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ABSTRACT Indoor Positioning System (IPS) is a technology used to locate and track objects or people
inside buildings, by using sensors, wireless networks, or other means to determine their position. IPS has
many applications in various fields such as healthcare, retail, logistics, and security. Achieving IPS of high
location accuracy is yet to be explored further. In this experimental research, an IPS based on Bluetooth
Low Energy (BLE) 5.1 protocol is implemented and two optimization techniques, parameters calibration and
application of Machine Learning Algorithm (MLA) are proposed to improve location accuracy. In Stage 1 of
this experiment, the measured Root Mean Square Error (RMSE) value before optimization yielded location
accuracy of 0.670m. In Stage 2, four different parameters which include elevation angle, tag height, data
rate and walking pace are calibrated and tested. Besides, in Stage 2, three different algorithms which include
Support Vector Regression (SVR), Decision Tree (DT) and K-Nearest Neighbor (KNN) are evaluated. As a
result, parameters calibration decreased RMSE value down to 0.219m. Additionally, among all three MLAs,
KNN illustrated the lowest RMSE value of 0.631m. In Stage 3, the lowest RMSE value of 0.015m is obtained
by combining parameters calibration and MLA approaches which improved location accuracy up to 98.5%.
The developed framework is operational at our industry partner, ams OSRAM’s LED wafer fabrication
cleanroom facility.

INDEX TERMS Indoor positioning system (IPS), bluetooth low energy (BLE) 5.1, machine learning
algorithm (MLA), root mean square error (RMSE).

I. INTRODUCTION
The history of indoor positioning dates to the early 2000s,
with the development of systems such as Active Badge,
RADAR, and the Where2 Project that used infrared, Wi-Fi,
ultrasonic, and Bluetooth technologies. IPS is a technology
that enables tracking and locating of people or objects within
indoor spaces. IPS uses various sensors to determine the
position of the target within a building. The location infor-
mation is then transmitted to a central system, which can be
used to provide location-based services, such as indoor nav-
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igation or asset monitoring. Despite the significant progress
in IPS technology, one of the major challenges with IPS is
their limited accuracy, which is caused by signal attenuation,
multipath propagation, and interference. Besides, location
accuracy can be affected by the size and complexity of the
indoor environment. In this article, we propose a wireless
indoor positioning framework to enhance location accuracy
based on BLE 5.1 wireless network protocol. BLE 5.1 is a
wireless communication standard that has various advantages
over previous versions. In 2010, BLE 4.0 was released which
reduced power consumption within BLE devices [1]. In 2016,
BLE 5.0 was released which added indoor positioning assis-
tance function, positioning distance up to 200m and with
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less power consumption. In BLE 5.0, the IPS used Received
Signal Strength Indicator (RSSI) as parameter to compute
positioning via trilateration method. The location accuracy
that can be expected from BLE 5.0 is about 2-5m [1], [2].
In 2019, BLE 5.1 was released which included new metrics
for positioning, Angle of Arrival (AoA) and Angle of Depar-
ture (AoD), that enables Direction Finding feature within
BLE devices [3]. With this new addition to the newer BLE
5.1 version, location accuracy down to below 1.0m, known
as sub-meter level accuracy can be expected [1], [4]. BLE
devices can operate at different transmission power levels,
which allows them to transmit at larger distances or conserve
battery life [5]. Operating at a high transmission power level
reduces noise effects at a larger distance, while operating at a
low transmission power level increases the overall lifespan
of BLE devices [6]. The contribution of this study is to
consolidate two key approaches towards improving location
accuracy, which are parameter tuning and machine learning.
This work experiments IPS using array of BLE anchors and
tags within cleanroom environment, without applying neither
parameter tuning nor machine learning in Stage 1. In Stage 2,
parameter tuning, and machine learning approach are applied
individually, and improvements of location accuracies are
evaluated. In Stage 3, parameter tuning, andmachine learning
approaches are applied in combination, and improvement
of location accuracy are compared with the previous stages
results. The implemented system in this study uses commer-
cially available readers and tags from BlueIoT. The measured
value before applying optimization techniques obtained from
software associated with the hardware yielded location accu-
racy of 0.670m. An elevation angle of 55◦, tag height of 2.5m,
data rate of 50Hz and slow walking pace at 0.429m/s deliv-
ered the lowest RMSE of 0.219m. Among all three MLAs
tested, KNN delivered the lowest RMSE value of 0.631m.
Applying a combination of parameters calibration andMLAs
approaches, resulted in optimization of RMSE value down
to 0.015m, improving location accuracy up to 98.5%. The
proposed framework has been successfully implemented at
our industry partner, ams OSRAM’s LED wafer fabrication
cleanroom, to track movements of assets within the facility.
In summary, in this paper, we:

• Conduct experimental setup for BLE based indoor posi-
tioning system within cleanroom environment, which
includes hardware and software.

