
Received 26 October 2023, accepted 23 November 2023, date of publication 30 November 2023,
date of current version 8 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338223

Performance Evaluation of Building Blocks
of Spatial-Temporal Deep Learning Models
for Traffic Forecasting
YUYOL SHIN AND YOONJIN YOON , (Member, IEEE)
Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea

Corresponding author: Yoonjin Yoon (yoonjin@kaist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Basic Research Laboratory under Grant
2021R1A4A1033486, and in part by the Midcareer Research Grant by the South Korean Government under Grant 2020R1A2C2010200.

ABSTRACT The traffic forecasting problem is a challenging task that requires spatial-temporal modeling
and gathers research interests from various domains. In recent years, spatial-temporal deep learning models
have improved the accuracy and scale of traffic forecasting. While hundreds of models have been suggested,
they share similar modules, or building blocks, which can be categorized into three temporal feature
extraction methods of recurrent neural networks, convolution, and self-attention and two spatial feature
extraction methods of convolutional graph neural networks (GNN) and attentional GNN. More importantly,
the models have been mostly evaluated for their entire architectures with limited efforts to characterize and
understand the performance of each category of building blocks. In this study, we conduct an extensive, multi-
faceted experiment to understand the influence of building block selection on traffic forecasting accuracy,
considering environmental characteristics and dataset distributions. Specifically, we implement six traffic
forecasting models using three temporal and two spatial building blocks. When we evaluate the models on
four datasets with diverse characteristics, the results show each building block demonstrates distinguishable
characteristics depending on study sites, prediction horizons, and traffic categories. The convolution models
demonstrate higher overall forecasting performance than other models, whereas self-attention models show
competitiveness in less frequent traffic categories, transition states, and the presence of outliers. Based on
the results, we also suggest an adaptive model evaluation framework for category-wise predictions of test
sets based on the performance of the models on validation sets. The results of this evaluation framework
demonstrate improved forecasting accuracy at most by 3.7%without further sophistication in existing model
architectures. The results enhance the utility of existing models and suggest guidelines for researchers
building traffic forecasting model architectures and for practitioners implementing these state-of-the-art
techniques in real-world applications.

INDEX TERMS Comparative study, deep learning, graph neural networks, spatial-temporal representation,
time-series prediction, traffic forecasting.

I. INTRODUCTION
Traffic forecasting is a complex problem that requires
modeling spatial-temporal features of traffic data such as
speed, density, and flow, to accurately predict future traffic
states. As stated in [1], traffic forecasting aims to make
predictions on from few seconds to possibly a few hours
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of future traffic states based on current and past traffic
information. The accurate prediction of future traffic states
is a crucial technical capability in intelligent transportation
systems (ITS) [1], [2], [3], enabling applications such as
network capacity evaluation [4], travel time estimation [5],
signal optimization [6], and carbon emission reduction [7].
It is a long-studied problem which dates back to 1930s with
efforts from various domains of science and engineering [8].
Owing to advancements in sensor technologies such as GPS
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and loop detectors and deep learning techniques to learn
from abundance of data, traffic forecasting problems garnered
much research interests in recent years.

In traditional approaches to the traffic forecasting prob-
lem, conventional time series models such as autoregres-
sive integrated moving average (ARIMA) [9] and vector
autoregressive (VAR) [10] have gained popularity. Other
data-driven machine learning algorithms such as support
vector regression (SVR) [11] and k-nearest neighbor (kNN)
[12] have also been utilized. Some other studies imple-
mented simulation [13], [14] and physical modeling [8].
Although these approaches all demonstrated promising
results, their applications have had limitations in accuracy,
spatial-temporal range, or computation time.

