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ABSTRACT Deep learning, particularly Convolutional Neural Networks, has demonstrated effectiveness in
computer-aided diagnosis applications, including knee osteoarthritis analysis. Two of the most common
tasks done in medical imaging are segmentation and classification tasks. This research investigates the
feasibility of multi-task models for volumetric analysis using Magnetic Resonance Imaging scans in knee
osteoarthritis diagnosis, while considering computational efficiency. In order to leverage the correlation
between segmentation and classification tasks, two 3D multi-task models, OA_MTL (Osteoarthritis_Multi-
Task Learning) and RES_MTL (Residual_Multi-Task Learning) models are developed to simultaneously
segment knee structures and classify knee osteoarthritis incidence. The performance of the multi-task models
is evaluated against single-task baseline models and other existing convolutional neural network models
using a total of eight different performance metrics, while comparing the computational complexity among
the models. Experimental results demonstrate that multi-task model leverages the information of segmen-
tation task to improve the classification performance. OA_MTL is a multi-task model that incorporates
an encoder-decoder architecture, residual modules, and depthwise separable convolutions for enhanced
performance. OA_MTL achieves superior performance for classification tasks with an accuracy score of
0.825, and a comparable segmentation DSC score of 0.915. OA_MTL achieves a favorable trade-off between
computational complexity and model performance. The contribution of this work includes an approach that
simultaneously performs knee structure segmentation and osteoarthritis classification in 3D MRI, which
addresses the need for efficient models in the field of medical imaging, specifically on computationally
challenging 3D medical imaging applications.

INDEX TERMS Convolutional neural network, deep learning, knee osteoarthritis, magnetic resonance
imaging, multi-task model.

I. INTRODUCTION

In recent years, artificial intelligence, particularly in the
area of deep learning, has revolutionized various domains,
especially in medical image analysis. In the field of
computer-aided medical diagnosis, the application of deep
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convolutional neural networks (CNN) has greatly benefited
the field where medical imaging plays a crucial role as the
input for accurate diagnosis [1], [2]. Moreover, CNNs are
well suited in medical diagnosis due to its ability to extract
complex patterns and relationships from high-dimensional
medical imaging data [3]. Previous literature has shown that
CNNs achieved remarkable performance in medical diag-
nostic tasks such as segmentation and classification through
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medical images and have become the mainstream approach
for disease analysis [1].

Over the past years, developing such methods has been
a significant research focus with a notable shift from 2D
CNNs to 3D CNNss [3]. Previous research employs 2D CNNs
on volumetric medical images by a slice-by-slice manner
[4], ignoring the relationship among image slices within the
volume. With the increased availability of high-end com-
puting resources, researchers have utilized 3D models to
process volumetric medical data, employing 3D convolutions
to capture the correlation between adjacent slices to extract
the three-dimensional spatial context features of medical
images. Unlike 2D CNN, this allows a more comprehensive
analysis of the anatomical structures or abnormalities which
potentially improves the automated tasks’ performance. The
robustness of this transition provides new research directions
for future research [5]. Despite the advancement of 3D CNN
in computer-aided diagnosis, there is still a gap of knowl-
edge in 3D CNN applications. In addition, the utilization of
3D CNN architectures incurs significant computational over-
heads such as large number of parameters and computational
costs, due to multiple layers of 3D convolutions, making them
impractical for real-world deployment on standard hardware.
Given the constraint of computing hardware resources in real-
world scenarios, there is a need for efficient and lightweight
models where the models achieve a good trade-off between
computational efficiency and model accuracy, to allow a more
feasible practical application. The development of efficient
neural networks that can achieve high performance while
utilizing fewer parameters and computing resources is an
ongoing research area in the medical imaging field, especially
on 3D medical imaging tasks that are computationally expen-
sive due to the nature of the 3D medical images involved [1].