• Collect and analyze location accuracy data before apply-
ing neither parameter tuning nor machine learning.

• Collect and analyze location accuracy data after apply-
ing parameter tuning and machine learning individually
to improve location accuracy.

• Collect and analyze location accuracy data after apply-
ing combination of parameter tuning and machine
learning to improve location accuracy.

• Compare results obtained from Stage 1, Stage 2 and
Stage 3 respectively.

• Identify the best combination approach that yielded the
most optimized location accuracy and implement for
asset tracking system within the cleanroom environ-
ment.

• Develop Graphical User Interface (GUI) to manage the
asset tracking system.

• Develop map-view visualization to visualize and moni-
tor the positions of assets within the cleanroom environ-
ment.

The rest of the paper is organized as follows: Section II
describes related works within IPS field, including some brief
introduction to wireless networks, positioning parameters
and positioning techniques used in IPS, Section III presents
methodology of this work which includes system framework,
experimental setup and data collection techniques, Section IV
explains the outcome of the experiments whereas Section V
summarizes the conclusion of all the experiments conducted
in this work.

II. RELATED WORKS
Wireless networks are an important component to establish
a connected network between tags and readers within an
IPS. Tags are attached onto objects or people to be tracked
whereas readers are attached onto walls or ceilings of the
indoor environment where the IPS is deployed. Tags transmit
wireless signals to nearby readers which will be picked up by
readers. There are many types of wireless networks widely
used to establish network between the tags and readers to
implement IPS, as compared in Table 1 [7], [8], [9], [10].
BLE is one of the wireless networks that is widely used for
IPS, mainly due to low cost and low power consumption
[10]. In addition, Bluetooth is easier to deploy and imple-
mented as compared to RFID, UWB, ultrasonic and infrared
systems [10]. As compared to WiFi system, Bluetooth costs
less and uses less energy and offers high precision [10]. The
latest released version of BLE technology (BLE 5.1) includes
a direction-finding feature which is very useful to achieve
high accuracy IPS. In this research, BLE 5.1 is employed to
establish wireless network between tags and readers. Posi-
tioning parameters refer to raw data that will be processed to
determine the position of tags. Various positioning parame-
ters used in IPS along with their respective advantages and
disadvantages are shown in Table 2 [2], [7], [8]. Received
Signal Strength (RSS) is a measure of power signal’s strength
measured in dBm or mW. Time of Arrival (ToA) is a measure
of time taken for the transmitted signal to be received by
readers. Whereas Time Difference of Arrival (TDoA) is a
measure of difference in time taken for transmitted signals
to be received by readers. Angle of Arrival (AoA) is a
measure of signal’s angle from where it is received by the
readers. In this work, we employ AoA as key parameter for
positioning mainly for its less sensitivity towards variations
in signal strength as compared to other parameters such as
RSSI, ToA or TDoA [2]. As long as the signal is received by
receiver, AoA computation for positioning is possible. This
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TABLE 1. Wireless networks for IPS.

TABLE 2. Positioning parameters for IPS.

TABLE 3. Positioning techniques for IPS.

is crucial for high-dense environments such as cleanroom
environment where signal fluctuations would be high. Less
sensitivity towards signal fluctuations results in less errors
which in turn provides higher location accuracy. Positioning
techniques refer to methods used to determine the position
of an object or person under monitor. Positioning parame-
ters will be used as input data for positioning techniques to
calculate the position of the object or person. Various types
of positioning techniques used in IPS and their compati-
bilities are compared in Table 3 [7], [8]. Machine learning
algorithms have aided in improving location accuracy in a
vast number of previous studies within IPS field. SVR is a
machine learning approach where offline training data is used
to train the model by dividing the datasets into two or three
dimensions, accordingly, depending on two or three inputs
respectively, a line for 2-dimensional model or a plane for 3-
dimensional model is formed using offline training datasets
and tested against online testing datasets [7]. KNN is a super-
vised machine learning algorithm used for classification and
regression problems. This method involves offline training
and online testing. Hence, offline training datasets must be
prepared to train the model. The dataset is often analyzed for
matching patterns among input data. Then, a fine distinguish
is made in terms of nearest data points with each other and