The recent surge of deep learning algorithms offered
methods to fit a wide variety of functions with a larger
number of parameters while avoiding overfitting problems,
and researchers have been able to leverage these advanced
techniques to capture the complex spatial and temporal
features of transportation networks in traffic forecasting
problems [3]. Recurrent neural networks (RNN) have gained
popularity in capturing temporal features with their intrinsic
ability to handle sequential data [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38]. The
RNN methods, however, have suffered from the vanishing
gradient problem, and the convolution-based temporal feature
extraction has been suggested to overcome this intrinsic
problem of RNN [39], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60]. More recently, the self-attention
mechanism [61] has demonstrated meaningful advances in
traffic forecasting [22], [40], [41], [43], [46], [51], [58], [60],
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72].
Convolutional neural networks (CNN) and graph neural

networks (GNN) provide key spatial feature extraction
capabilities. Although they constitute the pioneering efforts
to adopt deep learning architectures to traffic forecasting
[20], [23], [25], [42], [48], [49], [50], [54], CNN models
have limitations in modeling the complex topology of the
underlying transportation networks. In contrast, GNN takes
advantage of the node-link structure to incorporate the
underlying transportation network topology. By modeling
traffic sensors and road segments as graph nodes, the hidden
representation of a target node is learned by aggregating
information from the neighboring nodes connected by edges
[15], [16], [17], [21], [22], [24], [26], [27], [28], [29], [31],
[32], [34], [35], [36], [37], [38], [40], [41], [43], [44], [45],
[46], [47], [51], [52], [53], [55], [57], [58], [59], [60], [63],
[64], [66], [67], [68], [71], [72], [73], [74], [75].
Despite the success of deep learning models in processing

large datasets with high accuracy, efforts to understand
each of theses components, or building blocks, of the
models are limited. For spatial feature extraction, Li et al.
[16] proposed diffusion convolution, a convolutional GNN

layer that modeled traffic flow as a diffusion process on
a graph and compared its performance with ChebNet [76]
on a traffic flow dataset. Cui et al. [15] suggested traffic
graph convolution (TGC) and compared it with spectral
CNN [77] and ChebNet [76] in terms of the number of
parameters, computation time, and ability to extract localized
features. In addition, they showed that the TGC model
outperformed the spectral GCN-based models in overall
performance. Although these studies provide comparative
studies between new and existing GNN layers, they only
discuss the performance in terms of overall accuracy and
efficiency. In the temporal dimension, Reza et al. [70] present
the overall performance comparison between SVR, LSTM,
GRU, and transformer without consideration of spatial fea-
tures. Therefore, an investigation beyond overall performance
to characterize each building block is necessary to understand
and justify traffic forecasting model architecture.

This study addresses this gap by conducting an extensive
and multi-faceted experiment to characterize the building
blocks of spatial-temporal deep learning models for traffic
forecasting. First, we define the five categories of the building
blocks through an extensive literature review. They are
RNN, convolution, and self-attention for temporal feature
extractions, and convolutional GNN and attentional GNN
for spatial feature extractions. Subsequently, we implement
six traffic forecasting models, each incorporating distinct
combination of three temporal and two spatial building
blocks. To construct the models, we draw three models from
previous literature, each representing a temporal building
block. Through replacement of spatial building blocks in
selected models with GCN [78] and GAT [79], we assemble
six traffic forecasting models for the experiment. Finally,
we evaluate the performance of the models on four real-world
datasets with diverse characteristics. In the experiment,
we assess the influence of building block selections, and
analyze the performance across different traffic categories
and presence of outliers.

As the results, we find that the convolution and self-
attention-based models demonstrate advantages over the
RNN-based counterparts in extracting temporal features for
traffic forecasting. In the overall performance evaluation,
the convolution models tend to outperform the self-attention
models in overall performance. However, the self-attention
models show a smaller performance discrepancy in perfor-
mances between 15-min and 60-min predictions, indicating
a potential advantage in long-term forecasting. In addi-
tion, the self-attention provides more accurate results
in low-frequency traffic categories, and shows higher
robustness against outliers than the convolution models.
Furthermore, we suggest the adaptive model evaluation
framework that flexibly selects models to conduct prediction
based on the category-wise performance evaluation. Using
this framework, traffic predictions with higher accuracy
can be achieved without further sophistication in model
architectures. In summary, our main contribution is fourfold:
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• Categorize the building blocks for spatial-temporal
deep neural networks for traffic forecasting through an
extensive literature review. The categorization includes
three temporal feature extraction methods - RNN,
convolution, and self-attention - and two spatial feature
extractionmethods - convolutional GNN, and attentional
GNN.

