameter of the
rocket body

0.050 m

Lfi Position vector of the ith

fin relative to the body
frame

m

Lx,fi Position of the ith fin on the
x-axis

-0.620 m

Ly,f 1 Position of the 1st fin on
the y-axis

0.110 m

Lz,f 1 Position of the 1st fin on
the z-axis

0 m

Ly,f 2 Position of the 2nd fin on
the y-axis

0 m

Lz,f 2 Position of the 2nd fin on
the z-axis

0.110 m

Ly,f 3 Position of the 3rd fin on
the y-axis

-0.110 m

Lz,f 3 Position of the 3rd fin on
the z-axis

0 m

Ly,f 4 Position of the 4th fin on
the y-axis

0 m

Lz,f 4 Position of the 4th fin on
the z-axis

-0.110 m

Lm Position vector of the body
front relative to the body
frame

m

Lx,m Position of the body front
on the xb-axis

0.860 m

Ly,m,Lz,m Position of the body front
on the yb- and zb-axis,
respectively

0 m

Ma,Ma,bj,

Ma,fi

Aerodynamical moment
vector for the general
system, jth element, ith fin,
respectively

N·m

Mb,Ma,b,

Mg,b

Total, aerodynamic, grav-
ity moment vector of the
body

N·m

Mbj Total moment vector of the
jth body element

N·m

Mfi Total moment vector of the
ith fin

N·m

Mg,Mg,bj,

Mg,fi

Gravitationalmoment vec-
tor for the general system,
jth element, ith fin, respec-
tively

N·m

m Total mass of the rocket kg
O Zero matrix No Unit
q Dynamic pressure 86.400 N·m−2

Rb
f

(
8fi

)
Rotation matrix from the
ith fin’s local frame to body
frame

No Unit

Rb
0 (8) Rotation matrix from the

inertial frame to body
frame

No Unit

r Position vector of the body
frame

m

S, Sfi Relevant surface area and
the area of the ith fin,
respectively

0.010 m2

v, vc Air velocity and the lin-
earized constant of the air
velocity, respectively

11.500 m·s−1

x, y, z State of the body frame on
the xw-, yw- and zw-axis,
respectively

m

xbj, ybj, zbj State of the jth body element
on the xw-, yw- and zw-axis,
respectively

m

xfi, yfi, zfi State of the ith fin on
the xw-, yw- and zw-axis,
respectively

m

xb, yb, zb Body frame axis No Unit
xo, yo, zo Inertial frame axis No Unit
xw, yw, zw Trajectory relative axis No Unit
Yp,Ys Peak and steady state of the

hardware-in-the-loop simu-
lation output, respectively

rad/deg

Ŷp,Ŷs Peak and steady state of the
simulation-in-the-loop sim-
ulation output, respectively

rad/deg

α, αfi, αbj Effective AOA for the gen-
eral system, jth element, and
ith fin, respectively

rad

αf Effective AOA vector of
four fins

rad

β, βfi, βbj Effective AOS for the gen-
eral system, jth element, and
ith fin, respectively

rad

δfi Deflection of the ith fin as
input

rad

ρ Air density 1.200 kg·m−3

8 Attitude of the body frame rad
8fi Attitude of the ith fin rela-

tive to the body frame
rad

φ Roll angle of the body
frame

rad

θ Pitch angle of the body
frame

rad

ψ Yaw angle of the body
frame

rad

I. INTRODUCTION
With recent advancements in aerospace engineering, rock-
ets designed for single use have transitioned to systems
with diverse control objectives, including maneuver control,
vertical takeoff, landing, and recovery [1], [2], [3]. These
systems require complex control inputs than traditional rocket
controllers, which use the aerodynamic forces of the wings,
attitude control thrusters, and thrust vectors of the main
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engines [4], [5], [6]. These complex systems involve numer-
ous states. A matrix-based state space is used to analyze and
control these states [7], [8], [9].

In this context, the use of a linearized state space is vital
for understanding the dynamic characteristics of a system,
facilitating stability, control system design, robustness, per-
formance optimization, and transfer function analyses based
on time–frequency analysis [10], [11]. This study considers
a linearized state-space model-based attitude control for a
rocket that can be applied to larger systemswith complex con-
trol inputs in future studies (models can be created, including
thrust bias inputs or inputs such as canard fins and drag fins).

Linearization can encounter difficulties in models
with complex subsystems [12]. Over the years, multiple
approaches formodeling the dynamics of rockets andmissiles
have been studied [13].

In this study, we first identified each component indi-
vidually and detected the induced rotations during each
experiment using a gimbal capable of a three-axis rotation
in a wind tunnel. This allowed for the validation analysis of
the proposed rocket system model.

A. MODELING
Papp [14] of the National University of Public Service at
Budapest developed amathematical model and system design
for missiles and defined the flight conditions of air-to-air
missiles. Papp designed mathematical models and controllers
that matched specific flight conditions using fundamental
aerodynamic coefficients such as lift and drag coefficients
and trigonometric functions to create nonlinear systems for
controller design. Although the mathematical design is rela-
tively simple, it is yet to be validated.

Farhan [15] of the Weapons System Division of the
Defense Science and Technology Organization of Australia
reported a state-space model for autopilot design in the
aerospace industry. A partially linearized nonlinear missile
model was introduced. They used four cruciform wings
arranged as control inputs and included subsystem models,
including gyros and actuation servos. Although this study
provides valuable insight for future controller designs, the
complexity of the model makes it challenging to experimen-
tally validate.

Biertumpfel et al. [16] of the Dresden University of Tech-
nology attempted a robustness analysis for launch vehicles
ascending in the atmosphere. They presented a finite-horizon
linear time-varying system assuming worst-case scenarios.
The launch vehicle was controlled using thrust vectoring,
and the rocket motion was described based on a nomi-
nal/reference trajectory. This study acknowledges the chal-
lenge of considering the effects of thrust variation.