The multi-task technique serves as an efficient option
to reduce the high computational costs associated with 3D
neural networks [6]. Majority of the previous literature on
medical diagnosis focuses on single-task learning models
where the classification of disease and segmentation of
anatomical structures were considered as two independent
tasks, ignoring the correlation between the tasks [2]. Medical
image classification is the process of assigning the medical
scans into predefined categories based on extracted features.
Classification can be applied to serve different purposes, such
as differentiating between normal and abnormal images to
detect the presence of a disease, or prediction of a certain
condition either in terms of disease progression or severity
staging. On the other hand, medical image segmentation
involves partitioning medical images into multiple segments
based on the region of interest (ROI) according to visual
characteristics. Basically, it is the identification of ROI pixels
or voxels from the background of medical scans to provide
clearer visualization by either delineating or localizing spe-
cific regions of interest or anatomical structures. Moreover,
both tasks have their respective limitations and may yield
mutual benefits when performed together [7]. For example,
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the tissue type and structure information from segmenta-
tion tasks might be crucial for disease stage classification
[2]. Multi-task learning emerges as one of the deep learn-
ing approaches to address the aforementioned challenges by
performing multiple tasks simultaneously in a single model
to improve diagnosis accuracy [7]. This technique enables
effective information sharing among tasks, facilitating the
learning of interrelated concepts and improves the general
performance of the tasks, by optimizing several learning tasks
simultaneously [8]. It has been proven that this can ultimately
lead to improved performance compared to single-task learn-
ing [8], [9].

This research leverages the potential of multi-task learning
and 3D CNNs in the domain of knee osteoarthritis diagnosis.
As the ageing population continues to grow, the prevalence of
this disease is expected to increase significantly in the com-
ing years. Hence, it is crucial to develop a computer-aided
diagnosis tool that performs a comprehensive analysis for
this disease using 3D MRI scans. There are numerous deep
learning applications in the field of knee osteoarthritis [1],
[10]. While previous studies have shown promising results
on osteoarthritis diagnosis using 2D CNN technique on plain
radiography [11], knee OA is a complex whole joint disease
[12], making MRI the preferred imaging tool for examina-
tion [4]. Moreover, due to the nature of 3D medical images
which contain rich information, it allows intrinsic connec-
tions between multiple tasks. Therefore, this work employs
3D CNN to make full use of the 3D volumetric information
of the knee condition. Besides, existing OA deep learning
studies are restricted to a single task [13]. In this research,
two of the important tasks that will be focused on are: knee
joint structures segmentation and OA staging classification.
The segmentation task aims to extract tissue structures such
as bones and cartilages, while the classification task aims to
detect the presence of osteoarthritis. Unlike existing methods
that perform classification and segmentation separately, this
research aims to investigate the feasibility of multi-task 3D
CNN approach for knee OA diagnosis. Therefore, a research
question arises: Can a multi-task model be developed to per-
form volumetric analysis for knee osteoarthritis diagnosis and
achieve a better trade-off between efficiency and accuracy
compared to single-task models?

To answer the question above, in this work, we address
the aforementioned challenges by investigating the poten-
tial of 3D multi-task model of two different architectures
in osteoarthritis diagnosis. It is worth noting that previ-
ous multi-task methods have not been applied to exploit
the inherent relationship between knee joint segmentation
and osteoarthritis detection tasks. To mitigate the aforemen-
tioned high computational complexity of 3D CNN models,
besides using multi-task techniques as described previously,
we incorporated depthwise separable convolutional layers
[14] in both of the multi-task models for a more lightweight
structure. Furthermore, the two common approaches for
multi-task learning are the hard or soft parameter sharing
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FIGURE 1. Research framework.

of hidden layers. In our work, the multi-task technique is
applied through hard-parameter sharing, which involved shar-
ing certain network layers among tasks while keeping other
layers specific to each task, as it significantly reduces the
number of parameters and computational costs associated
with the model [9]. In this paper, we propose 3D multi-task
neural network for joint segmentation of knee structures and
classification of knee osteoarthritis. The key contributions of
this paper are as follows:

1. We propose an end-to-end multi-task approach for
jointly segmenting knee structures and classifying knee
osteoarthritis using 3D MRI images. To our best knowl-
edge, this is one of the pioneering works that performs
knee osteoarthritis segmentation and classification in 3D
MRI simultaneously.

2. We explore and compare two different network architec-
tures for conducting multi-task learning, by modifying the
encoder that serves as a parameter sharing between two
tasks. For the first architecture, we incorporate several
residual blocks in the encoder of the encoder-decoder
network. In the second architecture, the encoder of the
network is replaced with 3D ResNet-18. Both architec-
tures employ shared encoders with separate task-specific
decoders.