• Conduct an extensive, multi-faceted experiment using
six traffic forecasting models each representing a
distinct combination of three temporal and two spatial
building blocks on four different datasets. The overall
performance evaluation discovers building block pairs
that generally yield higher accuracy: convolutional GNN
& convolution and attentional GNN & self-attention.

• Discover the characteristics of each building block.
The convolution-based temporal feature extraction max-
imizes the performance gain in frequent traffic cate-
gories, whereas the self-attention and attentional GNN
have increased robustness in infrequent conditions, such
as low-frequency traffic categories, traffic transitions,
and the presence of outliers.

• Propose an adaptive evaluation framework for traffic
forecasting, which makes predictions using multiple
models based on the performance on distinct traffic
categories. The framework increases the previous state-
of-the-art performance by 3.7% in a highway traffic
speed prediction task, without further sophistication in
previous model architectures.

The remaining paper is organized as follows. Section II
investigates the literature on deep learning models in traffic
forecasting studies. The preliminaries for this study and
definitions are in Section III. The methods and data are
explained in Section IV, along with the experimental setting.
In Section V, we present the results and discussion of the
experiment. Finally, Section VI provides the conclusion and
future study.

II. LITERATURE REVIEW
Deep learning models have proven effective in various
research fields such as image classification [80], object recog-
nition [81], and machine translation [82]. With their ability to
process huge data and model non-linear relationships, deep
learning has also become cutting-edge in traffic forecasting
studies. Following earlier works on stacked autoencoders [83]
and deep belief networks [84], many studies suggested deep
learning models that capture the spatial-temporal correlation
of traffic data.

A. TEMPORAL FEATURE EXTRACTION
To model time-series traffic data, recurrent neural networks
(RNN) and their variants, such as long-short term memory
(LSTM) [85] and gated recurrent unit (GRU) [86] have
gained attention in extracting temporal features for traffic
forecasting models. Implementation of vanilla LSTM has
shown improved performance compared to traditional models
such as auto-regressive integrated moving average (ARIMA),

support vector machine (SVM), and Kalman filtering [18],
[30]. When traffic data were categorized into congestion
levels, the LSTM model combined with the restricted
Boltzmann machine (RBM) showed at most 93.8% accuracy
for congestion prediction tasks [19]. The sequence-to-
sequence framework has been adopted in many models for
multiple prediction horizons [16], [17], [21], [27], [31],
[32], [36]. In Bai et al. [33], a linear transformation layer
was implemented to conduct multi-step traffic prediction.
Wang et al. [34] suggested a model that utilized GRU to
produce aggregated spatial-temporal representations. Several
models have employed multiple layers of RNN [16], [21],
[33], [35], whereas others have used the attention mechanism
[27], [28], [36], [37] to capture the long-term relationship in
traffic data.

Another building block to extract temporal features is
convolution. In the absence of sequential computation,
convolution have been able to efficiently train the models
and overcome the vanishing gradient problem of RNNs.
Originally suggested to process image data, earlier CNN
approaches have processed traffic data into an image
with each row and column representing each node of the
transportation network and time step, respectively [49], [54].
Although these models have demonstrated higher forecasting
power than traditional machine learning algorithms and
vanilla LSTM, the CNN structure is limited as it represents
only 1D spatial complexity. To model time series more
appropriately, temporal convolutions such as the gated 1D
causal convolution [45], [47], [48], [56], [59], [60] applied
convolution operation only along the temporal dimension.
By limiting the usage of future information during the
temporal feature extraction stage, causal convolutions have
become applicable to traffic time-series modelling problems.
The dilated causal convolution [87] that applies dilation to 1D
causal convolution to increase the reception field size with a
limited number of layers has shown improved performance
[40], [41], [43], [44], [46], [51], [53], [55], [57], [58], [73].

