
Received 9 October 2023, accepted 28 November 2023, date of publication 30 November 2023,
date of current version 8 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338443

Mixed-Precision Sparse Approximate Inverse
Preconditioning Algorithm on GPU
XINYUE CHU
School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China

e-mail: 2316607219@qq.com

ABSTRACT In this study, in order to further improve the construction efficiency of sparse approximate
inverse (SPAI) preconditioners, we attempt to explore the construction method of SPAI preconditioners in
mixed-precision mode from the perspective of single and double precision mixing, and thus propose two
mixed-precision SPAI preconditioning algorithms on GPU, abbreviated as MP-SSPAI and MP-HeuriSPAI,
respectively. In MP-SSPAI, with original static SPAI preconditioning algorithm as the research object,
we mainly consider the following factors to construct its preconditioner in mixed-precision mode: 1) use
single precision as much as possible to improve computational efficiency of the preconditioner while
ensuring its validity; 2) store certain components in single precision after they have been determined
to require single-precision computation to improve read efficiency; and 3) maintain the high-precision
output of the preconditioner to ensure that it is computed with high precision when applied to the iterative
algorithm. In MP-HeuriSPAI, a mixed-precision heuristic dynamic SPAI preconditioning algorithm on GPU
is presented based on the above factors, using HeuriSPAI as the object of study. The experimental results
demonstrate the effectiveness and high performance of the proposed MP-SSPAI and MP-HeuriSPAI by
comparing them with their respective double-precision versions, single-precision versions, and extended
versions.

INDEX TERMS GPU, mixed precision, preconditioning algorithm, sparse approximate inverse.

I. INTRODUCTION
In general, the large sparse linear systems can be interpreted
as follows:

Ax = b, x, b ∈ Rn,A ∈ Rn×n. (1)

Here coefficient matrix A is large, sparse, and nonsingular,
and x and b are given vector and unknown one, respectively.
To address above problem better, preconditioning Krylov
iterative methods come into view, which can accelerate
convergence and have higher robustness compared with
Krylov iterative methods. Using preconditioning techniques,
equation (1) can be further transformed into a more tractable
form as:

MAx = Mb or AMy = b, x = My. (2)

Here M is referred to as left (right) preconditioner. A better
preconditioner M should satisfy the following three condi-
tions:

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

1) its operation should be simple and cheap.
2) it is supposed to accelerate convergence of iterative

methods.
3) it is effectively computed in parallel.
However, the construction of preconditioners is time-

consuming, leading to a significant increase of time cost of
seeking the approximate solution (x̂). Programmable graphics
processing units(GPUs) have the feature of multiple core
structures, which makes them powerful for scientific comput-
ing and big data processing. And due to easiness of learning
and using, and needless of graphics knowledge for devel-
opers, the compute united device architecture(CUDA) [1]
introduced by NVIDIA is much popular, which supports joint
CPU/GPU execution of applications and designs a C-based
programming language CUDA C for GPU computing.
Therefore, it is utilized inmuchwork [2], [3], [4] to accelerate
the construction of preconditioners.

At present, there are various preconditioners, such
as Jacobi preconditioner [5], [6], block−Jacobi precon-
ditioner [7], [8], factorized sparse approximate inverse

136410

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1896-7095

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

preconditioner [9], [10], [11], polynomial precondi-
tioner [12], [13], [14], incomplete LU decompositions [15],
[16], [17], and sparse approximate inverse (SPAI) precon-
ditioner based on F-norm minimization [18], [19], [20],
[21], [22]. Because of high parallelism and simplicity,
the SPAI preconditioner has received widespread attention.
And according to the construction method, it is usually
classified into static SPAI preconditioning algorithm [23],
[24], [25], [26], [27], [28] and dynamic SPAI preconditioning
algorithm [29], [30], [31], [32], [33].

In addition, with the advancement of technology, GPUs
under the CUDA architecture not only support double-
precision floating-point operations but also single-precision
floating-point operations and even half-precision floating-
point operations. Theoretically, single-precision floating-
point operations are twice as fast as double-precision
floating-point operations and require relatively less memory.
As a result, mixed-precision floating-point computations
based on single and double precision have been used in
multiple research areas [34], [35], [36], [37]. Inspired by this,
in order to further improve the computational efficiency of
preconditioning algorithmswithout losing their effectiveness,
some researchers have attempted to construct preconditioners
in mixed-precision mode [4], [38], [39], [40], [41], [42], [43].
However, research on mixed-precision SPAI preconditioning
algorithms is scarce.

Therefore, on the basis of precision consideration,
we present two mixed-precision SPAI preconditioning
algorithms on GPU, abbreviated as MP-SSPAI and
MP-HeuriSPAI, respectively. For the construction of the
mixed-precision SPAI preconditioner, the following factors
are considered: 1) use single precision as much as possible
to improve computational efficiency of the preconditioner
while ensuring its validity; 2) store certain components in
single precision after they have been determined to require
single precision computation to improve read efficiency; and
3) maintain the high-precision output of the preconditioner to
ensure that it is computed with high precision when applied
to the iterative algorithm.

The main contributions in this work are summarized as
follows.

• Mixed-precision static SPAI preconditioning algorithm
and mixed-precision heuristic SPAI preconditioning
algorithm are presented;

• The parallel versions of proposed two mixed-precision
SPAI preconditioning algorithms, abbreviated as
MP-SSPAI and MP-HeuriSPAI, respectively, are imple-
mented;

• The extended versions of MP-SSPAI and MP-
HeuriSPAI are given, abbreviated as MP1-SSPAI
and MP1-HeuriSPAI, respectively. Then, a series of
experiments demonstrate the effectiveness and high
performance of the proposed MP-SSPAI and MP-
HeuriSPAI by comparing them with their respective
double-precision versions, single-precision versions,
and extended versions.

The rest of the paper is organized as follows. In Section II,
sparse approximate inverse (SPAI) preconditioner based
on F-norm minimization is summarized. Mixed-precision
static SPAI preconditioning algorithm and mixed-precision
heuristic SPAI preconditioning algorithm are presented in
Section III. And their parallel implementations on GPU are
given in Section IV. Section V gives effectiveness analysis
and performance evaluation. Finally, Section VI concludes
conclusions and discussions.