further data points would fall in other categories accordingly
[7]. Regression-based DT machine learning algorithm distin-
guishes features in training dataset into smaller subsets and
trains an appropriate model accordingly. The trained machine
learning model is applied onto testing dataset to predict new
outputs respectively. This machine learning model helps to
segregate the testing dataset according to the learned features
from training dataset which subsequently helps to predict new
outputs accurately [7]. Table 4 summarizes different machine
learning algorithms applied in past related works for IPS.
As can be observed in Table 4, SVR, DT and KNN will
be experimented in this study mainly for their substantial
outcomes on location accuracies.

In the past years, there has been a significant amount of
research conducted in the field of IPS to improve location
accuracy. Lie et al. [19] experimented BLE based IPS by
fine-tuning algorithm using Delta rule and achieved Mean
Squared Error (MSE) values of 0.8740m and 1.5385m,
employing combination of weighted sum and K-Nearest
Neighbor (KNN) with Minkowski distance weight calcula-
tion. Ho et al. [20] presented a decentralized BLE-based
positioning protocol that does not require training before
deployment. The training phase is conducted on-the-go by
anchor nodes, by scanning signals transmitted by nearby
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TABLE 4. Machine learning algorithms for IPS.

anchors from each other while broadcasting signals. This
method achieved an error of 1.5m on average. Bai et al.
[21] investigated fingerprinting method using BLE based IPS
and achieved an average accuracy of 95.94%. Cheng et al.
[22] proposed a modified joint probabilistic data associa-
tion localization algorithm and achieved location accuracy
down to 0.94m. Dong et al. [23] investigated gray wolf
algorithm to mitigate Non-Line-of-Sight (NLoS) effects in
Ultra-Wideband (UWB) based location system and achieved
location accuracy of 16.99cm. Lee et al. [24] studied Simulta-
neous Location and Mapping (SLAM) technique for location
estimation and attained location accuracy of 1.5m. Luo et

al. [25] proposed KNN based algorithm with fingerprint-
ing method based on WiFi for location estimation which
resulted in average localization error of 1.38m. Van Haute
et al. [26] investigated min-max localization algorithm in
Time-of-Arrival (ToA) based indoor localization system and
achieved average location accuracy of 3.26m. Various MLAs
have been used to improve location accuracy in IPS. Another
technique that can be used to improve location accuracy of
IPS is by increasing the number of readers. Giuliano et al.
[27] observed a test case that uses nine receivers obtained
lowest estimation error of 84cm, as compared to a smaller
number of receivers. Ji et al. [28] observed location error
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reduced exponentially from 25m down to 10m by increasing
number of readers from 10 to 60 units in their study. Duong
et al. [29] proved location accuracy is increased from 60% to
71.4% by increasing number of readers from three to four
units. Cai et al. [30] proposed a new IPS that uses ultra-
wideband (UWB) technology to achieve higher accuracy and
lower interference. Another challenge with IPS is their high
cost, which is caused by the need for additional hardware
installation, such as beacons and sensors. Liu et al. [31] stud-
ied a new IPS that uses existingWi-Fi infrastructure to reduce
the cost of IPS deployment. IPS technologies collect personal
data, which raises concerns about privacy and security. An et
al. [32] investigated a new privacy-preserving IPS that uses
secure multi-party computation to protect the location data
of users. Different technologies use different protocols and
interfaces, which limits the interoperability and scalability of
IPS solutions. Fabritz et al. [33] developed a new IPS that uses
an open standard to enable interoperability and scalability.
BLE is a wireless communication technology that consumes
less power than traditional Bluetooth. It is used for indoor
positioning by transmitting signals from beacons to readers,
which then use the signal strength, time delay or signal
angle to estimate the device’s location. New IPS that uses a
combination of Wi-Fi and BLE technologies to improve the
accuracy and reliability of indoor positioning was developed
by Zhao et al. [34]. Similarly, Yazıcı et al. [14] investigated
a new IPS that uses a hybrid technique integrating several
types of sensormeasurements and classification algorithms to
achieve high accuracy in complex indoor environments. Shi
et al. studied various location methods including Artificial
Neural Network (ANN), Preprocessed ANN, SVR, Prepro-
cessed SVR, Probabilistic Model (PM) and Preprocessed
PM [11]. Among all these location methods, Preprocessed
SVR achieved the least average error distance of 0.68m and
standing next to Preprocessed SVR is Preprocessed ANN
with average error distance of 0.886m. Whereas all other
location methods possess an average error distance above
1.0m. Mazlan et al. [35] studied localization performance of
Convolutional Neural Network (CNN) method. They used
Sensoro SmartBeacon which is developed based on Apple
iBeacon protocol standard, that uses Bluetooth 4.0 version
and obtained lowest positioning error of 1.2403m. Table 5
compares readily available products for IPS in the market and
their respective location accuracies.