Kisabo et al. [17], of the National Space Research and
Development Agency at Suleja, decoupled the coupled non-
linear dynamics of a 6-DOF system and linearized it in
state-space using the derivatives of the aerodynamic coeffi-
cients. The rocket model assumes thrust-vector control and

uses four fins. The proposed model can be applied almost
universally to aerospace vehicles by modifying the numerical
values of the aerodynamic coefficients and their derivatives.

These models may exhibit discrepancies from actual flight
dynamics because they have not been validated through
actual flight tests and simulations. To bridge this gap, our
study introduces the derivation of a rocket model with four
controllable fins. We validated the model using a wind tunnel
with hardware-in-the-loop simulation (HILS) [18] to estab-
lish a concrete testing methodology.

B. IDENTIFICATION
Miedzinski et al. [19] of the Warsaw University of Tech-
nology introduced a method for system identification using
actual flight data from a suborbital rocket. Flight tests were
conducted with biased inputs from the canards for test val-
idation, and the test results were analyzed to validate the
match between the model and actual data. One advantage of
this method is that it is more accurate than verification using
computational fluid dynamics. However, actual flight tests
can be expensive and pose safety risks, necessitating system
identification in a room.

Hann et al. [20] of the Canterbury University studied a
sounding rocket in a vertical wind tunnel. In the experiment,
rocket liftoff was simulated using a vertically erected wind
tunnel, and the forward part was connected to a rotatable
metal rod. This method effectively predicts the roll rate and
angle by decoupling the disturbances from the intrinsic roll
dynamics of the rocket frame. They used an integral-based
parameter identification approach to consider wind distur-
bances equivalent to the movement of the actuator fins. This
method is robust, computationally efficient, and accurately
reflects the randomness of turbulent wind flow. However, the
study only identified a single-axis system for roll control; the
induced pitch and yaw rotations due to partial fin loss during
the three-axis rotation in the wind tunnel were not confirmed.

Strub et al. [21] of the French-German Research Insti-
tute of Saint-Louis identified the pitch-axis rotation of a
rocket-shaped projectile with controlled fins. Unlike previous
roll axis rotation experiments, a rotating steel rod was con-
nected to the center of gravity of the projectile in a horizontal
wind tunnel, enabling pitch rotation. In this study, methods
for installing a three-axis rotatable gimbal, collecting rotation
angle data through an inertial measurement unit (IMU), con-
trolling the bias angle of the finwith a servomotor, conducting
experiments, and performing validation were evaluated.

C. CONTRIBUTION
Our study significantly contributes to rocket dynamics
research by investigating, linearizing, deriving, and experi-
mentally validating a model with fewer parameters represent-
ing rocket geometry. This study provides a solid foundation
for future research and a practical approach to model val-
idation and performance optimization through linearized
state-space models.
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FIGURE 1. Free-body diagram of simplified rocket with four fins.

D. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
presents the definitions and derivation of the rocket model.
Section III describes the model identification for simulation
and experiments. Section IV presents the results of the stabil-
ity analysis. Section V discusses the experiments and results.
The conclusions are presented in Section VI.

II. MODELING
The bold symbols denote the matrices or vectorial quantities;
italics denote the scalar quantities.

Rockets are typically designed to quickly exit high-density
layers of the atmosphere at high acceleration rates to mitigate
gravity and drag losses [22]. However, owing to the inher-
ent structural constraints of a rocket, the dynamic pressure
applied to the rocket can only reach the designed maximum.
Based on this premise, the proposed model assumes that
the rocket maintains constant dynamic pressure throughout
a specified flight trajectory.

For a Rocket with Four Controllable Fins, it is assumed that
the rocket maintains a constant dynamic pressure after launch
and ascends solely through fin control without propulsion.
The rocket dynamics are illustrated in Fig. 1, where x, y, and z
denote the linear displacements of the inertial reference frame
(m), φ, θ , and ψ denote the rotation for the trajectory-relative
frame (rad), and δ is the deflection of the fin as input (rad).
Each fin is installed at position Lf , which is the location
vector from the body frame. The origin of the body frame
was the center of mass (CM).

The launch site was considered the inertial reference frame.
The rocket progressed along the trajectory based on the rela-

tive wind; thus, x−x0 represents the distance from the launch
site along the trajectory.

A. SYSTEM MODEL
1) RIGID BODY MODEL
The trajectory-relative motion vector r and trajectory-relative
attitude vectors 8 can be expressed as the sum of each
component:

mr̈ =

∑
j

(
Fa,bj + Fg,bj

)
+

∑
i

(
Fa,fi + Fg,fi

)
, (1)

J8̈ =

∑
j

(
Ma,bj + Mg,bj

)
+

∑
i

(
Ma,fi + Mg,fi

)
, (2)

where

r =
[
x y z

]T
1×3 ,8 =

[
φ θ ψ

]T
1×3 , (3)

the m represents the total mass (kg) of the rocket, Fa,fi and
Fg,fi represent the ith fin’s aerodynamic and gravity force
vectors (N ), respectively, Fa,bj and Fa,bj represent the jth

element’s aerodynamic and gravity force vectors (N ), respec-
tively,Ma,fi andMg,fi represent the ith fin’s aerodynamic and
gravity moment vectors (N · m), Ma,bj and Mg,bj represent
the jth element’s aerodynamic and gravity moment vectors
(N ·m), and J represents the total inertia tensor (kg ·m · s−1)
about the CM of the rocket, expressed as

J =

 Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz


3×3

. (4)

In particular, in Eq. (1) and (2), i represents the set of
installed fins, and j represents the set of elements for the
Riemann integral representation of the body of the rocket
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from the front Lx,m to the end location Lx,m−Lh,b, expressed
as

i∈ {1, 2, 3, 4} , j∈
[
Lx,m,Lx,m − Lh,b

]
, (5)

the Mg,fi and Mg,bj can be neglected when the rocket is
assumed to be a rigid body, and gravity is a constant CM,
defined as the center of gravity, expressed as

Mg = O3×1, (6)

whereMg is the total moment of the rocket, defined as

Mg,fi + Mg,bj. (7)

2) AERODYNAMIC MODEL
The drag coefficient Cd , sideslip coefficient Cs, and lift coef-
ficient Cl are defined as follows [23]:

Cd = FdA−1
x q−1,

Cs = FsA−1
y q−1,

Cl = FlA−1
z q−1, (8)

where Fd , Fs, and Fl represent the axial drag, sideslip, and lift
forces (N ), respectively,Ax ,Ay, andAz represent the reference
cross-sectional areas (m2) perpendicular to the xb, yb, and zb
axes, respectively. The dynamic pressure q is defined as [24]:

q =
1
2
ρv2, (9)

where ρ is the air density (kg · m−3), and v is the air speed
(m · s−1).