3. We extensively compare the proposed architectures with
other popular CNN architectures and single-task baseline
models to demonstrate the superior performance of multi-
task networks.

Il. METHODOLOGY

A. GENERAL OVERVIEW

The proposed multi-task neural networks are designed
such that it integrates segmentation and classification in
a single-stage end-to-end CNN architecture. Two architec-
tures are proposed with different shared encoders for feature
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extraction, with the same decoder segmentation branch and
classification branch. The shared encoder extracts relevant
features from the 3D MRI volume to be utilized by both
tasks. The models take a 3D MRI scan into the neural network
and produce two different outputs simultaneously, which are
the incidence of knee osteoarthritis and segmentation masks
of four different knee structures: femur bone (FB), femoral
cartilage (FC), tibia bone (TB) and tibial cartilage (TC).

To further validate the performance of the proposed multi-
task, single-task networks are extracted from the proposed
network as baseline models to compare the performances.
Here, the baseline segmentation-task network consists of
the shared encoder and the segmentation branch, which
is the decoder that is symmetrical to the encoder. Whereas for
the baseline classification-task network, it includes the shared
encoder and the classification branch. The general overview
of the research framework is presented in Fig. 1

B. DATA ACQUISITION AND PRE-PROCESSING

The dataset used in this work is obtained from the pub-
lically available knee MRI scans from the Osteoarthritis
Initiative (https://nda.nih.gov/oai/). 400 3D sagittal double-
echo steady-state (DESS) MRI scans from different subjects
from the baseline time point are involved. These scans were
acquired using Siemens 3T Trio systems. For segmentation
tasks, the respective segmentation masks are acquired from
Zuse Institute Berlin (ZIB) where each volume consists of
background (BG), FB, FC, TB and TC [15]. For classification
tasks, the presence of knee osteoarthritis is determined based
on Kellgren-Lawrence (KL) grading, a common OA severity
grading scale [12]. Similar to previous studies [16], [17],
KL grades of 0 and 1 were categorized into “No OA” or class
0 while KL grades of 2, 3, and 4 were categorized into “OA”
or class 1.
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FIGURE 2. Architecture of multi-task networks. (a) OA_MTL (b) RES_MTL.

In this study, datasets from the Osteoarthritis Initiative
were initially provided in Digital Imaging and Communica-
tions in Medicine (DICOM) format. To ensure consistency,
all data used in the study underwent format conversion to
the Neuroimaging Informatics Technology Initiative (NIfTI)
standard. This preprocessing workflow was implemented
using the SimpleITK library. All of the MRI volumes were
resized into 160 x 160x 160 due to Graphics Processing Unit
(GPU) memory limitations. Then, the scans are Z-normalized
and standardized and are split into train, validation, and test
sets. The training set contains 280 MRI scans (87 for No OA,
193 for OA), the validation set has 80 MRI scans (32 for No
OA, 48 for OA), and the test set consists of 40 MRI scans (16
for No OA, 24 for OA).

C. MULTI-TASK NETWORKS ARCHITECTURES

Two different multi-task network architectures are explored
where the base architectures and modules of the networks
are inspired by the U-Net, residual modules from ResNet
[18] and the depthwise separable convolutions. We utilize
residual blocks [18] in our work as it has shown superior
ability to extract features of knee osteoarthritis in our pre-
vious work [16], with a reduced computation complexity.
The two models are presented in Fig. 2 and are named
as (a) OA_MTL (Osteoarthritis_Multi-Task Learning) and
(b) RES_MTL (Residual_Multi-Task Learning), respectively.
Both networks have the two tasks share the same encoding
path and then split into two task-specific paths.

1) ENCODER PATH

As described above, the two models differ in terms of their
encoder where OA-MTL employs residual modules (shown
in Fig. 3(a)) and the RES-MTL adopts the entire feature
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extractor of the ResNet-18 as the encoder. For OA-MTL,
the encoder path consists of four residual blocks and four
2 x 2x2 max-pooling layers with stride of 2. One residual
block makes up the bottleneck. The proposed architecture
implements 32, 64, 128, 256 and 512 filters at each stage
of the encoder-decoder paths. The shared encoder fed the
obtained representations into segmentation and classification
branches, allowing a smaller computational cost while ben-
efiting from both tasks. The segmentation branch is used
to output the segmentation mask whereas the classification
branch is used to detect knee OA incidence.