Recently, self-attention has also been widely adopted in
traffic forecasting studies. Reza et al. [70] demonstrated
the advantage of the transformer architecture over RNN
models. To impose sequential information of traffic data,
self-attention have been implemented with various positional
encoding methods. While the original Transformer [61]
implemented the sinusoid to encode the position information
of word sequences, Cai et al. [63] and Wen et al. [69] imple-
mented the transformer architecture with variations in the
embedding of traffic data and positional encoding. Guo et al.
[64] modified the self-attention score to reflect trends in
traffic data and implemented a dynamic graph convolution
module to replace the position-wise feed-forward layer of the
transformer. TrafficBERT [65] used the transformer encoder
as in Devlin et al. [88] to retain the forecasting power
when training using data from multiple sources. Wang et al.
[72] proposed an approach in which the parameters for the
self-attention layer is generated using regional distribution
of Point-of-Interests (PoI). Self-attention in conjunction with
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other temporal feature extraction methods such as GRU [22],
[34], [62] and dilated causal convolution [40], [46], [51], [58]
have also been proposed. GMAN [68], and AI-GFACN [71]
adopted self-attention for both spatial and temporal feature
extractions. In addition, Zheng et al. [68] also introduced
a transform attention layer that generated spatial-temporal
embedding representations for the positional embedding of
future time steps. Xu et al. [67] proposed a model in
which a temporal attention block followed a spatial attention
block. The two attention blocks of the model shared similar
structures, except that the graph convolution operation was
skip-connected to the output of the spatial attention block to
reflect the static structure of the transportation network.

B. SPATIAL FEATURE EXTRACTION WITH GRAPH NEURAL
NETWORKS
Earlier efforts have adopted CNN to extract spatial features of
traffic data. However, they operate in Euclidean space and fail
to represent the complex topology of transportation networks
[20], [23], [25], [26], [39], [42], [48], [49], [50], [54], [89],
[90], [91].

GNNs have become a popular choice in traffic forecasting
since the early adoptions by Li et al. [16] and Yu et al.
[56]. The core idea of GNN is to process the data into
graph structures and extract the spatial feature of each node
by aggregating the information from neighboring nodes.
Most GNN methods for supervised learning, such as classi-
fication and regression, can be grouped into convolutional,
attentional, and message-passing GNNs based on how they
aggregate neighborhood information [92].
Convolutional GNNs multiply fixed weights to the source

node features and conduct aggregating operations, such as
summation, pooling, and averaging, to extract target node
spatial features. The most widely used methods under con-
volutional GNN are the group of spectral graph convolutions
[76], [77], [78], which approximates the filters in the spectral
domain. GraphSAGE [93] and diffusion convolution [16] are
other examples of convolutional GNNs. Attentional GNNs
resemble convolutional GNNs in that theymultiply the source
node features with scalar weights. The difference, however,
lies in that the attentional GNNs assign the weights through
a function of the source and target node features. Graph
attention networks (GAT) [79] and Gated Attention Networks
(GaAN) [26] are popular attentional GNN models that
implement self-attention mechanisms [61]. Finally,message-
passing GNNs compute output representations of a target
node using a function of the target node and its neighbors.
Gilmer et al. [94] is an example of message-passing GNN,
which computes the message using hidden representations
of source and target nodes and edges. The aggregated
messages and the target node features are passed through a
neural network to generate output representations. For more
explanations on GNNs taxonomy, see Bronstein et al. [92].
As transportation networks are inherently equipped with

graph structures, the GNNs have become the most popular
spatial feature extraction method for traffic forecasting.