II. SPARSE APPROXIMATE INVERSE (SPAI) PRECONDITI-
ONER BASED ON F-NORM MINIMIZATION
The preconditioner M of SPAI preconditioning algorithm is
the approximation of A−1. For static SPAI preconditioning
algorithm, the sparse pattern of preconditionerM is predeter-
mined, which generally consistents with the sparse pattern of
coefficient matrix A or identity matrix E . As shown in [24],
preconditionerM is computed by following equation:

min ∥AM − I∥
2
F , I ∈ Rn×n. (3)

Here forM , its columns are independent with each other, thus,
equation (3) can be expressed as the following equation:

min
n∑

k=1

∥ Amk − ek ∥
2
2=

n∑
k=1

min ∥ Amk − ek ∥
2
2, (4)

where mk and ek represent the kth column of preconditioner
M and identity matrix E , respectively. Obviously, it can be
further decoupled as n least squares problems:

min ∥Amk − ek∥22, k = 1, 2, . . . , n. (5)

Observing that, for smaller n, all columns of the precon-
ditioner M can be solved concurrently. This indicates that
the SPAI preconditioning algorithm has high degree of
parallelism.

In order to solve the preconditioner M easily, its each
column will be computed by dimensionality reduction.
Taking the kth column ofM (mk) as an example, first, find its
row indices of nonzero entries of mk and save them in set Jk .
Second, delete zero rows inmatrixA(., Jk) and save its indices
of nonzero rows in set Ik , then we can obtain the submatrix
Âk , where Âk = A(Ik , Jk). Based on this, equation (5) can be
transformed into the following equation:

min ∥ Âk m̂k − êk ∥
2
2, k = 1, 2, . . . , n, (6)

where m̂k and êk are the reduced mk and ek , respectively.
Third, perform QR decomposition on matrix Âk with the
modified Gram-Schmidt method. Finally, solve the above
equation.

The detailed procedure of static SPAI preconditioning
algorithm based on double precision (SSPAI for short) is
shown as following:

For dynamic SPAI preconditioning algorithm, its sparse
pattern of preconditionerM is acquired dynamically without
a pre-given. TakingHeuriSPAI [33] as an example, first, solve

VOLUME 11, 2023 136411

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

Algorithm 1 Static SPAI PreconditioningAlgorithm (SSPAI)
For each column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk (j) ̸= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (double precision)
4) Perform QR decomposition on matrix Âk , then, the

orthogonal matrixQk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (double precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (double
precision)

6) Scatter m̂k to mk ; (double precision)

initial mk according to Algorithm 1, and then compute initial
residual rk = ek − Amk . Second, it uses

C l
k = (E + |A|)C l−1

k , l = 1, 2, · · · , lmax (7)

to iteratively generate the candidate indices that might be
added to J l−1

k , where l is the internal loop variable, lmax is
the maximum iterative number of the heuristic computation,
E is identity matrix, and J l−1

k represents the sparse pattern of
the kth column of the preconditionerM at the l−1st iteration.
C0
k is equal to initial sparse pattern of the kth column of the

preconditioner M (J0k). Third, save the indices that appear
in C l

k but not in J l−1
k into set J̃ lk . Fourth, to avoid excessive

computation, the elements in J̃ lk need to be reduced. In detail,
for each candidate index j (j ∈ J̃ lk), consider the following
one-dimensional minimization problem:

min
µj∈R

∥rk + µjAej∥ =: ρj. (8)

Then, ρ2
j can be presented by

ρ2
j = ∥rk∥22 −

(
rTk Aej
∥Aej∥2

)2

. (9)

For each j ∈ J̃ lk , if its corresponding ρj is smaller, then it
will be considered the most profitable index and retained,
otherwise it will be deleted. Fifth, utilize the deleted set J̃ lk , the

new row indices set ˜I lk is determined, and then execute the QR

decomposition of the new submatrix A(I l−1
k ∪

˜I lk , J
l−1
k ∪ J̃ lk).

Finally, compute newmk (mk (J
l−1
k ∪ J̃ lk)), rk , and ||rk ||2. If rk

satisfies the loop-stopping condition, the algorithm stops;
otherwise, set l = l + 1 and then the loop continues.
Furthermore, tomaintain the sparsity of preconditioner, it sets
the filling threshold for each column of M (uk) by the
following equation

uk = α · xk , (10)

where α is a small real number and xk is the nonzero number
of the kth column of A. Algorithm 2 shows its detailed
procedure of Heuristic SPAI preconditioning algorithm based
on double precision (HeuriSPAI for short), where |J l−1

k |

denotes the length of set J l−1
k .

Algorithm 2 Heuristic SPAI Preconditioning Algorithm
(HeuriSPAI)
For every column mk , k = 1, 2, · · · , n of M :
1) Choose an initial sparsity J0k = {k}, set l = 1, C0

k = J0k ,
a suitable tolerance ε, lmax, and compute uk by (10);

2) Solve initial mk by Algorithm 1 and compute rk with
double precision;
While ∥rk∥2 > ε and l < lmax and |J l−1

k | < uk :
3) Compute C l

k by (7);
4) Save the indices that belong to C l

k but not in J l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2

j by (9), and delete from J̃ lk
all but the most profitable indices; (double precision)

6) Determine the new row indices ˜I lk and then execute
the QR decomposition of the new submatrix A(I l−1

k ∪

˜I lk , J
l−1
k ∪ J̃ lk); (double precision)

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1
k ∪J̃ lk ,

I lk = I l−1
k ∪ Ĩ lk , C

l
k = J lk , and l = l + 1; (double

precision)

III. MIXED-PRECISION SPARSE APPROXIMATE INVERSE
PRECONDITIONING ALGORITHM
A. MIXED-PRECISION STATIC SPARSE APPROXIMATE
INVERSE PRECONDITIONING ALGORITHM
First, with original double-precision static SPAI pre-
conditioning algorithm shown in Algorithm 1 as the
research object, we describe the detailed procedure of the
mixed-precision static SPAI preconditioning algorithm (see
Algorithm 3). Analyzing Algorithm 3, when constructing the
submatrix in the third step, it only involves the assignment
of values and does not require inter-valued calculations,
thus, single-precision floating-point calculations are used
to improve the read efficiency. In the fourth step, the
single-precision floating-point computation is still used due
to the complexity and time-consuming of QR decompo-
sition. In the fifth and sixth steps, the double-precision
floating-point calculation is used to keep the output of the
preconditioner with high accuracy, so that when it is applied
to the iterative algorithm, the high precision computation
is maintained and the accuracy of the solution is not
lost.