The aerodynamic coefficients related to the effective angle
of attack α and effective sideslip angle β can typically be
linearized to partial derivatives [25], [26]. Thus, using Eq. (8),
the general equations for the drag, lift, and sideslip forces can
be represented by the effective angle of attack α and sideslip
angle β as given in Eq. (10).

Fd = Axq
(
Cdαα + Cdββ + Cd0

)
,

Fl = Ayq (Clαα + Cl0) ,

Fs = Azq
(
Csββ + Cs0

)
, (10)

whereCdα andCdβ represent the linearized aerodynamic par-
tial derivatives of the drag coefficient for α and β (No Unit),
respectively, Clα and Csβ denote the partial derivatives of the
lift coefficient for α and β (No Unit), respectively, Cd0, Cl0,
and Cs0 represent the linear function offsets of the drag, lift,
and sideslip force coefficients (No Unit), respectively.

Aerodynamic forces Fa,bj and Fa,fi for j and i, respectively,
are defined as

Fa,bj =
[
−Fd,bj Fs,bj −Fl,bj

]T
1×3 , (11)

Fa,fi = Rb
f
(
8fi

) [
−Fd,fi Fs,fi −Fl,fi

]T
1×3 , (12)

where the rotation matrix denoted as Rb
f

(
8fi

)
converts the ith

fin’s local frame to the body frame using a direction cosine

matrix (DCM). Rotation matrices for fin are designed as
follows: [

8f 1
Lf 1

]T
=

[
0 0 0

−0.62 0.11 0

]T
2×3

.[
8f 2
Lf 2

]T
=

[
π ·2−1 0 0
−0.62 0 0.11

]T
2×3

,[
8f 3
Lf 3

]T
=

[
π 0 0

−0.62 −0.11 0

]T
2×3

,[
8f 4
Lf 4

]T
=

[
3π ·2−1 0 0
−0.62 0 −0.11

]T
2×3

, (13)

where Lfi denotes the location of the center of pressure
(CP) in the fin. Thus, Rb

f

(
8fi

)
is calculated using the

DCM as

Rb
f
(
8f 1

)
=

 1 0 0
0 1 0
0 0 1


3×3

,Rb
f
(
8f 2

)
=

 1 0 0
0 0 −1
0 1 0


3×3

,

Rb
f
(
8f 3

)
=

 1 0 0
0 −1 0
0 0 −1


3×3

,Rb
f
(
8f 4

)
=

 1 0 0
0 0 1
0 −1 0


3×3

.

(14)

The aerodynamic moment can be expressed as the
cross-product of the force and displacement between the CM
and the point of action of the force as follows:

Ma,bj = Lbj × Fa,bj, (15)

Ma,fi = Lfi × Fa,fi, (16)

Lbj =

[
Lx,bj Ly,bj Lz,bj

]T
1×3

,

Lfi =

[
Lx,fi Ly,fi Lz,fi

]T
1×3

, (17)

where the location vectors of the CP for j and i are denoted as
Lbjand Lfi and each CP acts as a point action of forces Fa,bj
and Fa,fi, respectively.

B. STATE-SPACE MATRIX DERIVATION
The total force of the body Fb and momentMb were derived
using Eq. (15) and (16) as follows:

Fb =

∑
j
Fbj =

∑
j
Fa,bj +

∑
j
Fg,bj, (18)

Mb =

∑
j
Mbj =

∑
j
Ma,bj +

∑
j
Mg,bj, (19)

where Fb andMb are the total force and moment of the body,
respectively, and Fg,bj and Mg,bj are the gravitational force
and moment, respectively.

Since a gimbal is attached to the CM of each rocket,∑
j
Fg,bj = O3×1, ṙ = O3×1. (20)
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Thus, the total force and moment of the fins Ff andMf are
summarized as follows:

Ff =

∑
i
Ffi =

∑
i
Fa,fi, (21)

Mf =

∑
i
Mfi =

∑
i
Ma,fi. (22)

The mass of the fins is considered to be included in the
body; thus, the gravitational force and moment caused by the
fins are neglected.

Because the rocket is axisymmetric for the xb axis, the
coefficients of the lift and sideslip linear functions Cdα,bj
and Clα,bj are identical, and the linear function offset can be
neglected.

Clα,bj = Csβ,bj,Cl0,bj = Cs0,bj = 0. (23)

The rocket fins were assumed to use a symmetric airfoil.
Therefore, the sideslip coefficient and linear function offset
of the thin airfoil were neglected.

Cl0,fi = Cs0,fi = 0,Csβ,fi = Cd0,fi = 0. (24)

The coefficients Cdα,bj, Cdβ,bj, Cdα,fi, and Cdβ,fi of the
linear function representing the drag coefficient were ignored
according to the cosine approximation method.

As shown in Fig. 1, Eq. (25), each ith fin is installed
axisymmetrically about xb, and Lx,fi is assumed to be iden-
tical.