TABLE 5. Readily available products for IPS.

Acleanroom environmentmainly containsmetalmachines,
beams, concretes, other wireless signal interferences,

obstructions, human movements and many other factors
that heavily affect location accuracy of IPS. In this work,
we address improvement towards location accuracy of IPS via
two key approaches, parameter tuning and machine learning.
For parameter tuning, we test different elevation angles, tag
heights, data rate and walking speeds for location accuracy
and obtain the best combination of parameters that offer the
best location accuracy. For machine learning, we test the
system with conventional algorithms, such as SVR, DT and
KNN mainly for their lower complexity compared to deep
learning algorithms such as Convolutional Neural Network
(CNN) or Recurrent Neural Network (RNN) [7], [36] and
yet promising results in terms of location accuracy as shown
in Table 4. Next, we present a hybrid model by combin-
ing parameter tuning and machine learning approaches to
improve the location accuracy even further.

III. METHOD
A. EXPERIMENTAL ARCHITECTURE
Fig. 1 shows the experimental architecture of this study. This
experiment is divided into three stages where Stage 1 com-
prises of hardware and software to operate the IPS. In Stage 1,
RMSE value is calculated without applying any optimization
techniques. Location data that comes out of Stage 1 involves
errors sourcing from signal interferences, metal tools, con-
crete walls, human movement and other possible factors.
In Stage 2, two location accuracy optimization techniques are
employed individually, parameters calibration and MLA. For
parameters calibration, four different parameters are adjusted
and experimented to obtain the optimum value for all four
parameters that provide the least RMSE value. Likewise, for
MLA, three different MLAs are tested, SVR, DT and KNN,
and the MLA that provides the least RMSE value is deter-
mined. Resultant RMSE value for parameters calibration and
MLA are denoted as Result 2 and Result 3 respectively.
Finally, the best combination of parameters calibration using
the optimum values obtained from Stage 2 and MLA that
provide least RMSE value are combined to improve location
accuracy even more in Stage 3. Resulting RMSE value is
denoted as Result 4 in Stage 3. In the end, Result 1, 2, 3 and
4 are compared and the best approach that delivers lowest
RMSE value is determined and applied for the commercial
use in ams OSRAM’s cleanroom facility.

B. EXPERIMENTAL SETUP
Firstly, the hardware, including readers and tags, and
web-based software (BlueIoT Server Management Software)
to run the basic indoor positioning system is acquired from
BlueIoT. Next, hardware and software are integrated to
form a fully functional indoor positioning system within the
allocated cleanroom facility. BLE 5.1 protocol is used as
communication medium between readers and tags. Readers
are signal receivers that are mounted onto ceilings of the
environment whereas tags are signal transmitters that are
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FIGURE 1. Experimental architecture.

attached to the assets that need to be tracked. Fig. 2 shows the
actual hardware setup of tags and readers in the cleanroom.

FIGURE 2. Actual hardware component setup (a) Tag (b) Reader.

In this application, tags are attached onto Panel Com-
puters (PCs) within the cleanroom facility. BlueIoT Server
Management Software is a web-based software provided by
BlueIoT to operate and manage the hardware including tags
and readers, and also to calculate tags’ coordinates using
angulation method utilizing Angle-of-Arrival (AoA) data.
The coordinates calculated by this software are referred to
as measured coordinates in this study, meaning these coordi-
nates are highly prone to error and not optimized via neither
parameter calibration nor machine learning approach. These
measured coordinates are used as input data to MLAs which
wasmade accessible by BlueIoT to our research team through
special arrangement. Table 6 shows specifications of hard-
ware including tags and readers used in this work.