Then, observing that, in Algorithm 3, coefficient matrix
A requires single-precision input, while the double-precision
coefficient matrix will still be used in iterative solving stage
to ensure the robustness and convergence of the iterative
algorithm. Therefore, the double-precision coefficient matrix
A needs to be converted to a single-precision one on GPU and
stored in the array A1 before constructing the preconditioner.
In addition, the conversion from high precision to low
precision may result in numerical overflow, thus, to avoid the
situation, we set those numerical overflow values uniformly
to half of the maximum value that can be represented by
single precision.

136412 VOLUME 11, 2023

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

Algorithm 3 Mixed-Precision Static SPAI Preconditioning
Algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk (j) ̸= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (single precision)
4) Perform QR decomposition on matrix Âk , then, the

orthogonal matrixQk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (single precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (double
precision)

6) Scatter m̂k to mk ; (double precision)

In summary, the complete procedure of mixed-precision
static SPAI preconditioner applied to the Krylov iterative
algorithm for solving linear systems in (1) will be given
below.

FIGURE 1. Main procedure of Krylov iterative algorithm with
mixed-precision static SPAI preconditioner.

Finally, based on proposed mixed-precision static SPAI
preconditioning algorithm (see Algorithm 3), we give its
extended version shown in Algorithm 4 to confirm its high
performance. Compare to Algorithm 3, in Algorithm 4,
the QR decomposition is performed in double preci-
sion, which improves orthogonality but increases time
cost. Moreover, it employs single-precision computation
in solving mk , thereby reducing the effectiveness of the
preconditionerM .

Algorithm 4 The Extended Version of Mixed-Precision
Static SPAI Preconditioning Algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Set Jk = {j|mk (j) ̸= 0}, and set its length as n2;
2) Construct Ik , where its any element(i) makes A(i, Jk) not

all 0, and set its length as n1;
3) Construct submatrix Âk where Âk = A(Ik , Jk) and Âk ∈

Rn1×n2; (single precision)
4) Perform QR decomposition on matrix Âk , then, the

orthogonal matrixQk ∈ Rn1×n2 and the upper triangular
matrix Rk ∈ Rn2×n2 are obtained; (double precision)

5) Set Âk = QkRk , and then solve m̂k by (6); (single
precision)

6) Scatter m̂k to mk ; (single precision)

B. MIXED-PRECISION HEURISTIC SPARSE APPROXIMATE
INVERSE PRECONDITIONING ALGORITHM
First, with original double-precision heuristic SPAI pre-
conditioning algorithm shown in Algorithm 2 as the
research object, we give the computational procedure of
the mixed-precision heuristic sparse approximate inverse
preconditioning algorithm, which is given below:

Algorithm 5Mixed-Precision Heuristic Sparse Approximate
Inverse Preconditioning Algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Choose an initial sparsity J0k = {k}, set l = 1, C0

k = J0k ,
a suitable tolerance ε, lmax, and compute uk by (10);

2) Solve initialmk usingAlgorithm 3 and compute rk with
double precision;
While ∥rk∥2 > ε and l < lmax and |J l−1

k | < uk :
3) Compute C l

k by (7);
4) Save the indices that belong to C l

k but not in J l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2

j by (9), and delete from J̃ lk
all but the most profitable indices; (single precision)

6) Determine the new row indices ˜I lk and then execute
the QR decomposition of the new submatrix A(I l−1

k ∪

˜I lk , J
l−1
k ∪ J̃ lk); (single precision)

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1
k ∪J̃ lk ,

I lk = I l−1
k ∪ Ĩ lk , C

l
k = J lk , and l = l + 1; (double

precision)

Then, observing Algorithm 5, in the initial stage, it com-
putes initial mk , k = 1, 2, · · · , n with Algorithm 3, and
utilizes double precision to compute rk and ||rk ||2. In the
loop finding filling indices stage, it is experimentally found
that for different j, their corresponding ρ values are generally
different, so that single-precision computing does not affect
the final choice of the potential filling indices. In addition,
as in Algorithm 3, single precision is used in step 6, while
double precision is used in step 7.

In summary, the complete procedure of mixed-precision
heuristic SPAI preconditioner applied to the Krylov iterative
algorithm for solving linear systems is likewise given below:

FIGURE 2. Main procedure of Krylov iterative algorithm with
mixed-precision heuristic SPAI preconditioner.

Finally, in order to prove the high performance of pro-
posed mixed-precision heuristic sparse approximate inverse
preconditioning algorithm (see Algorithm 5), we also give
its extended version shown in Algorithm 6. Different

VOLUME 11, 2023 136413

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

from Algorithm 5, in Algorithm 6, the extended version
of mixed-precision static SPAI preconditioning algorithm
(see Algorithm 4) is used to solve initial mk . The QR
decomposition is performed in double precision, which
improves orthogonality but increases time cost. Besides that,
single precision is utilized to solve mk , thereby reducing the
effectiveness of the preconditionerM .

Algorithm 6 The Extended Version of Mixed-Precision
Heuristic Sparse Approximate Inverse Preconditioning
Algorithm
For every column mk , k = 1, 2, · · · , n of M :
1) Choose an initial sparsity J0k = {k}, set l = 1, C0

k = J0k ,
a suitable tolerance ε, lmax, and compute uk by (10);

2) Solve initialmk usingAlgorithm 4 and compute rk with
double precision;
While ∥rk∥2 > ε and l < lmax and |J l−1

k | < uk :
3) Compute C l

k by (7);
4) Save the indices that belong to C l

k but not in J l−1
k into

set J̃ lk ;
5) For every j ∈ J̃ lk , compute ρ2

j by (9), and delete from J̃ lk
all but the most profitable indices; (single precision)

6) Determine the new row indices ˜I lk and then execute
the QR decomposition of the new submatrix A(I l−1

k ∪

˜I lk , J
l−1
k ∪ J̃ lk); (double precision)

7) Compute newmk , rk , and ||rk ||2, then set J lk = J l−1
k ∪J̃ lk ,

I lk = I l−1
k ∪ Ĩ lk , C

l
k = J lk , and l = l + 1; (single

precision)