Ly,f 1 = −Ly,f 3,Lz,f 2 = −Lz,f 4,Ly,f 1 = Lz,f 2. (25)

The body is an integration of infinitesimal sections, each
with a thickness of Lh,bj and location vector Lbj, defined as

Lh,bj = 1bj,Lbj =
[
Lx,bj 0 0

]T
, (26)

The reference sectional areas (m2) Ax , Ay, and Az for
bodies Ax,b, Ay,b, and Az,b, are defined as

Ax,b =
1
8
L2w,bπ,Ay,b = Az,b = Lh,bLw,b =

∑
j
Lw,b1bj.

(27)

Thus, L1 and L2 for the area multiplied by each element’s
location, Lx,bj and square, respectively, are expressed as
follows:

L1 =

∑
j
Lx,bjLw,b1bj =

1
2
Lh,b

(
2Lx,m − Lh,b

)
, (28)

L2 =

∑
j
L2x,bjLw,b1bj

=
1
3
Lh,b

(
L2h,b − 3Lh,bLx,m + 3L2x,m

)
. (29)

The surface areas of fins Sfi are all considered identical
to S. Thus, Ax , Ay, and Az for fins Ay,fi, Ay,fi, and Az,fi,
respectively, are defined as follows:

Ax,fi = Ay,fi = 0,Az,fi = S. (30)

The q is approximated by ẋ and can be derived as

q = qv−1
c ẋ. (31)

When the wind velocity of the inertial reference frame
assumed zero, and the velocity ẋ is significantly greater than ż
and ẏ, the effective angles of attack (αbj and αfi) and effective
sideslip angles (βbj and βfi) for the jth body element and ith

fin, respectively, can be determined using an inverse tangent
approximation [27], as shown in Eq. (32).[

αbj
βbj

]
=

[
0 1 0
0 0 1

] (
8 +

[
0 żbjv−1

c −ẏbjv−1
c

]T
1×3

)
, (32)[

αfi
βfi

]
=

[
0 1 0
0 0 1

]
Rb
f
(
8fi

)−1

×

(
8 +

[
0 żfiv−1

c −ẏfiv−1
c

]T
1×3

)
, (33)

where,

ẏbj = ẏ+ Lx,bjψ̇,

żbj = ż− Lx,bjθ̇ ,

ẏfi = ẏ+ Lx,fiψ̇ − Lz,fiφ̇,

żfi = ż− Lx,fiθ̇ + Ly,fiφ̇, (34)

the vc is the constant wind speed for the linearization of ẋ; the
velocity of the yw axes (ẏbj and ẏfi) and zw axes (żbj and żfi) for
the jth body elements and ith fin, respectively, are summarized
in Eq. (34).
The deflect angle of the ith fin is δi and changes the

designed angle of attack. δi is considered as an element set
of the input U. Each αf i is summarized in Eq. (35):[

αf 1 αf 2 αf 3 αf 4
]T
1×4

=


θ +

(
ż− Lx,f 1θ̇ + Ly,f 1φ̇

)
v−1
c

ψ +
(
−ẏ− Lx,f 2ψ̇ + Lz,f 2φ̇

)
v−1
c

−θ +
(
−ż+ Lx,f 3θ̇ − Ly,f 3φ̇

)
v−1
c

−ψ +
(
ẏ+ Lx,f 4ψ̇ − Lz,f 4φ̇

)
v−1
c


4×1

+


δ1
δ2
δ3
δ4


4×1

. (35)

Thus Fb, Ff ,Mb, andMf can be summarized as

Fb

=

 −
1
8L

2
w,bπCd0qv

−1
c ẋ

Lh,bLw,bClα,bjq
(
−ẏv−1

c + ψ
)
− L1Clα,bjqψ̇v−1

c
Lh,bLw,bClα,bjq

(
−żv−1

c − θ
)
+ L1Clα,bjqθ̇v−1

c


3×1
(36)

Ff

=

 0
SqClα,fi

(
−2ẏv−1

c + 2ψ − 2Lx,fiψ̇v−1
c + δ2 − δ4

)
SqClα,fi

(
−2żv−1

c − 2θ + 2Lx,fiθ̇v−1
c + δ3 − δ1

)

3×1
(37)

Mb

=

 0
L1qClα,bj

(
θ + żv−1

c
)
− L2qClα,bjθ̇v−1

c
L1qClα,bj

(
ψ − ẏv−1

c
)
− L2qClα,bjψ̇v−1

c


3×1

(38)
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Mf

=

 −L2y,f 1SqClα,fi
(
4φ̇ +

∑
i δi

)
Lx,fiSqClα,fi

(
2żv−1

c + 2θ − 2Lx,fiθ̇v−1
c + δ1 − δ3

)
Lx,fiSqClα,fi

(
−2ẏv−1

c +2ψ − 2Lx,fiψ̇v−1
c +δ2−δ4

)

3×1

(39)

The detailed derivation process is presented inAppendixA.
In the state-space representation, r and 8 can be summa-

rized as

r̈ = m−1 (
Fb + Ff

)
, (40)

8̈ = J−1 (
Mb + Mf

)
. (41)

Using Eq. (36), (37), (38), (39), (40), (41), the state-space
matrix is derived as shown in Eq. (42), as shown at the bottom

of the page, where, as (43), shown at the bottom of the page,
where A22 and A42 are related to ṙ , and according to Eq. (20)
were considered negligible.

A22 = A42 = O3×3. (44)

III. IDENTIFICATION
Wind tunnel experiments were conducted to obtain the coeffi-
cients, and the linearized partial derivatives of the lift and drag
were calculated for each angle of attack, as shown in Fig. 2.
Fig. 6(a) in Section V shows the identification for Clα,fi,
Clα,bj, Csβ,bj, and Cd0,bj are identified in the configuration
as shown in Fig. 6(b). Each coefficient in the result is a linear
function that includes the derivative coefficients.