C. POSITIONING SYSTEM ARCHITECTURE
The proposed positioning system architecture is illustrated
in Fig. 3. The physical layer resembles the array of BLE

TABLE 6. Specifications of tags and readers.

readers and BLE tags that are present in the cleanroom
environment. The proposed framework incorporates Angle-
of-Arrival (AoA) as input data used for angulation method.
From the physical layer, AoA data is passed to the location
module located in the readers. Then, positioning engine soft-
ware calculates locations of the tags, known as measured XY
coordinates. The measured XY coordinates are then stored
into database. First, fingerprinting of measured XY coordi-
nates from various locations within the test environment is
collected and used to train the machine learning models as
part of offline training phase respectively. Trained machine
learning models are used to predict new XY coordinates
by using live measured XY coordinates as inputs during
online testing phase. Newly predicted XY coordinates are
then stored in the database. Finally, predicted XY coordinates
are visualized on map-view layout for asset tracking.

D. POSITIONING SYSTEM FRAMEWORK
Key modules and interrelations within the proposed asset
monitoring system in this work are illustrated in Fig. 4. The
diagram illustrates the data flow from start to end including its
processing and visualization. The framework is divided into
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FIGURE 3. Positioning system architecture.

FIGURE 4. Positioning system framework.

three main modules; frontend, mid-process and backend to
simplify the asset monitoring mechanism. Frontend module
mainly covers the hardware distribution in the asset moni-
toring system, which covers an array of readers and tags on
the assets in the cleanroom. Mid-process module handles all
software related processes from position estimation to appli-
cation of MLAs in the VM server. Backend module includes
complementary components for the asset monitoring system
that is the Graphical User Interface (GUI) form andmap-view
visualization on Microsoft Power BI. Fig. 5 shows a snapshot
of GUI form developed using Python to manage the asset
monitoring system. The GUI form acts as a user interface
between users and database of the asset monitoring system

to register, de-register, update or search for new or existing
tags in the environment. This GUI also helps to keep track of
the number of tags present inside the cleanroom and provide
visibility to the users at all times. As for communication fail-
ure, in case of any BLE tag or receiver lost communication,
an email will be triggered to the Person-In-Charge (PIC) with
the details of the hardware that lost communication. Fig. 6
shows a snapshot of map-view visualization developed using
Microsoft Power BI. The visualization is designed on scatter
chart, using the cleanroom layout as the background and x
and y coordinates to locate assets within the room. As mouse
is hovered onto the blue dots (BLE tags), tag details regarding
the assets pop up as shown in Fig. 6. This map-view layout
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FIGURE 5. GUI form developed on python.

FIGURE 6. Developed map-view visualization using microsoft power BI – Tag position &
details.

is published onto the host company’s shared internal site for
employees’ access.

E. DATA COLLECTION
Fig. 7 shows 3-D model of the cleanroom to depict location
of readers placed in the facility along with their respective
coverage area. The coverage area for every reader is two
times the ceiling height. This means, each reader offers,
3m × 2 = 6m radius of coverage. With that, every reader
is placed 6m apart from each other to maximize coverage
with minimal readers. Three readers are deployed along each
line in the room that consists of two operation lines, which
requires a total of six readers for full coverage. Dashed
lines in Fig. 8 represent the data collection routes based on
cleanroom layout shown in Fig. 9 for online testing phase.

Route B travels right under location of readers installed
on the ceilings of the cleanroom, and Route A and C are
0.6m apart from Route B. The purpose of adding Route A
and C in this experiment is to study the behavior of the
location accuracy when the tag position is deviated about
0.6m away from the perpendicular position from readers. For
online testing, measured coordinates of Route A, B and C
are collected from BlueIoT Server Management Software,
by walking over the routes with the tag from start point to end
point and recorded in the database. Fig. 9 shows the simplified
cleanroom layout. Square gridlines denote the coordinate
system where each grid measures 0.6m by 0.6m. X-axis and
Y-axis represent the actual width and length, accordingly,
starting from (0,0) as the origin point up to (14.5,23) as
the maximum point. For offline training, coordinates with
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FIGURE 7. 3-D model of the cleanroom with readers.

respect to square gridlines formed are acquired and recorded
within the database. The actual and measured coordinates are
then used as input data to train the machine learning models
accordingly.