IV. PARALLEL IMPLEMENTATION OF MIXED PRECISION
SPARSE APPROXIMATE INVERSE PRECONDITIONING
ALGORITHM ON GPU
First, the parallel version of mixed-precision static SPAI
preconditioning algorithm, called MP-SSPAI, is given as
below, which includes three stages:
Pre-MP-SSPAI Stage:
First, allocate global memory to A on GPU. Second,

as mentioned early, preconditionerM is computed in parallel
by column, thus, all of A, A1 and M are stored in
CSC(Compressed Sparse Column) format, which includes
three arrays: A_cData, A_cIndex and A_cPtr . Third, to facil-
itate the calculation of matrix-vector product in iterative
process, convert the storage format of A and M into
CSR(Compressed Sparse Row), which also includes three
arrays: A_rData, A_rIndex and A_rPtr . Fourth, to simplify
the accesses of data in memory and enhance the coalescence,
the dimensions of all local submatrices (e.g., Âk (n1k , n2k))
are uniformly defined as (maxI , maxJ), where maxI =

max
k

{n1k} and maxJ = max
k

{n2k}. Finally, allocate global

memory to these arrays used in MP-SSPAI shown in
Table 1, where I = {I1, I2, · · · , Ik , · · · , In} and J =

{J1, J2, · · · , Jk , · · · , Jn}.
Compute-MP-SSPAI Stage:

TABLE 1. Arrays used in MP-SSPAI.

In this stage, a thread group consisted of z threads is
used to compute one column of M (e.g., mk). Thus, it can
compute 512/z columns in parallel when a block is assigned
512 threads. And further columns of M can be computed
simultaneously by multiple blocks. For z, assume that the
number of theads in a block is set to 256, it varies with the
value of maxJ of sparse matrix. Its principal thought is: if
maxJ is less than or equal to 2, we set z to 2; if maxJ belongs
to the right closed interval 2 to 4, z is set to 4; and so on until
maxJ exceeds upper bound 256, z is set to 256. In addition,
one mk is computed in parallel by z threads. Taking mk as an
example, its specific process is shown below:

1) Determine Jk : Threads within a thread group are
assigned to write its row indices of nonzero entries of
M into Jk in parallel.

2) Determine Ik : Firstly, for c, the first element of Jk ,
threads in the thread group load row indices of A(:, c)
into Ik in parallel. Then, for other elements of Jk ,
namely, the corresponding columns of A, row indices
of them are compared successively with elements in Ik .
Those indices not in Ik will be appended into Ik using
the atomic operations. Finally, these elements in Ik are
sorted in ascending order in parallel.

3) Construct Âk : After determining Jk and Ik , a thread
group is assigned to construct submatrix Âk =

A(Ik , Jk). And it includes two steps: firstly, load row
indices of Ik in parallel, then, determine the elements of
Â according to column indices of Jk . The Figs. 3 and 4
show the kernel and main procedure of constructing
submatrix Âk , respectively. In Fig. 3, it–syncthreads() is
a built-in function, whose role is to wait for all threads
within a block to reach the synchronization point to
continue execution. This ensures that all threads in
a block have completed their previous tasks, thus
avoiding data contention that could lead to incorrect
results.

4) Decompose Âk to QkRk : A thread group is assigned
to perform one QkRk decomposition. To be more
efficient, shared memory is utilized in this stage. The
kernel and main procedure of QR decomposition are
shown in Figs. 5 and 6, respectively. As shown in Fig. 6,
for each loop i, firstly, read the ith column of Âk into
Qk in parallel. Second, compute Rk (i, i : AN) and
save them into shared memory R_s in parallel. Third,

136414 VOLUME 11, 2023

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

normalize column i of Qk and compute projection
factors Rk (i, i : AN) and the corresponding R_s in
parallel. Finally, update Qk using shared memory R_s.

5) Compute m̂k : As mentioned in Algorithm 1, m̂k =

R−1
k QTk êk . Thus, inside a thread group, firstly, we com-

puteQTk êk in parallel. And then a upper triangular linear
system(Rk m̂k = QTk êk) is solved to gain m̂k in parallel.
Similarly, we give its kernel and main procedure in
Figs. 7 and 8.

FIGURE 3. Kernel of constructing submatrix Â.

FIGURE 4. Main procedure of constructing submatrix Â.

Post-MP-SSPAI stage:
This stage is to assembleM in the CSC storage format, and

store it to the MPtr , MIndex, and MData arrays. it includes
the following steps:

1) On the GPU, we assembleMPtr using JPTR;
2) Utilizing m̂k and Jk to assemble MData and MIndex.

Each warp is responsible for assembling one m̂k to
MData and one Jk to MIndex in parallel.

Obviously,MPtr ,MIndex, andMData arrays are generated
on the GPU memory and do not need to be transferred to the
CPU.

FIGURE 5. Kernel of QR decomposition.

FIGURE 6. Main procedure of QR decomposition.

Then, the parallel version of mixed-precision heuristic
SPAI preconditioning algorithm, called MP-HeuriSPAI,
is given. It also consists of the following three phases:
Initial-MP-HeuriSPAI Stage:
In this phase, first, allocate memory for coefficient matrix

A on GPU. Second, the upper bounds of the filling non-zero
elements in each column are computed in parallel. Then,

VOLUME 11, 2023 136415

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

FIGURE 7. Kernel of solving upper triangular linear systems.

FIGURE 8. Main procedure of solving upper triangular linear systems.

TABLE 2. Arrays used in MP-HeuriSPAI.

appropriate memory is allocated for the main arrays (as
shown in Table 2). Finally, the parallel implementation of
MP-SSPAI is used to compute the initial mk and rk .
Compute–MP-HeuriSPAI Stage:
This stage is basically the same as the computing stage

of HeuriSPAI in literature [33], except that single precision
computation will be used in the computation of ρ, the
construction of the submatrix A(Ik ∪ Ĩk , Jk ∪ J̃k), and its QR
decomposition, as detailed in literature [33].
Post-MP-SSPAI Stage:
This stage is also to assemble M in the CSC storage

format.