2) SEGMENTATION BRANCH

The segmentation decoder path is symmetrical to the shared
encoder. It consists of four transposed convolutions, where
the output of the transposed convolution is then concatenated
with the output of the corresponding encoding layer of the
neural network using skip connections. Each is then followed
by depthwise separable convolutional blocks (DS Block),
as shown in Fig. 3(b). A 1 x 1x1 standard convolution
is implemented on the last layer of the network to reduce
the number of output channels from 32 to 5, which is the
number of classes in the segmentation mask All layers in the
encoder-decoder paths except the 1 x 1 x 1 convolutional layer
will be followed by batch normalization and Rectified Linear
Unit (ReLU) nonlinear activation function.

3) CLASSIFICATION BRANCH

The classification branch is built by extending the bottleneck
of the encoder path with a classifier. The classifier is com-
prised of an average pooling layer followed by three fully
connected layers with layer outputs of 128 and 32 with the
last final output based on number of classes, which in this case
is two. The first two fully connected layers are accompanied
by a ReLU layer and a dropout layer with a rate of 0.5 is
applied.
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D. TRAINING SPECIFICATIONS

All experiments were conducted using Python using PyTorch
deep learning framework, on a workstation equipped with
Xeon W-2225 Central Processing Unit Intel and NVIDIA
RTX A6000 Graphics Processing Unit (GPU) with Random
Access Memory (RAM) of 32.0 GB. All the models are opti-
mized via ADAM optimizer, using a learning rate of 1e-4 and
a batch size of 2. All models were trained with a maximum
epoch of 100 with an early stop patience of 10. Weighted
Random Sampler, an oversampling strategy implemented by
PyTorch [19], was used in the model training to address the
class imbalance issue for classification tasks.

For the baseline networks and single-task networks, the
loss function used was based on the tasks where segmenta-
tion tasks use the dice loss function whereas classification
tasks use cross-entropy loss function. For the multi-task net-
works, we combined dice loss function from segmentation
task and cross-entropy loss function from classification task
to a multi-task loss function such that it can optimize two
tasks simultaneously. The multi-task loss function (L7o7ar)
is formulated as follows:

LtotaL = o (Lsgc) +(1—a)(LcLs) (1

where « is the weight that balances both loss functions, and
it is set to 0.7. Lsgg denotes the segmentation loss function
whereas Lcys denotes the classification loss function.

The formula of both loss functions can be expressed as
follows:

Lets (. q) = — > pilog(a) @

N
Lsgc (p.q) =1 — NZ 221,:1171611\; 5
2P 2 4
where p is the ground truth value of either O or 1, ¢ is the
predicted probability for i class and N is total number of
classes.

3

E. EVALUATION STRATEGY AND METRICS
The performance evaluation of the models is conducted by
assessing the performance of segmentation and classifica-
tion tasks separately. It should be noted that although some
metrics for the tasks are the same, they account for different
definitions based on the nature of the task.

For classification tasks, we adopt accuracy (ACC), pre-
cision (PRE), recall (REC) and F1-Score to validate the
classification performance of the model. All the classification
metrics aforementioned above were computed according to
the formulas below:

TP TN
ACC = et e @)
TP, + FP. + FN. + TN,
TP,
PRE— — ¢ _ )
TP, + FP,
TP,
REC= ——— (6)
TP, + FN,
2TP,
F1 score = @)

2TP, + FP, + FN,
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where TP, is the number of correctly classified samples
as OA, FP, is the number of incorrectly classified samples
as OA, TN, is the number of correctly classified samples
as healthy (No OA) and FN; is the number of incorrectly
classified samples as healthy (No OA).