Test cases for test runs are shown in Table 7. Every test
case is repeated 3 times with all 3 different routes each,
which gives a total of nine test runs for every test case
and the results are averaged to increase reliability and min-
imize the error within collected data. Elevation angle and
data rate are adjusted in the BlueIoT Server Management
Software. Tag height is adjusted by sticking the tag onto
the person’s body according to tag heights from floor as
mentioned in Table 7. Walking speed is measured using a
speedometer on smartphone and kept constant throughout
every test run. First, three different elevation angles are tested
by keeping other testing parameters constant. Then, the best
elevation angle that delivers lowest RMSE value is used as
constant parameter for subsequent test cases. This pattern
is repeated for other test cases in other testing parameters
until all 12 test cases are complete. Finally, test case that
give lowest RMSE value is infused with machine learning
approach. As for MLAs, SVR, DT and KNN have been
experimented in this study. To evaluate the performance of
machine learning algorithms, the dataset was divided into
two parts: an 80% training set and a 20% testing set. The
training set was used to train the algorithms, while the testing
set was used to evaluate their performance. Based on the

testing outcome, model parameters that presents outcomes
of neither underfitting nor overfitting are selected to be used
in the final stage of the experiment. For SVR, ‘RBF’ kernel,
C value of four, and epsilon value of 0.01 is used. For DT,
maximum depth of tree is set at five levels. For KNN, the
number of neighbors to use for regression is set at four. The
best machine learning algorithm that gives lowest RMSE
value is determined from this experiment. Finally, test cases
of parameter tuning and machine learning algorithm that
give lowest RMSE value when implemented separately, are
merged and implemented together to study the improvement
on location accuracy. Hence, location accuracy is optimized
via three approaches in this study, through parameter tuning
only, machine learning approach only and both parameters
tuning and machine learning approach combined. All results
are presented in the next section accordingly.

IV. ACCURACY OPTIMIZATION AND COMPARISON
This study focuses on parameters calibration and machine
learning approaches to optimize location accuracy. For
parameters calibration approach, the impacts of elevation
angle, data rate, tag height and pace are tested with dif-
ferent settings respectively. For machine learning approach,
SVR, DT and KNN are experimented. Detailed parameter
calibration and MLAs used are discussed and their improve-
ments before and after applications are compared in this
section.
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FIGURE 8. Data collection routes.

FIGURE 9. Coordinate system illustrated on simplified cleanroom layout.
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TABLE 7. Test cases for test runs.

A. IMPACT OF ELEVATION ANGLE
Elevation angle is the angle of measurement from the readers.
Different elevation angles (21◦, 55◦ and 89◦) were tested to
study the response of location accuracy towards different ele-
vation angles. RMSE values are calculated for every elevation
angle and the elevation angle with lowest RMSE value is
determined. Elevation angle can be visualized as shown in
Fig. 10.

FIGURE 10. Elevation angles.

Elevation angle of 55◦ has lower fluctuations in terms of
readings as compared to elevation angle of 21◦ according
to Fig. 11 (a). Fig. 11 (b) shows that the elevation angle
of 55◦ has lower RMSE value as compared to elevation
angles of 21◦ and 89◦ respectively. Fig. 11 (c) compares
cumulative distribution functions (CDFs) obtained from dif-
ferent elevation angles. Elevation angle of 55◦ outperforms
other experimented angles by achieving 90% of its RMSE
values below 0.3m. According to Table 8, elevation angle
of 55◦ delivers the least average RMSE value of 0.258m as
compared to elevation angles of 21◦ and 89◦ with average
RMSE values of 0.332m and 0.3m respectively.

B. IMPACT OF TAG HEIGHT
Tag height refers to the distance between ground level and
tag which potentially influences location accuracy. Different
tag heights (0.5m, 1.5m and 2.5m) were tested to study the
response of location accuracy towards different tag heights.
RMSE values are calculated for every tag height and the tag

FIGURE 11. Elevation angle impact (a) Boxplot of RMSE (b) Bar graph of
RMSE (c) Cumulative distribution function (CDF) Graph of RMSE.

height with lowest RMSE value is determined. Tag height can
be visualized as shown in Fig. 12.

According to Fig. 13 (a), tag height of 2.5m delivers
the lowest RMSE value. From Fig. 13 (b), same pat-
tern can be observed that tag height of 2.5m gives lowest
RMSE value as compared to tag heights of 0.5m and 1.5m
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TABLE 8. Mean and standard deviation of RMSE for elevation angle.

TABLE 9. Mean and standard deviation of RMSE for tag height.

FIGURE 12. Tag heights.

respectively. Fig. 13 (c) compares cumulative distribution
functions (CDFs) obtained from different tag heights. Tag
height of 2.5m outperforms other experimented tag heights
by achieving 90% of its RMSE values below 0.3m. It can be
observed that tag height of 2.5m delivers the least average
RMSE value of 0.271m as compared to tag heights of 0.5m
and 1.5m with average RMSE values of 0.398m and 0.288m
respectively, according to Table 9.