V. EFFECTIVENESS ANALYSIS AND PERFORMANCE
EVALUATION
In this section, we evaluate the performance of MP-SSPAI
and MP-HeuriSPAI. Table 3 shows the overview of NVIDIA
GPUs that are used in the performance evaluation. The
test matrices are selected from the SuiteSparse Matrix
Collection [47], and have been widely used in some previous
work [18], [32], [33], [44]. Table 4 gives the information
of the sparse matrices, including the name, kind, number of
rows, total number of nonzeros, and positive definiteness.
In addition, the constructed preconditioner is applied to
GPUPBICGSTAB (a parallel implementation of the pre-
conditioned BICGSTAB on GPU using the CUBLAS [45]
and CUSPARSE [46] libraries). And the source codes are
compiled and executed using the CUDA toolkit 11.0 [1]. Note
that in all experiments below, iteration stopswhen the residual
error is less than 1e−7 or the number of iterations exceeds
10,000.

TABLE 3. Overview of GPUs.

A. EFFECTIVENESS ANALYSIS
First of all, we evaluate the effectiveness of MP-SSPAI
by comparing it with original static SPAI preconditioning
algorithm (SSPAI). The selected test matrices are same as
literature [44]. Both of GPUPBICGSTAB with SSPAI and
GPUPBICGSTAB with MP-SSPAI are used to solve Ax = b.
Table 5 gives the comparison results of GPUPBICGSTAB
with SSPAI and GPUPBICGSTAB with MP-SSPAI on
GTX1070, where ‘‘Iters’’, ‘‘preTime’’ and ‘‘allTime’’ rep-
resent the number of iterations, preprocessing time (the
execution time of preconditioner), and total runtime(the
execution time of preconditioner and iterative algorithm),
respectively. In addition, PpreTime and PallTime indicate the
reduction rate of preprocessing time of MP-SSPAI relative
to original SSPAI and total runtime of GPUPBICGSTAB
with MP-SSPAI relative to GPUPBICGSTAB with SSPAI,
respectively. For all experiments, the minimum value of total
runtime is marked in red for all selected sparse matrices.

Observing Table 5, compared to SSPAI, firstly, MP-SSPAI
has shorter execution time for all test matrices. Then,
from the analysis of iterations, for cbuckle, gyro_m, cfd2,
CurlCurl_1, ASIC_320ks, msdoor, apache2, t2em, ther-
mal2, Geo_1438, and G3_circuit, GPUPBICGSTAB with
MP-SSPAI reduces their number of iterations. In particular,
for matrices cfd2, msdoor, and apache2, their number of
iterations are significantly reduced. After that, for matrices
venkat01, 2cubes_sphere, power9, majorbasis, stomach,

136416 VOLUME 11, 2023

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 4. Descriptions of test matrices.

TABLE 5. Comparison results of GPUPBICGSTAB with SSPAI and
GPUPBICGSTAB with MP-SSPAI on GTX1070.

offshore, CoupCons3D, Fault_639, and atmosmodd, GPUP-
BICGSTAB with MP-SSPAI keeps their number of iterations
unchanged. Finally, GPUPBICGSTAB with MP-SSPAI also

has shorter total execution time for all test matrices except
for imagesensor. In addition, compared to SSPAI, for all
matrices, the preprocessing time of MP-SSPAI can be
reduced by up to 39.3%, with an average reduction of
14.6%, while the total runtime of GPUPBICGSTAB with
MP-SSPAI can be reduced by up to 25.4% relative to
GPUPBICGSTAB with SSPAI, with an average reduction of
9.1% (except for imagesensor). To further demonstrate the
superiority of MP-SSPAI performance, Fig. 9 shows the ratio
of execution time of SSPAI to MP-SSPAI and total runtime
of GPUPBICGSTAB with SSPAI to GPUPBICGSTAB with
MP-SSPAI. Based on above analysis, MP-SSPAI is effective
and widely applicable.

FIGURE 9. Ratio of execution time of SSPAI to MP-SSPAI and total
runtime of GPUPBICGSTAB with SSPAI to GPUPBICGSTAB with MP-SSPAI.

Then, to test the effectiveness of MP-HeuriSPAI, it was
compared with HeuriSPAI [33]. The selected test matrices are
same as literature [33]. The comparison results are shown in
Table 6, where ‘‘Iters’’, ‘‘preTime’’, ‘‘allTime’’, PpreTime, and
PallTime are the same as in Table 5.

TABLE 6. Comparison results of the GPUPBICGSTAB with HeuriSPAI and
GPUPBICGSTAB with MP-HeuriSPAI on GTX1070.

Observing Table 6, firstly, we can see that the execution
time of MP-HeuriSPAI is shorter than that of HeuriSPAI
for all test matrices. Next, compared to GPUPBICGSTAB
with HeuriSPAI, for gyro_m, af23560, af_shell3, and
parabolic_fem, the number of iterations of GPUPBICGSTAB
with MP-HeuriSPAI is smaller, while it keeps unchanged for
venkat01, imagesensor, FEM_3D_thermal2, ASIC_320ks,
cage13, thermal2, atmosmodd, and G3_circuit. Moreover,
for matrices apache2 and t2em, although GPUPBICGSTAB

VOLUME 11, 2023 136417

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

with MP-HeuriSPAI increases their number of iterations,
it decreases their total execution time. And for all matri-
ces except ecology2, the total execution time of GPUP-
BICGSTAB with MP-HeuriSPAI is less than that of the
GPUPBICGSTAB with HeuriSPAI. In addition, for all
matrices, the preprocessing time of MP-HeuriSPAI can be
reduced by up to 36.3% relative to HeuriSPAI, with an
average reduction of 25.7%, while the total runtime of
GPUPBICGSTABwithMP-HeuriSPAI can be reduced by up
to 30.3% relative to GPUPBICGSTAB with HeuriSPAI, with
an average reduction of 14.5% (except for ecology2). To fur-
ther prove the superiority of MP-HeuriSPAI performance,
Fig. 10 shows the ratio of execution time of HeuriSPAI to
MP-HeuriSPAI and total runtime of GPUPBICGSTAB with
HeuriSPAI to GPUPBICGSTAB with MP-HeuriSPAI. The
above analysis shows that MP-HeuriSPAI is effective.

FIGURE 10. Ratio of execution time of HeuriSPAI to MP-HeuriSPAI and
total runtime of GPUPBICGSTAB with HeuriSPAI to GPUPBICGSTAB with
MP-HeuriSPAI.