Ẋ = AX + BU,

Y = CX,

X =


r
ṙ
8

8̇


12×1

,U =


δ1
δ2
δ3
δ4


4×1

,A =


O I O O
O m−1A22 m−1A23 m−1A24
O O O I
O J−1A42 J−1A43 J−1A44


12×12

,

B =


O

m−1B21
O

J−1B41


12×4

,C =I12×12, (42)

A22 =

 −
1
8L

2
w,bπCd0qv

−1
c 0 0

0 −
(
Lh,bLw,bClα,bj + 2SClα,fi

)
qv−1

c 0
0 0 −

(
Lh,bLw,bClα,bj + 2SClα,fi

)
qv−1

c


3×3

,

A23 =

 0 0 0
0 0

(
Lh,bLw,bClα,bj + 2SClα,fi

)
q

0 −
(
Lh,bLw,bClα,bj + 2SClα,fi

)
q 0


3×3

,

A24 =

 0 0 0
0 0 −

(
L1Lw,bClα,bj + 2Lx,fiSClα,fi

)
qv−1

c
0

(
L1Lw,bClα,bj + 2Lx,fiSClα,fi

)
qv−1

c 0


3×3

,

A42 =

 0 0 0
0 0

(
L1Clα,bj + 2Lx,fiSClα,fi

)
qv−1

c
0 −

(
L1Clα,bj + 2Lx,fiSClα,fi

)
qv−1

c 0


3×3

,

A43 =

 0 0 0
0

(
L1Clα,bj + 2Lx,fiSClα,fi

)
q 0

0 0
(
L1Clα,bj + 2Lx,fiSClα,fi

)
q


3×3

,

A44 =


−4L2y,f 1SqClα,fi 0 0

0 −

(
L2Clα,bj + 2L2x,fiSClα,fi

)
qv−1

c 0

0 0 −

(
L2SClα,fi + 2L2x,fiSClα,fi

)
qv−1

c


3×3

,

B21 =

 0 0 0 0
0 SqClα,fi 0 −SqClα,fi

−SqClα,fi 0 SqClα,fi 0


3×3

,

B41 =

 −L2y,f 1SqClα,fi −L2y,f 1SqClα,fi −L2y,f 1SqClα,fi −L2y,f 1SqClα,fi
Lx,fiSqClα,fi 0 −Lx,fiSqClα,fi 0

0 Lx,fiSqClα,fi 0 Lx,fiSqClα,fi


3×3

, (43)
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FIGURE 2. Wind tunnel result of fin’s lift coefficient by angle of attack.

FIGURE 3. Step response: (a) pitch and yaw; (b) pitch and yaw rate;
(c) roll; (d) roll rate.

The linearization scope is selected from 0◦ to 30◦ or
0.52 radians for the linear approximation of trigonometric
functions. We selected the linearized lift coefficient Clα,fi =

3.261 (rad−1) from the wind tunnel results; Clα,bj = Csβ,bj =
0.726 (rad−1), Cd0,bj = 0.5. The values of Sfi, Lh,b, Lw,b, Lfi,
and Lm were measured directly. We refer to the nomenclature
for all values.

FIGURE 4. Bode diagrams: (a) pitch and yaw; (b) roll.

IV. STABILITY ANALYSIS
A. TIME RESPONSE
Stability analysis was conducted for each axis using a linear
state space. The rocket was axisymmetric, yielding similar
results for the pitch and yaw in both axes. Each step input
used Uθ , Uψ , and Uφ , with corresponding outputs Cθ , Cψ ,
and Cφ , defined in Eq. (45) for the pitch, yaw, and roll
rotations, respectively. This approach prevents unintended
coupled rotations owing to asymmetric wing deflections. The
input and output U and C in Eq. (42) were replaced with the
following in the analysis:

Uθ =
[
10 0 − 10 0

]T
,

Uψ =
[
0 10 0 −10

]T
,

Uφ =
[
10 10 10 10

]T
, (45)

Cθ =
[
O1×6 1 O1×2 1 O1×2

]T
,

Cψ =
[
O1×7 1 O1×2 1 O1×1

]T
,

Cφ =
[
O1×8 1 O1×2 1

]T
. (46)

The pitch and yaw step responses are shown in Fig. 3(a).
Fig. 3(b) shows significantly different results for the roll.
For the pitch and yaw responses, there is convergence of the
output for unit input 1; however, there is divergence in the roll.
Furthermore, the outputs for the pitch and yaw converged in
the negative direction of the input. Based on these findings,
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FIGURE 5. Nyquist plot: (a) pitch and yaw; (b) roll.

the input inversion may be necessary when analyzing Bode
plots.

B. BODE PLOT
A Bode plot graphically represents the frequency-response
characteristics and can be used to analyze and test the stability
of the feedback control system by obtaining the gain margin
(GM), phase margin (PM), and delay margin (DM) of the
amplifier. Although the plant in this study does not include
a controller, the stability analysis of the system allows for
the evaluation of the classic wing stabilization control of
the rocket and the determination of the required controller
performance.

The PM is the difference between the phase shift and -
180◦; the gain is 0 dB in the Bode plot. GM is the difference
between the gain and 0 dB when the phase shift is -180◦.
As shown in Fig. 4(a), the PM of the system for the pitch

and yaw rotations was 16.9◦ at 3.87 rad/s. GM was 0.807 dB
at a phase crossover frequency of 180◦. For the roll rotation,
as illustrated in Fig. 4(b), PM was 2.21◦ at 4.63 rad/s, and no
GM was observed.

It is generally known that if the PM is less than 30◦, the
system becomes unstable and reacts significantly. If the angle
was greater than 60◦, the system was likely to have a slower
response speed. In general, a PM angle of 45◦ is considered
appropriate [28]. In this system, for the pitch and yaw, the PM
was 16.9◦ when themagnitude was 0 dB. Although the results
converged, as shown in Fig. 4(a), the systemwas unstable and

required additional stability or controller. For roll rotation,
Fig. 4(b) shows the unstable system with a PM of 2.21◦,
significantly diverging in the 30◦–60◦ range owing to the
input. The DM for pitch and yaw were analyzed as 76.8 ms
and 8.34 ms for roll.