Evaluation metrics for the segmentation tasks includes
precision (PRE), recall (REC), Dice Similarity Coefficient
(DSC) and Jaccard Similarity Coefficient (JSC).The metrics
are as follows:

TP,
PRE= —— (8
TP, + FP;
TP,
REC= —— — 9
TP, + FN;
2TP;
DSC = (10)
2TP, + FP, + FNj
TP,
JISC=——* (11)

TP, + FP, + FN{

where TP; is the true positive of specific class of interest, FPg
is the false positive of specific class of interest, TN is the true
negative of specific class of interest and FNj is the false nega-
tive of specific class of interest. For segmentation tasks, since
it is a multi-class segmentation task, the average of the scores
(FB, FC, TB, and TC) were obtained and reported to evaluate
the overall performance of the model in segmentation task.

Ill. RESULTS

A. PERFORMANCE OF MULTI-TASK MODELS

Table 1 shows the comparison results between the two
multi-task neural network models, OA_MTL and RES_MTL
on segmentation and classification tasks. OA_MTL displays
a superior overall performance compared to RES_MTL,
in both classification and segmentation tasks. Without utiliz-
ing the whole ResNet-18 as the encoder, OA_MTL surpassed
REC,_MTL by 6%, 16%, 2% in terms of ACC, PRE and
F1-Score for classification task and by approximately 1% in
terms of PRE, REC and DSC, and 2% in terms of JSC for seg-
mentation task. The segmentation results in DSC, reported by
classes are presented in Fig. 4. It is observed that both models
display similar segmentation performance in all classes, with
a lower performance in segmenting knee cartilages than that
of segmenting knee bones.

B. COMPARISON WITH SINGLE-TASK CNN MODELS

We further verify the effectiveness of multi-task models
compared to single-tasks models, which includes the base-
line models and existing state of art single-task models that
perform single segmentation or classification task indepen-
dently. Here, baseline models are defined as model that take
the shared encoder and a specified branch (segmentation or
classification) of the multi-task model based on the specific
task. To get the individual baseline results, the segmenta-
tion and classification only models are trained separately.
We refer classification baseline model for OA_MTL and
RES_MTL as OA_MTL_C and RES_MTL_C respectively,
while OA_MTL_S and RES_MTL_S for their respective
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TABLE 1. Comparison between OA_MTL and RES_MTL.

Classification Segmentation
ACC PRE REC F1-Score PRE REC DSC JSC
OA MTL 0.825 0.905 0.792 0.844 0.911 0.921 0.915 0.851
RES MTL 0.775 0.778 0.875 0.824 0.902 0.909 0.904 0.833
TABLE 2. Comparison between multi-task models, baseline models and existing CNN models.
Models Classification Segmentation
ACC PRE REC F1-Score PRE REC DSC JSC
OA MTL 0.825 0.905 0.792 0.844 0.911 0.921 0.915 0.851
RES MTL 0.775 0.778 0.875 0.824 0.902 0.909 0.904 0.833
OA MTL C 0.600 0.600 1.000 0.750
RES MTL C 0.550 0.583 0.875 0.700
DenseNet121 0.775 0.800 0.833 0.816
ResNet50 0.700 0.700 0.875 0.778
ResNeXT50 0.725 0.810 0.708 0.756
ShuffleNet 0.575 0.630 0.708 0.667
OA MTL S 0.913 0.922 0.917 0.853
RES MTL S 0.907 0.925 0.915 0.850
UNet 0.925 0.918 0.921 0.860
VNet 0.875 0.938 0.903 0.832
VoxResNet 0.928 0.514 0.621 0.484

1000

0.900

0,300

DSC Score

0.700

0.600

0.500

OA_MTI RES_MTIL

FIGURE 4. Detailed segmentation results by classes for OA_MTL and
RES_MTL.

segmentation baseline models. For other existing models,
the architectures are consistent with their respective papers
with adjustment of the final output layer and use the same
parameter as implementation details in Methodology section.
We summarize the comparison of all the models in terms of
segmentation and classification performances in Table 2.