Convolutional GNNs have pioneered GNN-based traffic
forecasting research, and have beenwidely used in concurrent
models [15], [16], [17], [22], [28], [29], [31], [32], [33], [35],
[37], [40], [43], [44], [47], [55], [56], [57], [58], [59], [60],
[62], [63], [64], [67], [71], [75], [95]. Several studies [29],
[37], [56], [60] adopted spectral graph convolutions [76], [78]
that showed higher forecasting power over the basic deep
learning models such as feed-forward neural networks and
FC-LSTM. Li et al. [16] suggested diffusion convolution,
which expanded the application of graph convolution to
directed graphs, and has been applied in many traffic
forecasting studies [44], [55], [57], [63]. Cui et al. [15] sug-
gested traffic graph convolution (TGC), using element-wise
multiplication between learnable parameters and adjacency
matrices. Zhang et al. [28] implemented traffic graph
convolution with an attention mechanism [96] to capture the
dependencies in the time steps regardless of distances. Using
a matrix factorization technique, Bai et al. [33] suggested
a convolutional GNN module that can apply node specific
parameters. Attentional GNNs also have been widely used
in traffic forecasting research [21], [26], [27], [36], [41],
[45], [52], [66], [73]. The gated attention networks (GaAN)
[26] outperformed diffusion convolution in short-term traffic
forecasting when combined with GRU. GAT [79] has also
been adopted in many studies [21], [27], [36], [41], [52],
[73]. Park et al. [66] constructed a new attentional GNN
layer that adopts the scaled dot-product attention [61] with
sentinel vectors to control the information from neighbor
nodes. A few studies have implemented convolutional and
attentional GNNs in one model [46], [51], [72]. Message-
passing GNN traffic forecasting models have also been
suggested using a dual graph that predicts node and edge
features [74], and using bidirectional graphs in extracting
aggregated spatial-temporal features [34]. Gupta et al. [38]
proposed amessage-passing GNN-basedmodel with a spatial
embedding and attention mechanism based on shortest-paths
on graphs. Outside the existing taxonomy of GNNs, graph
embedding techniques such as DeepWalk [97], LINE [98],
and node2vec [99] have also been adopted to incorporate
graph structures [24], [66], [68], [71], [89].

While these studies have achieved significant performance
improvements, there have not been sufficient efforts to
understand the performance of individual building blocks that
constitute these models. Li et al. [16] introduced diffusion
convolution as a convolutional GNN layer, employing it
to conceptualize traffic flow as a diffusion process occur-
ring on a graph. This approach was then compared with
the more traditional ChebNet [76] for their performance.
Similarly, Cui et al. [15] conduct a comparative analysis
between the proposed traffic graph convolution (TGC)
and traditional convolutional GNNs such as spectral GNN
[77] and ChebNet [76] for their number of parameters,
computational efficiency, feature localization ability, and
overall performance. For the temporal feature extraction
blocks, Reza et al. [70] evaluates the performances of the
transformer compared to other machine learning algorithms
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FIGURE 1. Graph construction from a transportation network. The
transportation network on the left consists of 6 road segments and
5 traffic sensors. The network can be represented as (a) a sensor graph, or
(b) a road segment graph considering the locations and traffic directions.

TABLE 1. Summary of the literature review by spatial and temporal
building blocks.

architecture with the absence of spatial feature extraction.
Although these studies evaluate the performance of traffic
forecasting models on overall performance and computation
efficiency, a comprehensive building block-wise analysis
needs to be conducted considering characteristics of datasets,
traffic categories, and robustness. In this study, we address
this research gap through an extensive and multi-faceted
experiment to reveal the inherent characteristics of the
building blocks.

In Table 1, spatial-temporal traffic forecasting models are
categorized by the implemented building blocks. Although
several studies fall under the miscellaneous category, most
studies can be categorized using the five building blocks
of spatial and temporal feature extraction. Note that several
studies [46], [51], [62], [71], [72] use more than two building
blocks to extract the features. For more in-depth reviews of
traffic forecasting studies using deep learning models, please
refer to Lee et al. [3], Ye et al. [100], and Jiang et al. [101].

III. DEFINITIONS AND PROBLEM STATEMENT
This section explains the preliminaries of our study, which
include the mathematical definition of the transportation
network graph, graph signal, and traffic forecasting problem.