C. NYQUIST PLOT
The Nyquist criterion can be used in cases where the transfer
function of a control system includes error factors arising
from experimental methods, to confirm the relative stability
or intuitively understand the influence of the characteristics
of a particular control element on the stability of the entire
system.

According to the Nyquist criterion, Fig. 5(a) shows the
stability as the mapping rotates clockwise and is positioned
to the right of pole (-1,0) [29]. In contrast, Fig. 5(b) shows
instability when the mapping is located to the left of the pole
(0,0). Based on this criterion, although the predicted system
for the pitch and yaw inherently exhibited stability, the roll
was unstable.

V. EXPERIMENT AND RESULTS
The experimental setup is shown in Fig. 6. The rocket model
was mounted on a 3-DOF rotatable gimbal, equipped with
a servo motor for adjusting δi, a computer, and an IMU for
collecting attitude information. Parameter identification was
performed using the load cells shown in Fig. 6(a) and Fig. 6
(b) and a series of experimental processes, and the results
were applied to the model.

A. EXPERIMENT
The gimbal was designed tominimizemass and inertia effects
without additional power and was installed at the center of
gravity for rocket rotation. As a design limitation, a bearing
larger than the rocket was used for roll rotation, possibly
leading to a higher friction than the smaller bearings used
for pitch and yaw rotation. A nacelle was installed to prevent
aerodynamic effects of the gimbal on the wings.

Computational fluid dynamics and actual measurements
confirmed consistent wind-speed delivery to the fin. How-
ever, subtle vibrations can occur owing to disturbances and
rotational angle limitations, which can affect the results.

To minimize these effects, the peak angles were analyzed
for the pitch and yaw to ensure that they exceeded the angle
limitations caused by the nacelle, as presented in Section IV
(stability analysis), and the inputs were adjusted accordingly.
For roll rotation, the step response continued to diverge; φ̇
reached 1200◦/s at a 10◦ average δi.
However, it was experimentally confirmed that the rotation

stopped if the deflection angle decreased to less than 15◦,
owing to limitations in the experimental setup, such as the
gimbal static friction. Conversely, the installed IMU could
not measure rotations exceeding 2000◦/s; thus, appropriately
adjusted values were used in the validation test. The input
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FIGURE 6. Validation process via experiment: (a) identification for fin; (b) identification for body and experiment for validation.

scenarios applied in the test were as follows:

Uθ =
[
8 0 −8 0

]T
,

Uψ =
[
0 8 0 −8

]T
,

Uφ =
[
−20 −20 −20 −20

]T
. (47)

The input U (t) was fed simultaneously into the model for
software-in-the-loop simulation (SILS) and HILS devices in
real-time, as shown in Fig. 6. The errors e (t) were measured
by comparing the outputs Ŷ (t) and Y (t) from the SILS and
HILS, respectively.

e(t) = Ŷ(t) − Y(t), (48)

where Ŷ and Y were calculated using Eq. (42). However,
the output matrix is replaced by Eq. (47). Consequently, the
output is expressed as a 1 × 1 scalar matrix, and the error e
according to the roll, pitch, and yaw is scalar.

B. RESULTS
Each experiment for the input scenarios in Eq. (47) is shown
in Fig. 7. The SILS and HILS plots are compared in Fig. 7(a),
(c), and (e). The ERR was calculated using Eq. (48) in
Fig. 7(b), (c), (d). Each figure shows the input command
CMD as an applied maximum δfi value in Eq. (47). Fig. 7(e)
and (f) show graphs comparing the angular accelerations and
their errors in the roll rotation. The roll rotation diverged,

TABLE 1. Experiment results.

as shown in the analysis results in Fig. 3(c) and the exper-
imental results in Fig. 7(e); thus, it was not possible to
calculate the maximum and steady-state responses according
to the input. Instead, the maximum values and amplitudes of
the angular velocity were calculated, as shown in Fig. 3(d)
and 7(g). The CMD of each experiment was not changed
until 13 sec for the result to settle based on the settling time
expected from the step response analysis results.

Table 1 summarizes the peaks Ŷp and Yp, and the
steady-state Ŷs and Ys of SILS and HILS, respectively, ep
and em denote the absolute maximum peak error and root
mean square (RMS), respectively. Fit percentage low and
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FIGURE 7. Step response of experiment: (a) pitch; (b) pitch error; (c) pitch angular velocity; (d) pitch angular velocity error; (e) yaw; (f) yaw
error; (e) yaw angular velocity; (f) yaw angular velocity error; (i) roll; (j) roll error; (k) roll angular velocity; (l) roll angular velocity error.

mean for measuring the similarity between e (t), Y (t) and
Ŷ (t) were computed as

Fit%Low =

√(
e2p−Y2

p

) /
2, (49)

Fit%Mean =

√(
e2m−Y2

s
) /

2. (50)

For the roll, the fit percentage was calculated based on the
angular velocity and errors.
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In the experiment result, the Ypvalues of pitch and yaw
were 12.5◦ and 9.8◦, respectively, and the ep values were
4.9◦ and 6.8◦, respectively. This result indicates that unlike
the axisymmetric model, the Ŷp result is similar to the pitch
and yaw, and the experimental rocket does not have the same
perfect axisymmetry. The RMS errors were relatively similar
to the peak errors at 1.4◦ and 1.8◦ for the pitch, yaw, and
roll, and the calculated average fits were 86.3% and 76.9%,
respectively. In contrast, the minimum fits were 61.2% and
30.4% for the peak standard pitch and yaw, respectively. For
roll, it took approximately 0.6 s for the rocket to rotate 180◦;
the peak error based on 0–0.6 s was 37.7◦. The peak angular
velocity was 1483◦/s from 0 to 30 s. The resulting error was
1343.6◦/s; the average fit was 68.0%, whereas the minimum
fit was 9.4%.