1) COMPARISON WITH BASELINE MODELS

The effectiveness of multi-task model is demonstrated by
OA_MTL and RES_MTL, where the classification accuracy
improved by 38% and 41% as compared to OA_MTL_C and
RES_MTL_C. Although there is no improvement in terms of
segmentation performance when compared to OA_MTL_S
and RES_MTL_S, the slight drop in segmentation tasks
is very small and not significant. The multi-task models
showed improvement in classification accuracy, precision
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and F1-score while maintaining the comparable segmentation
results, when compared to the baseline models. Although
OA_MTL_C achieved recall of 1, it is misleading to say
that its performance is better because from other metrics,
it shows that the model is making a lot of false positive
predictions. Hence, metrics like F1-score play an important
role in determining the model’s overall performance by con-
sidering the harmonic mean of both precision and recall.
Results demonstrated that OA_MTL and RES_MTL is able
to segment knee structures accurately while classifying the
knee conditions more effectively than the baseline models (as
shown in Fig. 5), suggesting that the segmentation informa-
tion may contribute additional context about the knee images
and are helpful for classification tasks.

2) COMPARISON WITH OTHER CLASSIFICATION CNNS

We included four other classification CNNs to compare the
classification performance with our multi-task model. The
3D classification models involved are 3D DenseNet121 [20],
3D ResNet-50 [18], 3D ResNeXT-50 [21] and 3D ShuffleNet
[22]. All the classification models involved are evaluated
with their complete architecture without extra modifications,
only where models that are previously proposed in 2D are
modified into 3D by replacing 2D operations with their 3D
counterparts. From Table 2, it is observed that OA_MTL
outperforms all the other models with the highest classi-
fication accuracy score of 0.825 and Fl-score of 0.844.
Following closely are RES_MTL and 3D DenseNet121, both
achieved a good accuracy of 0.775. The performance of 3D
DenseNet121 suggests that dense blocks might be suitable for

VOLUME 11, 2023
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FIGURE 5. Performance change between baseline and multi-task models.

classification of knee osteoarthritis as well. 3D ResNeXT-50
and 3D ResNet-50, both utilizing residual skip connections
displayed a moderate accuracy of 0.725 and 0.70 respec-
tively, with 3D ResNet-50 achieved a high recall of 0.875.
Meanwhile, ShuffleNet, recognized for its computational
efficiency, appears to be the least effective in classification
task, with an accuracy of 0.575. Hence, these findings high-
light the importance of integrating different techniques in
model design to improve classification performance.

3) COMPARISON WITH OTHER SEGMENTATION CNNs

The segmentation performance of the hybrid models are fur-
ther compared with the most commonly used 3D volumetric
architectures, UNet [23], VNet [24] and VoxResNet [25].
The performance of OA_MTL, RES_MTL, 3D UNet and 3D
VNet are fairly similar to each other, whereas 3D VoxResNet
achieves the lowest performance in terms of recall, DSC, and
JSC. However, it is important to note the imbalanced score
in precision and recall metrics of 3D VoxResNet, where the
model tends to misclassify the pixels associated with knee
structures as background, instead of any other knee structures
of interest. In other words, in this work, 3D VoxResNet is
found to be not well-suited for the knee MRI segmentation
task, reflected by the lowest overall DSC and JSC. 3D UNet
achieved the best DSC and JSC of 0.921 and 0.860 respec-
tively whereas 3D VNet obtained the best recall score of
0.938. As shown in Fig. 6, 3D UNet and 3D VNet showed
a similar trend of lower segmentation performance in the
cartilages, which might be due to the imbalance volume of
each class in one knee MRI.

C. COMPUTATIONAL COMPLEXITY ANALYSIS

We reported the total number of parameters and size in
memory used of the models in Table 3. Fig. 7 displays the
comparison between all the models compared in this paper
in terms of segmentation performance, classification perfor-
mance and computational complexity.

Compared to RES_MTL, OA_MTL achieved 1% and
6% better DSC in segmentation and accuracy in classifi-
cation performance while requiring 2x less parameters and
memory. From the two multi-task models proposed in this
paper, OA_MTL is indeed more efficient than RES_MTL,
by achieving better performances in both tasks while requir-
ing a smaller number of parameters and memory, indi-
cating OA_MTL is indeed excellent in performing 2-class
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FIGURE 6. Detailed segmentation results by classes for each model.

TABLE 3. Number of parameters and memory used for all models.