B. PERFORMANCE EVALUATION
In this subsection, firstly, using SSPAI as the standard,
we compare MP-SSPAI with the single-precision version
of the static SPAI preconditioning algorithm (denoted as
S-SSPAI), and its extended version(denoted as MP1-SSPAI)
shown in Algorithm 4. In addition, this experiment will be
performed on both NVIDIA GTX1070 and TITANXp GPUs,
and test matrices are same as Table 5. The results are shown
in Tables 7 and 8. In Tables 7 and 8, for each matrix, the
first row is the number of iterations when GPUPBICGSTAB
stops, the second row is the execution time of preconditioners,
and the third row is the total execution time, which includes
the execution time of preconditioner and iterative algorithm.
In addition, for all experiments, the minimum value of total
execution time is marked in red for all selected sparse
matrices.

From Table 7, we can see that on GTX1070 GPU,
compared with SSPAI, for all matrices except test1,
S-SSPAI can effectively reduce their execution time.
However, for cbuckle, inagesensor, cfd2, ASIC_320ks,
msdoor etc. 12 matrices, the number of iterations of GPUP-
BICGSTABwith S-SSPAI is increased, and its total execution
time is also increased formatrices inagesensor, cfd2, apache2,
t2em, thermal2, atmosmodd, and G3_circuit. In particular,
for matrix test1, GPUPBICGSTAB with S-SSPAI does

TABLE 7. Comparison results of the GPUPBICGSTAB with SSPAI,
GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with MP1-SSPAI, and
GPUPBICGSTAB with MP-SSPAI on GTX1070.

not converge under the iterative stopping condition. For
MP1-SSPAI, it effectively reduces the execution time for

136418 VOLUME 11, 2023

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 8. Comparison results of the GPUPBICGSTAB with SSPAI,
GPUPBICGSTAB with S-SSPAI, GPUPBICGSTAB with MP1-SSPAI, and
GPUPBICGSTAB with MP-SSPAI on TITANXp.

most matrices. However, for cbuckle, gyro_m, inagesensor,
cfd2, CurlCurl_1, etc. 11 test matrices, the number of

TABLE 9. Comparison results of the GPUPBICGSTAB with HeuriSPAI,
GPUPBICGSTAB with S-HeuriSPAI, GPUPBICGSTAB with MP1-HeuriSPAI,
and GPUPBICGSTAB with MP-HeuriSPAI on GTX1070.

iterations ofGPUPBICGSTABwithMP1-SSPAI is increased,
and for inagesensor, cfd2, thermal2, etc. 9 test matrices, the
total execution time is also increased. In particular, for test1,
it does not converge under the iteration stopping condition.
For MP-SSPAI, the analysis of Table 5 shows that it not
only has high effectiveness and computational efficiency, but
also is more stable and applicable. Further, on TITANXp
GPU, analyzing Table 8, we can see that the performance
of MP-SSPAI is also better than that of SSPAI, S-SSPAI, and
MP1-SSPAI.

Then, using HeuriSPAI as the standard, this subsection
compares MP-HeuriSPAI with a single precision version
of HeuriSPAI (denoted as S-HeuriSPAI) and its extended
version(denoted as MP1-HeuriSPAI) shown in Algorithm 6.
Tables 9 and 10 provide their comparison results on
GTX1070 and TITANXp, respectively.

VOLUME 11, 2023 136419

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

TABLE 10. Comparison results of the GPUPBICGSTAB with HeuriSPAI,
GPUPBICGSTAB with S-HeuriSPAI, GPUPBICGSTAB with MP1-HeuriSPAI,
and GPUPBICGSTAB with MP-HeuriSPAI on TITANXp.

From Tables 9 and 10, we can see that on both of GTX1070
and TITANXp, firstly, the execution time of S-HeuriSPAI is
shorter than that of HeuriSPAI for all test matrices except
imagesensor. However, for af23560, ASIC_320ks, af_shell3,
parabolic_fem, apache2, t2em, ecology2, and thermal2, the
number of iterations of GPUPBICGSTAB with S-HeuriSPAI
is significantly higher than that of GPUPBICGSTAB with
HeuriSPAI, especially for imagesensor, GPUPBICGSTAB
with S-HeuriSPAI does not converge under the iteration
stopping condition. Considering the total execution time,
for parabolic_fem, t2em, ecology2 and thermal2, GPUP-
BICGSTAB with S-HeuriSPAI has longer total execution
time than that of GPUPBICGSTAB with HeuriSPAI. The
above analysis shows that S-HeuriSPAI does not improve
the performance of HeuriSPAI. For MP1-HeuriSPAI, the
analysis shows that overall, its performance is comparable

to that of S-HeuriSPAI. And for MP-HeuriSPAI, compare to
HeuriSPAI, Table 6 shows it effectively improves the validity
of preconditioners and the computational efficiency for most
matrices on GTX1070. Further, on TITANXp, analysis of
Table 10 shows that this conclusion still holds. In summary,
MP-HeuriSPAI is effective and superior to HeuriSPAI,
S-HeuriSPAI, and MP1-HeuriSPAI.

The above experiments show that the proposed MP-SSPAI
andMP-HeuriSPAI can improve the computational efficiency
without increasing the number of iterations for most test
matrices. why does the change in computational accuracy
improve the convergence for most test matrices? In the
transformation of the coefficient matrix A from double
precision to single precision, although each data has only a
small change, there is more data for large sparse matrices,
and it involves complex calculations in multiple steps in
the construction of preconditioners. Therefore, these can
cause error accumulation and alter its effectiveness. The
experimental results demonstrate that the error accumulation
in the proposed two mixed accuracy models improves or
maintains the validity of the constructed preconditioners for
most test matrices.

VI. CONCLUSION AND DISCUSSIONS
Based on the construction method of sparse approximate
inverse(SPAI) preconditioners in mixed precision mode from
the perspective of single and double precision mixing, two
mixed precision sparse approximation inverse precondition-
ing algorithms, MP-SSPAI and MP-HeuriSPAI, are given
in this paper, and their parallel implementations are also
given. A series of experiments show that MP-SSPAI and
MP-HeuriSPAI are effective and applicable to a wide range
of applications. In the future, we will research on the error
analysis ofMP-SSPAI andMP-HeuriSPAI in theory to further
confirm their high performance.

REFERENCES
[1] NVIDIA. (2021). CUDA C Programming Guide, Version 11.1. [Online].

Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide
[2] M. Bernaschi, M. Carrozzo, A. Franceschini, and C. Janna, ‘‘A dynamic

pattern factored sparse approximate inverse preconditioner on graphics
processing units,’’ SIAM J. Sci. Comput., vol. 41, no. 3, pp. C139–C160,
Jan. 2019.