VI. CONCLUSION AND FUTURE RESEARCH
Overall, the model similarity was 77%, however, the sim-
ilarity for the peak error in some experiments was as low
as 10%. Excluding the roll experiment, the average fit was
81.6% and the lowest fit was 30.4%. Excluding the yaw
experiment, the lowest fit was approximately 61.2%. This
was due to the limitations of the experimental configuration,
which assumed that Lw,b is constant during axisymmetry.
In contrast, the body of the experimental device differed by
0.05 in the largest case and by 0.01 in the smallest case.
However, it is difficult to solve a problem based only on this
effect, and the aerodynamic effects of the gimbal and wind
tunnel nacelles must be considered. In addition, for the roll,
the frictional force on the rotating bearing can affect static
and high speeds.

Nevertheless, this study confirmed the similarity of the
model and the limitations of the model and experiments.
Therefore, it would be beneficial to improve the model and
conduct additional experiments.

This series is divided into four parts. Each part of the
system is configured as shown in Appendix B.

APPENDIX A
A. DERIVATION DETAIL
TheFb,Ff ,Mb, andMf are derived using Eq. (13), (14), (16),
(17), (18), (19), and (20) as

Fb =

∑
j
Fbj =

∑
j
Fa,bj, (51)

Ff =

∑
i
Ffi =

∑
i
Fa,fi, (52)

Mb =

∑
j
Mbj =

∑
j
Ma,bj =

∑
j
Lbj × Fa,bj, (53)

Mf =

∑
i
Mfi =

∑
i
Ma,fi =

∑
i
Lfi × Fa,fi, (54)

where

Lfi =
[
Lx,fi Ly,fi Lz,fi

]T
1×3 ,

Lbj =
[
Lx,bj 0 0

]T
1×3 , Ly,bj = Lz,bj = 0. (55)

Aerodynamic forces Fa,bj and Fa,fi are defined by Eq. (10)
and (11) as follows:

Fa,bj =
[
−Fd,bj Fs,bj −Fl,bj

]T
,

Fa,fi = Rb
f
(
8fi

) [
−Fd,fi Fs,fi −Fl,fi

]T
. (56)

Each element of the vector in Eq. (56) can be derived from
Eq. (9), (23), and (24).

Fd,bj = Ax,bjqCd0,

Fs,bj = Ay,bjqClα,bjβbj,

Fl,bj = Az,bjqClα,bjαbj,

Fd,fi = Ax,fiqCd0,

Fs,fi = Ay,fiqClα,fiβfi,

Fl,fi = Az,fiqClα,fiαfi. (57)

Thus, Fb, Ff , Mb, andMf are derived as

Fb =

 −
∑

j Ax,bjqCd0∑
j Ay,bjqClα,bjβbj

−
∑

j Az,bjqClα,bjαbj

 , (58)

Ff =

∑
i
Rb
f
(
8fi

)  −Ax,fiqCd0
Ay,fiqClα,fiβfi

−Az,fiqClα,fiαfi

, (59)

Mb =

 0∑
j Lx,bjAz,bjqClα,bjαbj∑
j Lx,bjAy,bjqClα,bjβbj

 , (60)

Mf =

∑
i

 Lx,fi
Ly,fi
Lz,fi

 × Rb
f
(
8fi

)  −Ax,fiqCd0
Ay,fiqClα,fiβfi

−Az,fiqClα,fiαfi

, (61)

where the cross-sections Ax,bj, Ay,bj, Az,bj, Ax,fi, Ay,fi, and Az,fi
for each axis are defined as follows:∑

j

[
Ax,bj Ay,bj Az,bj

]
=

[
Ax,b Ay,b Az,b

]
,∑

i

[
Ax,fi Ay,fi Az,fi

]
=

[
Ax,f Ay,f Az,f

]
. (62)

Each cross-section is given by Eq. (27) and (30) as follows:

Ax,b =
1
8
L2w,bπ,

Ay,b = Az,b = Lh,bLw,b =

∑
j
Lw,b1bj,

Ay,fi = Ay,fi = 0,Az,fi = S. (63)

Thus, Eq. (52), (53), (54), and (55) can be organized as

Fb =

 −
1
8L

2
w,bπCd0qv

−1
c ẋ

Lh,bLw,bq
∑

j Clα,bjβbj
−Lh,bLw,bq

∑
j Clα,bjαbj

 , (64)

Ff =

∑
i
Rb
f
(
8fi

)  0
0

−SqClα,fiαfi

, (65)

Mb =

 0
Lh,bLw,bq

∑
j Lx,bjClα,bjαbj

Lh,bLw,bq
∑

j Lx,bjClα,bjβbj

 , (66)
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Mf =

∑
i

 Lx,fi
Ly,fi
Lz,fi

 × Rb
f
(
8fi

)  0
0

−SqClα,fiαfi

. (67)

The effective AOA and SOA acting on each element are
expressed by Eq. (32), (33), (34), and (35).[

αbj
βbj

]
=

[
0 1 0
0 0 1

] (
8 +

[
0 żbjv−1

c −ẏbjv−1
c

]T
1×3

)
, (68)[

αfi
βfi

]
=

[
0 1 0
0 0 1

]
Rb
f
(
8fi

)−1

×

(
8 +

[
0 żf v−1

c −ẏf v−1
c

]T
1×3

)
, (69)

where αbj and βbj are derived from Eq. (68).

αbj = θ +
(
ż− Lx,bjθ̇

)
v−1
c ,

βbj = ψ −
(
ẏ+ Lx,bjψ̇

)
v−1
c . (70)

Because Clα,bj is a constant, it can be summarized as (71)
and (72), shown at the bottom of the page.
In Eq. (28) and (29), L1 and L2 are defined as

L1 =

∑
j
Lx,bjLw,b1bj,

=
1
2
Lh,b

(
2Lx,m − Lh,b

)
, (73)

L2 =

∑
j
L2x,bjLw,b1bj,

=
1
3
Lh,b

(
L2h,b − 3Lh,bLx,m + 3L2x,m

)
. (74)

Fb andMb are summarized as

Fb =

 −
1
8L

2
w,bπCd0qv

−1
c ẋ

Lh,bLw,bClα,bjq
(
ψ − ẏv−1

c
)
− L1Clα,bjqψ̇v−1

c
Lh,bLw,bClα,bjq

(
−θ − żv−1

c
)
+ L1Clα,bjqθ̇v−1

c

 ,
(75)

Mb =

 0
L1Clα,bjq

(
θ + żv−1

c
)
− L2Clα,bjqθ̇v−1

c
L1Clα,bjq

(
ψ − ẏv−1

c
)
− L2Clα,bjqψ̇v−1

c

 . (76)

The rotation matrixRb
f

(
8fi

)
for the fin installation attitude

is defined by Eq. (14).