C. IMPACT OF DATA RATE
Data rate refers to frequency of data published by tags to
anchors per second. Different data rates (5Hz, 10Hz and
50Hz) were tested, to study the response of location accuracy
towards different data rates. According to Fig. 14 (a), data rate
of 50Hz possesses lowest fluctuations in terms of readings as
compared to data rates of 5Hz and 10Hz respectively. Fig. 14
(b) shows that data rate of 50Hz delivers the least average
RMSE value as compared to data rates of 5Hz and 10Hz
respectively. Fig. 14 (c) compares cumulative distribution
functions (CDFs) obtained from different data rates. The data
rate of 50Hz outperforms other experimented data rates by
achieving more than 90% of its RMSE values below 0.3m.
It can be observed that data rate of 50Hz gives the best result
with the least average RMSE value of 0.265m as compared
to data rates of 5Hz and 10Hz with average RMSE values of
0.327m and 0.283m respectively, according to Table 10.

TABLE 10. Mean and standard deviation of RMSE for data rate.

FIGURE 13. Tag height impact (a) Boxplot of RMSE (b) Bar graph of RMSE
(c) Cumulative distribution function (CDF) graph of RMSE.

D. IMPACT OF PACE
Walking pace plays a crucial role in affecting location accu-
racy. To study the response of different walking paces towards
location accuracy, wide range of readings collected at slow,
moderate and fast paces respectively. Shao et al investigated
the effects of different walking speeds on particle transmis-
sion within cleanroom [37]. Walking speeds investigated in
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FIGURE 14. Data rate impact (a) Boxplot of RMSE (b) Bar graph of RMSE
(c) Cumulative distribution function (CDF) graph of RMSE.

this study, as shown in Table 11, are 0.429m/s for slow,
0.857m/s for moderate and 1.286m/s for fast walking paces
which are in good agreement with those of Shao et al [37].
RMSE values are calculated for every pace and the lowest
RMSE value is determined accordingly. Pace is controlled

and monitored throughout data collection using a stopwatch
to ensure uniform paces. Pace speed is calculated at the
end of data collection by dividing distance travelled by time
taken to complete each test run. Fig. 15 shows that the slow
pace delivers the least average RMSE value as compared to
moderate and fast paces. This is because, as data is collected
while walking slowly, more data gets captured in the system,
which results in larger training dataset that eventually results
in lower RMSE value. The speeds of respective paces are
as shown in Table 11. From Table 11, it can be observed
that slow pace gives the best result with the least average
RMSE value of 0.178m as compared to moderate and fast
paces with average RMSE values of 0.225m and 0.254m
respectively. The difference between speeds is consistent and
approximately 0.428m/s, which increases reliability of the
results obtained. Slow pace provides the highest location
accuracy, with lowest RMSE value.

FIGURE 15. Bar graph of RMSE for pace.

TABLE 11. Speed and RMSE for different paces.

E. IMPACT OF MACHINE LEARNING APPROACH
Based on Table 12, measured values have accuracy of 78.1%.
This low percentage can be explained by the interferences
that are available in the cleanroom facility, such as employee
movements, signal interferences, metal machines, beams,
concrete walls and other factors. In order to optimize location
accuracy and minimize the effect of interferences and noises,
machine learning algorithms are employed and tremendously
increased location accuracy. Different machine learning tech-
niques (SVR, DT and KNN) are applied and tested in this
study to improve the location accuracy and to determine the
best machine learning algorithm that delivers lowest RMSE
value. The results are compared against the measured XY
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coordinates (pre-optimized by MLAs) to study the improve-
ment on location accuracy before and after applying MLAs.
According to Fig. 16, all machine learning techniques that
were experimented in this study improve location accuracy,
as RMSE values of all 3 machine learning techniques are
lower than measured data. Among the 3 machine learning
techniques applied, KNN offers the highest location accuracy
of 98.5%, with the least RMSE value of 0.015m as compared
to SVR and DT as shown in Table 12. KNN possess the
highest improvement percentage of 20.4% as compared to
SVR and DT with improvement percentages of 12.1% and
12.5% respectively. Therefore, KNN is the best machine
learning technique for this application. In a study conducted
by Sthapit et al., RMSE value achieved using SVR method
was 0.5m which is comparatively higher than RMSE value
obtained using SVRmethod in this research, which is 0.098m
[13]. Bozkurt et al., study shows location accuracy of 99.89%
and 86.59% that were obtained using DT and KNN methods
respectively [16]. In the present study, location accuracy
obtained for DT and KNN methods are 90.6% and 98.5%
respectively. KNN method shows better result in terms of
location accuracy compared to the research conducted by
Bozkurt et al. [16] whereas DT performs lower which could
be due to differences in the testing environment as the experi-
ment in this study is conducted in a high-densemanufacturing
environment whereas the other research uses readily available
dataset adapted from UJIIndoorLoc dataset, as input rather
than actual experimental dataset. KNN method delivers low-
est RMSE value with highest location accuracy among other
machine learning techniques assessed in this research, and as
compared to other works demonstrating that KNN is the best
machine learning algorithm for this application.