[3] H. Liu, Z. X. Chen, and B. Yang, ‘‘Accelerating preconditioned iterative
linear solvers on GPU,’’ J. Numer. Anal. Model., Ser. B, vol. 5, nos. 1–2,
pp. 136–146, Jan. 2014.

[4] Z. Xiao, T.-X. Gu, Y.-X. Peng, X.-G. Ren, and J. Qi, ‘‘Mixed precision
in CUDA polynomial precondition for iterative solver,’’ in Proc. IEEE
Int. Conf. Comput. Commun. Eng. Technol. (CCET), Beijing, China,
Aug. 2018, pp. 186–192.

[5] K. K. Phoon, F. H. Lee, and S. H. Chan, ‘‘Iterative solution of intersecting
tunnels using the generalised Jacobi preconditioner,’’ in Proc. Int. Conf.
Numerical Simulation Construct. Processes Geotech. Eng. Urban Environ.
Numer. Modelling Construct. Processes Geotech. Eng. Urban Environ.
Beckington, U.K.: Luniver Press, 2008, pp. 155–163.

[6] S. H. Chan, K. K. Phoon, and F. H. Lee, ‘‘Amodified Jacobi preconditioner
for solving ill-conditioned Biot’s consolidation equations using symmetric
quasi-minimal residual method,’’ Int. J. Numer. Anal. Methods Geomech.,
vol. 25, no. 10, pp. 1001–1025, Aug. 2001.

[7] H. Anzt, J. Dongarra, G. Flegar, and E. S. Quintana-Ortí, ‘‘Variable-size
batched Gauss–Jordan elimination for block-Jacobi preconditioning on
graphics processors,’’ Parallel Comput., vol. 81, pp. 131–146, Jan. 2019.

136420 VOLUME 11, 2023

X. Chu: Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU

[8] H. Anzt, J. Dongarra, G. Flegar, and E. S. Quintana-Ortí, ‘‘Batched Gauss-
Jordan elimination for block-Jacobi preconditioner generation on GPUs,’’
in Proc. 8th Int. Workshop Program. Models Appl. Multicores Manycores,
Feb. 2017, pp. 1–10.

[9] M. Ferronato, C. Janna, and G. Gambolati, ‘‘A novel factorized sparse
approximate inverse preconditioner with supernodes,’’ presented at the
30th Int. Symp. High Perform. Parallel Distrib. Comput., 2020.

[10] L. Grigori, Q. Niu, and Y. Xu, ‘‘Stabilized dimensional factorization
preconditioner for solving incompressible Navier-Stokes equations,’’Appl.
Numer. Math., vol. 146, pp. 309–327, Dec. 2019.

[11] S. Laut, R. Borrell, and M. Casas, ‘‘Cache-aware sparse patterns for the
factorized sparse approximate inverse preconditioner,’’ Adv. Eng. Softw.,
vol. 113, pp. 19–24, Jun. 2017.

[12] L. E. Carr, C. F. Borges, and F. X. Giraldo, ‘‘Matrix-free polynomial-
based nonlinear least squares optimized preconditioning and its application
to discontinuous Galerkin discretizations of the Euler equations,’’ J. Sci.
Comput., vol. 66, no. 3, pp. 917–940, Jun. 2015.

[13] J. Cerdán, J. Marín, and A. Martínez, ‘‘Polynomial preconditioners based
on factorized sparse approximate inverses,’’Appl. Math. Comput., vol. 133,
no. 1, pp. 171–186, Nov. 2002.

[14] M. B. van Gijzen, ‘‘A polynomial preconditioner for the GMRES
algorithm,’’ J. Comput. Appl. Math., vol. 59, no. 1, pp. 91–107, Apr. 1995.

[15] E. Coleman and M. Sosonkina, ‘‘Self-stabilizing fine-grained parallel
incomplete LU factorization,’’ Sustain. Comput., Informat. Syst., vol. 19,
pp. 291–304, Sep. 2018.

[16] M. M. M. Made and H. A. van der Vorst, ‘‘A generalized domain
decomposition paradigm for parallel incomplete LU factorization precon-
ditionings,’’ Future Gener. Comput. Syst., vol. 17, no. 8, pp. 925–932,
Jun. 2001.

[17] T. N. Phillips, ‘‘On methods of incomplete LU decompositions for solving
Poisson’s equation in annular regions,’’ Appl. Numer. Math., vol. 8, no. 6,
pp. 515–531, Dec. 1991.

[18] J. Gao, Q. Chen, and G. He, ‘‘A thread-adaptive sparse approximate inverse
preconditioning algorithm on multi-GPUs,’’ Parallel Comput., vol. 101,
Apr. 2021, Art. no. 102724, doi: 10.1016/j.parco.2020.102724.

[19] L. González and A. Suárez, ‘‘Improving approximate inverses based on
Frobenius norm minimization,’’ Appl. Math. Comput., vol. 219, no. 17,
pp. 9363–9371, May 2013.

[20] P. Tarazaga and D. Cuellar, ‘‘Preconditioners generated by minimizing
norms,’’ Comput. Math. with Appl., vol. 57, no. 8, pp. 1305–1312,
Apr. 2009.

[21] B. Carpentieri, I. S. Duff, and L. Giraud, ‘‘Sparse pattern selection
strategies for robust frobenius-norm minimization preconditioners in
electromagnetism,’’ Numer. Linear Algebra With Appl., vol. 7, nos. 7–8,
pp. 667–685, 2000.

[22] T. Huckle, ‘‘Approximate sparsity patterns for the inverse of a matrix and
preconditioning,’’ Appl. Numer. Math., vol. 30, nos. 2–3, pp. 291–303,
Jun. 1999.

[23] G. He, R. Yin, and J. Gao, ‘‘An efficient sparse approximate inverse
preconditioning algorithm on GPU,’’ Concurrency Comput., Pract. Exper.,
vol. 32, no. 7, Apr. 2020, Art. no. e5598, doi: 10.1002/cpe.5598.

[24] E. Chow, ‘‘A priori sparsity patterns for parallel sparse approximate inverse
preconditioners,’’ SIAM J. Sci. Comput., vol. 21, no. 5, pp. 1804–1822,
Jan. 2000.