Parameter =~ Memory
Model (M) (MB)
Multi-Task OA MTL 16.074 64.296
Models RES MTL 34.986 139.946
OA MTL C 14.379 57.516
Baseline RES MTL C 33.200 132.919
Models OA MTL S 16.004 64.017
RES MTL S 34917 139.666
DenseNet121 11.245 44.979
Classification ~ ResNet50 46.159 184.637
Models ResNeXT50 25.826 103.303
ShuffleNet 0.945 3.782
Segmentation UNet 19.074 76.427
Models VNet 45.611 182.443
VoxResNet 1.981 7.926

classification of OA diagnosis. Hence, we focus more on
OA_MTL in the following results discussions.

From Table 3, it is observed that the parameter and
memory required of the baseline models are smaller than
that of multi-task models, especially for the classification
model. This might be due to the complexity of the decoder
structure required in the segmentation branch. However,
by combining two tasks in one model, the number of param-
eters and memory used is definitely lesser than having two
independent models for separate tasks. Not only multi-task
models can use the number of parameters and memory more
efficiently, but the time also used to train one model for
two tasks is much more efficient than training two inde-
pendent models, as the computational cost and resources
required will be approximately double that of a multi-task
model.

It is worth noting that OA_MTL requires less computa-
tional cost when compared to other existing segmentation
and classification models. OA_MTL shows better efficiency
than ResNet50 and ResNeXT50 by achieving better classi-
fication results with lower computational costs. OA_MTL
requires only 16.074 M parameters where the model size
is smaller than 3D ResNet-50 and 3D ResNeXt-50 by 65%
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FIGURE 7. Comparison of models in terms of performance and computational complexity.
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FIGURE 8. Example output of OA_MTL in 2D slices: (a) original image, (b) ground truth label and masks, (c) predicted label and masks.

and 38% respectively while surpassing their classification
accuracy by 18% and 14% respectively. The results suggest
that smaller models might be sufficient to achieve good
classification performance. Besides, for models smaller than
OA_MTL, 3D DenseNet121 and 3D ShuffleNet, their per-
formance is worse than OA_MTL. Hence, it is important to
achieve a good tradeoff between model size and performance.
Moreover, it is notable that OA_MTL delivers a compara-
ble segmentation performance as that of 3D V-Net and 3D
U-Net while learning 2x and 1x fewer parameters. This
makes our model preferable in medical imaging tasks [26].
Although VoxResNet requires the minimal computational
cost, the segmentation results are very poor in terms of recall,
DSC and JSC.
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IV. DISCUSSION

In this paper, we established the effectiveness of multi-task
approach in addressing the knee osteoarthritis diagnosis by
using a 3D MRI as an input. We combined the segmen-
tation of multiple knee structures and the classification of
OA incidence as a multi-task learning strategy. The per-
formance of OA_MTL is dominant in this study, where it
jointly learns the segmentation and classification tasks, and
leverages the information from segmentation tasks to improve
the classification performance. The difference between the
two architectures proposed in this work is that RES_MTL
takes the entire ResNet-18 feature extractor architecture
as the encoder and is larger in model size when com-
pared to OA_MTL. OA_MTL is more lightweight and has
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shown better ability in performing osteoarthritis diagnosis.
OA_MTL is indeed efficient as it considers both parameter
and computational efficiency, by utilizing residual blocks to
enhance performance and depthwise separable convolutional
blocks to improve computational efficiency.

Since the multi-task models can realize segmentation and
classification outputs, the effectiveness of the multi-task
models is also validated through comparison with single-task
baseline models and existing CNN models that perform the
tasks separately. From the findings above, it suggested that
the segmentation of knee structures and osteoarthritis detec-
tion are highly related tasks, hence multi-task approach can
make use of the inherent relationship between the two tasks
to enhance the performance of either of the tasks, in this
case, the classification task. OA_MTL has outperformed the
existing classification models by 6% to 43% in classification
accuracy.