Rb
f
(
8f 1

)
=

 1 0 0
0 1 0
0 0 1


3×3

,Rb
f
(
8f 2

)
=

 1 0 0
0 0 −1
0 1 0


3×3

,

Rb
f
(
8f 3

)
=

 1 0 0
0 −1 0
0 0 −1


3×3

,Rb
f
(
8f 4

)
=

 1 0 0
0 0 1
0 −1 0


3×3

.

(77)

Thus, Eq. (65), (67), and (69) can be derived as follows:

Ff =

∑
i
Rb
f
(
8fi

)  0
0

−SqClα,fiαfi

,
=

[
0 0 −SqClα,fiαfi

]T
i=1 ,

+
[
0 SqClα,fiαfi 0

]T
i=2 ,

+
[
0 0 SqClα,fiαfi

]T
i=3 ,

+
[
0 −SqClα,fiαfi 0

]T
i=4 , (78)

Mf =

∑
i

 Lx,fi
Ly,fi
Lz,fi

 × Rb
f
(
8fi

)  0
0

−SqClα,fiαfi

,
=

[
−Ly,fiSqClα,fiαfi Lx,fiSqClα,fiαfi 0

]T
i=1 ,

+
[
−Lz,fiSqClα,fiαfi 0 Lx,fiSqClα,fiαfi

]T
i=2 ,

+
[
Ly,fiSqClα,fiαfi −Lx,fiSqClα,fiαfi 0

]T
i=3 ,

+
[
Lz,fiSqClα,fiαfi 0 −Lx,fiSqClα,fiαfi

]T
i=4 . (79)

If Clα,fi is a constant, Eq. (78)and (79) can be summarized
as follows:

Ff =

 0
SqClα,fi

(
αf 2 − αf 4

)
SqClα,fi

(
αf 3 − αf 1

)
 , (80)

Mf=

 SqClα,fi
(
−Ly,f 1αf 1 − Lz,f 2αf 2+ Ly,f 3αf 3+ Lz,f 4αf 4

)
SqClα,fi

(
Lx,f 1αf 1 − Lx,f 3αf 3

)
SqClα,fi

(
Lx,f 2αf 2 − Lx,f 4αf 4

)
 .

(81)

Eq. (35), from Eq. (33) is expressed as
αf 1
αf 2
αf 3
αf 4

 =


θ +

(
ż− Lx,f 1θ̇ + Ly,f 1φ̇

)
v−1
c

ψ +
(
−ẏ− Lx,f 2ψ̇ + Lz,f 2φ̇

)
v−1
c

−θ +
(
−ż+ Lx,f 3θ̇ − Ly,f 3φ̇

)
v−1
c

−ψ +
(
ẏ+ Lx,f 4ψ̇ − Lz,f 4φ̇

)
v−1
c

 +


δ1
δ2
δ3
δ4

 .
(82)

Lx,fi is a constant, defined in Eq. (25) as

Ly,f 1 = −Ly,f 3,Lz,f 2 = −Lz,f 4,Ly,f 1 = Lz,f 2. (83)

Forces Ff and momentMf of the fins are derived as

Ff =

 0
SqClα,fi

(
−2ẏv−1

c + 2ψ − 2Lx,fiψ̇v−1
c + δ2 − δ4

)
qClα,fi

(
−2θ − 2żv−1

c + 2Lx,fiθ̇v−1
c + δ3 − δ1

)
,
(84)

Fb =

 −
1
8L

2
w,bπCd0qv

−1
c ẋ

Lh,bLw,bqClα,bj
(
ψ − ẏv−1

c
)
− qClα,bjψ̇v−1

c
∑

j Lx,bjLw,b1bj

Lh,bLw,bqClα,bj
(
−θ − żv−1

c
)
+ qClα,bjθ̇v−1

c
∑

j Lx,bjLw,b1bj

 , (71)

Mb =

 0
Clα,bjq

(
θ + żv−1

c
) ∑

j Lx,bjLw,b1bj − qClα,bjθ̇v−1
c

∑
j L

2
x,bjLw,b1bj

Clα,bjq
(
ψ − ẏv−1

c
) ∑

j Lx,bjLw,b1bj − qClα,bjψ̇v−1
c

∑
j L

2
x,bjLw,b1bj

 . (72)
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FIGURE 8. System diagram for rocket flight.

Mf =

 −L2y,f 1SqClα,fi
(
4φ̇ +

∑
i δi

)
Lx,fiSqClα,fi

(
2żv−1

c + 2θ − 2Lx,fiθ̇v−1
c +δ1−δ3

)
Lx,fiSqClα,fi

(
−2ẏv−1

c + 2ψ − 2Lx,fiψ̇v−1
c +δ2−δ4

)
.

(85)

APPENDIX B
B. PAPER SCOPE
See Figure 8.

C. SERIES ORGANIZATION
The overall project, named Linearized State-Space Model-
Based Attitude Control for Rocket with Four Controllable
Fins, is divided into four parts as follows:

Part 0: Background
Part 1: Modeling and Identification
Part 2: Navigation
Part 3: Guidance and Control
This manuscript, Part 1-1: Basic Modeling and Identi-

fication is a subcategory of Part 1, focusing on deriving,
analyzing, and validating themodel of the fundamental rocket
dynamics having four controllable fins.
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