[25] D. Bertaccini and S. Filippone, ‘‘Sparse approximate inverse precondi-
tioners on high performance GPU platforms,’’ Comput. Math. With Appl.,
vol. 71, no. 3, pp. 693–711, Feb. 2016.

[26] G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva, ‘‘MPI-CUDA
sparse matrix–vector multiplication for the conjugate gradient method
with an approximate inverse preconditioner,’’ Comput. Fluids, vol. 92,
pp. 244–252, Mar. 2014.

[27] M. M. Dehnavi, D. M. Fernandez, J. L. Gaudiot, and
D. D. Giannacopoulos, ‘‘Parallel sparse approximate inverse
preconditioning on graphic processing untits,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 9, pp. 1852–1861, Sep. 2013.

[28] M. Lukash, K. Rupp, and S. Selberherr, ‘‘Sparse approximate inverse
preconditioners for iterative solvers on GPUS,’’Proc. Symp. High Perform.
Comput. Society for Computer Simulation: San Diego, CA, USA, 2012,
pp. 1–7.

[29] Z. Jia and Q. Zhang, ‘‘Robust dropping criteria for F-norm minimization
based sparse approximate inverse preconditioning,’’ BIT Numer. Math.,
vol. 53, no. 4, pp. 959–985, Jun. 2013.

[30] M. J. Grote and T. Huckle, ‘‘Parallel preconditioning with sparse
approximate inverses,’’ SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838–853,
May 1997.

[31] Z. Jia and B. Zhu, ‘‘A power sparse approximate inverse preconditioning
procedure for large sparse linear systems,’’ Numer. Linear Algebra With
Appl., vol. 16, no. 4, pp. 259–299, Apr. 2009.

[32] J. Gao, X. Chu, X. Wu, J. Wang, and G. He, ‘‘Parallel dynamic sparse
approximate inverse preconditioning algorithm on GPU,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 12, pp. 4723–4737, Dec. 2022.

[33] J. Gao, X. Chu, and Y. Wang, ‘‘HeuriSPAI: A heuristic sparse approximate
inverse preconditioning algorithm on GPU,’’ CCF Trans. High Perform.
Comput., vol. 5, no. 2, pp. 160–170, Jun. 2023, doi: 10.1007/s42514-023-
00142-2.

[34] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, ‘‘Accelerating scientific computations with
mixed precision algorithms,’’ Comput. Phys. Commun., vol. 180, no. 12,
pp. 2526–2533, Dec. 2009.

[35] J. Kurzak and J. Dongarra, ‘‘Implementation of mixed precision in solving
systems of linear equations on the cell processor,’’ Concurrency Comput.,
Pract. Exper., vol. 19, no. 10, pp. 1371–1385, Jul. 2007.

[36] H. Anzt, B. Rocker, and V. Heuveline, ‘‘Energy efficiency of mixed
precision iterative refinement methods using hybrid hardware platforms,’’
Comput. Sci. Res. Develop., vol. 25, nos. 3–4, pp. 141–148, Aug. 2010.

[37] A. Abdelfattah, ‘‘A survey of numerical linear algebra methods utilizing
mixed-precision arithmetic,’’ Int. J. High Perform. Comput. Appl., vol. 35,
no. 4, pp. 344–369, Mar. 2021.

[38] T. Ina, Y. Idomura, T. Imamura, S. Yamashita, and N. Onodera, ‘‘Iterative
methods with mixed-precision preconditioning for ill-conditioned linear
systems in multiphase CFD simulations,’’ in Proc. 12th Workshop Latest
Adv. Scalable Algorithms Large-Scale Syst. (ScalA), Nov. 2021, pp. 1–8.

[39] F. Göbel, T. Grützmacher, T. Ribizel, and H. Anzt, ‘‘Mixed precision
incomplete and factorized sparse approximate inverse preconditioning on
GPUs,’’ in Proc. Eur. Conf. Parallel Process., Lisbon, Portugal, 2021,
pp. 550–564, 2021.

[40] G. Flegar, H. Anzt, T. Cojean, and E. S. Quintana-Ortí, ‘‘Adaptive precision
block-Jacobi for high performance preconditioning in the ginkgo linear
algebra software,’’ ACM Trans. Math. Softw., vol. 47, no. 2, pp. 1–28,
Apr. 2021.

[41] D. Kressner, Y. Ma, and M. Shao, ‘‘A mixed precision LOBPCG
algorithm,’’ Numer. Algorithms, vol. 94, no. 4, pp. 1653–1671, May 2023.

[42] N. Lindquist, P. Luszczek, and J. Dongarra, ‘‘Accelerating restarted
GMRES with mixed precision arithmetic,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 4, pp. 1027–1037, Apr. 2022.

[43] H. Zhang, W. Ma, W. Yuan, J. Zhang, and Z. Lu, ‘‘Mixed-precision
block incomplete sparse approximate preconditioner on tensor core,’’
CCF Trans. High Perform. Comput., Sep. 2023, doi: 10.1007/s42514-023-
00165-9.

[44] X. Chu, Y. Wang, Q. Chen, and J. Gao, ‘‘Optimizing the sparse
approximate inverse preconditioning algorithm on GPU,’’ BenchCouncil
Trans. Benchmarks, Standards Evaluations, vol. 2, no. 4, Oct. 2022,
Art. no. 100087.

[45] NVIDIA. (2022). CUBLAS Library. [Online]. Available: https://docs.
nvidia.com/cuda/cublas/index.html

[46] NVIDIA. (2022). CUSPARSE Library. [Online]. Available: https://docs.
nvidia.com/cuda/cusparse/index.html

[47] T. A. Davis and Y. Hu, ‘‘The university of Florida sparse matrix
collection,’’ ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Nov. 2011.

XINYUE CHU is currently pursuing the Ph.D.
degree with the School of Computer and Elec-
tronic Information, Nanjing Normal University,
Nanjing, China. Her current research interests
include high-performance computing (HPC) and
parallel algorithms.

VOLUME 11, 2023 136421

http://dx.doi.org/10.1016/j.parco.2020.102724
http://dx.doi.org/10.1002/cpe.5598
http://dx.doi.org/10.1007/s42514-023-00142-2
http://dx.doi.org/10.1007/s42514-023-00142-2
http://dx.doi.org/10.1007/s42514-023-00165-9
http://dx.doi.org/10.1007/s42514-023-00165-9