One of the key challenges in implementing a 3D CNN
model is the high computational complexity and expensive
computational cost that causes impracticality in real-world
applications. Although the practical aspects such as com-
putational complexity and model size are important, it is
usually neglected in previous works on artificial intelli-
gence models in the healthcare domain [26]. We introduce
an efficient lightweight 3D CNN model by incorporating
a multi-task strategy where the encoder of the U-shaped
architecture is shared and implemented depthwise separa-
ble convolutions in the decoder. These strategies result in a
lightweight model that requires a lower number of parameter
and memory, especially when compared to other single-task
models as presented in the Results section above. OA_MTL
strikes a balance between model performance and computa-
tional complexity where it achieves competitive segmentation
performance (as shown in Fig. 8), and improved classifica-
tion accuracy with a lower computational complexity. The
U-shaped architecture in our work is adapted from UNet and
our multi-task models are further developed with a mix-and-
match strategy, where the architecture is modified based on
our specific goals. This approach draws inspiration from the
fact that several top- performing models in the field adopt
similar architectures while incorporating different design
choices [13], [27].

Using the computational setup described in the Method-
ology section, OA_MTL consists of 16.074 million param-
eters, requiring 64.296 MB of memory. OA_MTL required
22 hours and 9 minutes to train on a 2-class classification
diagnosis. The inference time on one sample of knee MRI
scan by OA_MTL takes around 3 seconds only, which is
shorter than other reported studies [13]. Besides, the training
and inference time of our model includes performing two
tasks simultaneously, which is more efficient than the sum
of resources needed for performing the tasks by two separate
models independently. These make OA_MTL desirable in
practical applications.

Currently, there are limited 3D deep learning applications
in MRI for knee osteoarthritis diagnosis [1], [28], [29].
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We contribute to deep learning in the OA field by con-
sidering several aspects in the development of the model
such as practicality in terms of computational complexity
and memory requirement, as well as on model performance.
Overall, OA_MTL serves as a practical tool by combining
two tasks together. Not only can the performance of the model
be enhanced, but a more comprehensive output can also be
provided to the clinicians for a more accurate diagnosis.
However, this study presents some limitations that should be
addressed in future works.

One limitation we observed is that there is a certain bias in
the performance of segmentation tasks, particularly towards
the femur bone and tibia bone, due to the nature of knee
MRI scan. The imbalanced data of knee structures within
one MRI scan might have led to bias in our study. One
useful technique to address this limitation is to adjust the
loss function by using weighted loss functions, which can be
further investigated in future works. By enabling the model
to pay more attention to the minority classes, which are the
cartilages in this case, the model can extract more meaningful
OA features from the cartilages, which might contribute to
a more accurate diagnosis. Next, we evaluate the practi-
cality of the model by comparing the model size in terms
of parameters and memory used only. While these metrics
provide meaningful insights, it is unfair to solely compare
the models just from these aspects. To assess the overall
computational efficiency, other aspects such as Floating-point
operations per second utilization, inference time per scan
and the training time of the models should be considered to
provide better understanding on the model’s complexity and
efficiency. Moreover, this study does not employ k-fold cross-
validation for model training. Although it is normally used in
classical machine learning practices, it is not efficient to be
used in deep learning research due to the high computing cost
[28]. This is because deep learning models, particularly 3D
CNN s that analyze 3D MRI input, are very large, resulting in
longer training durations. Cross-validation involves repeated
training and evaluating a model, it is computationally expen-
sive compared to a straightforward train-validation-test split,
making it impractical for this work. However, this can
be further utilized in future work to obtain a more com-
prehensive and reliable estimate of the performance of
our model.

V. CONCLUSION

In this work, we investigated the effectiveness of multi-task
models by exploring two different architectures, focusing
on the application of knee osteoarthritis diagnosis in the
context of 3D CNNs. We introduce an efficient multi-
task model, OA_MTL which simultaneously performs the
segmentation of knee structures and classification of knee
osteoarthritis incidence, using 3D MRI scans. The exper-
imental results present that through multi-task learning,
OA_MTL achieved a significant improvement of 38% in
classification accuracy, reaching an accuracy of 0.825, while
maintaining good segmentation DSC score of 0.915, which is
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on par with other segmentation models. Besides, OA_MTL
is computationally efficient, where the computational com-
plexity is lower than that of employing two independent
models for segmentation and classification tasks separately.
OA_MTL demonstrates the potential of multi-task learning
in improving knee osteoarthritis diagnosis while consider-
ing computational efficiency. In conclusion, a 3D efficient
multi-task model, OA_MTL is proposed to perform knee
osteoarthritis diagnosis by providing two types of output
pertinent to the knee osteoarthritis condition using a single-
stage, end-to-end model.
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