FIGURE 16. Bar graph of RMSE for machine learning techniques.

F. COMPARISON OF PRE-OPTIMIZATION AND
POST-OPTIMIZATION OF PARAMETERS
Parameters calibration is crucial to optimize location accu-
racy. Test runs are performed before and after calibrating
the parameters. Pre-optimization parameter settings are ele-
vation angle of 21◦, tag height of 0.5m, data rate of 5Hz
and fast walking pace. Post-optimization parameter settings

TABLE 12. Measured data vs machine learning results.

are elevation angle of 55◦, tag height of 2.5m, data rate
of 50Hz and slow walking pace. The results are shown
in Fig. 17 and tabulated on Table 13. Pre-optimized and
post-optimized datasets are used to train the machine learning
models respectively, and the resulting RMSE values are cal-
culated accordingly. Fig. 17 illustrates that post-optimization
RMSE values are much lower than pre-optimization RMSE
values, which demonstrates location accuracy has been opti-
mized after parameters calibration. Parameters optimization
has a great impact on performance of measured data as
well as MLAs result. According to Table 13, location accu-
racy improvements contributed by parameters optimization
on measured data is 67.3%, SVR is 87.05%, DT is 36.6%
and KNN is 97.6%. Evidently parameters calibration greatly
impacts location accuracy and performance of MLAs.

FIGURE 17. Bar graph of pre-optimization and post-optimization of
parameters.

TABLE 13. Pre-optimization vs post-optimization of parameters.

V. CONCLUSION AND FUTURE WORK
This study presents an IPS with improved location accu-
racy that has been developed, implemented and successfully
operational at our industry partner, ams OSRAM’s LEDman-
ufacturing cleanroom, to track movements of assets within
the facility. Before applying neither parameter tuning nor
machine learning approach, the RMSE value of the IPS is
0.670m. Upon applying parameters tuning only (elevation
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angle of 55◦, tag height of 2.5m, data rate of 50Hz, slow-
paced movement), location accuracy is improved by 67.3%
and lowest RMSE value of 0.219m is achieved. Upon apply-
ing machine learning algorithm only, lowest RMSE value
achieved is 0.148m which is using DT algorithm, which
improves location accuracy by 36.6%. Finally, upon combin-
ing both parameters tuning and machine learning approaches,
lowest RMSE value of 0.015m is obtained, by using elevation
angle of 55◦, tag height of 2.5m, data rate of 50Hz, slow-
paced movement and KNN algorithm. Applying parameters
calibration and machine learning algorithm have optimized
location accuracy by up to 98.5%, which shows improve-
ment of 20.4%. The developed asset monitoring framework
is currently implemented on one production floor, comprised
of two production lines. Considering the performance, reli-
ability and maintenance cost of the overall framework, our
industry partner is eager to proliferate this asset monitoring
framework to other production floors, and other plants as
well. The developed asset monitoring framework is tested
in an actual cleanroom environment where production runs
on 24/7 basis, with the existence of equipment, employee
movements and signal interferences, that has helped to tai-
lor this framework to adapt to the environment that it is
currently implemented in. The current setup can be repli-
cated in another room with the same dimension. For rooms
with different dimensions, the same framework can be repli-
cated by customizing the number of readers accordingly.
Moreover, this developed asset monitoring system is highly
recommended to track human assets (employees) to study
hotspot areas of employees and mainly for contact tracing
in pandemic era. Furthermore, this framework is highly reli-
able to study space utilization within an indoor environment
that helps space optimization. In parallel to the Malaysian
Government’s initiative towards Fourth Industrial Revolution
(4IR), this developed asset monitoring framework is a step-
pingstone that can be thrived to other sectors and industries
as part of asset management system.
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