A. NOTATIONS AND DEFINITIONS
Definition 1: Transportation network graph We represent

the transportation network graph as a directed graph G =

(V ,E), where V is a set of |V | = N nodes and E is a
set of edges representing pairwise connections between the

nodes. As defined in Ye et al. [100], a node can represent
a sensor, road segment, or road intersection. In this study,
we used sensor and road segment graphs depending on the
dataset. The hypothetical construction of each type of graph is
in Fig. 1. An adjacency matrix A = (Aij) ∈ RN×N is a square
Boolean matrix, where the nodes vi, vj ∈ V are connected by
an edge (vi, vj) ∈ E .
Definition 2: Graph Signal The signal from node vi at time

t is denoted as xit ∈ RC , where C is the number of features
of the signal. The graph signal is a matrix containing all
node signals at time t , denoted as X t = [x1t , x

2
t , . . . , x

N
t ] ∈

RN×C .

B. TRAFFIC FORECASTING PROBLEM
The traffic forecasting problem defined on the transportation
network graph G predicts future traffic states for T ′ time
steps based on historical traffic information such as speed,
flow, and occupancy. Given historical graph signals for past
T time steps on the graph, G, the traffic forecasting problem is
defined as finding a function H that maps the historical data
to future traffic states:

H : [X t−T+1, . . . ,X t ;G] →

[
Ŷ t+1, . . . , Ŷ t+T ′

]
(1)

where Ŷ t ∈ RN×1 is the predicted traffic state at time t .

IV. METHODS AND MATERIALS
This section explains the methods and materials used in
this study. First, we explain the GNN-based spatial building
blocks, graph convolutional networks (GCN) [78] and graph
attention networks (GAT) [79], and three base models with
different temporal building blocks. Then, we introduce the
datasets and settings for the experiments. The study outline
is shown in Fig. 2.

A. SPATIAL FEATURE EXTRACTION WITH GRAPH NEURAL
NETWORKS
To investigate the differences between convolutional and
attentional GNNs in traffic forecasting research, we imple-
mented one module from each category. Specifically,
we implemented the GCNmodel [78] from the convolutional
GNNs category. The GCN model uses the first-order
Chebyshev polynomials to approximate the filter in the
Fourier-transformed space and incorporates spatial rela-
tionships between nodes by aggregating information from
neighboring nodes. A GCN layer with input Xt ∈ RN×d on
graph G and d-dimensional feature space at time t can be
expressed as follows:

GCN(Xt,A) = σ (ÂXtW ), (2)

where σ (·) is an activation function, and W ∈ Rd×h is the
weight parameter matrix where h is the output dimension.
Whereas GCN originally used the normalized Laplacian
matrix Â = D̃

−1/2
ÃD̃

−1/2
where Ã = IN + A, and D̃ii =

6jãij, we use Â = D̃
−1
Ã to apply GCN on directed graphs.
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FIGURE 2. Overview of this study. We first define three categories for temporal and two for spatial building blocks.
Combining a spatial and a temporal building block, we implement six models and conduct an extensive and multi-faceted
experiment using four different real-world traffic datasets. Finally, we analyze the results on overall performance,
performance in different traffic categories, performance on outliers, and adaptive model evaluation.

Information from further nodes can be aggregated by staking
multiple GCN layers.

From the family of attentional GNNs, we implemented
GAT [79]. GAT uses self-attentionmechanisms [61] to weigh
the importance of each neighbor node and aggregates the
information from neighbors accordingly. For each node pair
vi and vj connected by edge (vi, vj), the attention score for the
k-th head αt

(k)

ij at time t is defined as follows:

αt
(k)

ij =

exp
(
σ
(〈
a(k),

[
xitW

(k), xjtW
(k)
]〉))

∑
vl∈Ni

exp
(
σ
(〈
a(k),

[
xitW

(k), xltW
(k)]〉)) , (3)

where x it ∈ Rd is the signal of node vi at time t , a(k) ∈ R2h′

is
a learnable parameter vector for the k-th attention head with
h′ dimension, W (k)

∈ Rd×h′

is a learnable weight parameter
matrix for the k-th attention head, ⟨·, ·⟩ is the dot product
operator, [·, ·] concatenates the vectors inside the bracket and
Ni is the neighbor set of node vi. The GAT layer withK heads
applied on the node vi with graph signal X t observed from
graph G at time t can be expressed as follows:

GAT(vi;X t ,G) = CATKk=1

σ

∑
vl∈Ni

at
(k)

ij xltW
(k)
v

 , (4)

where CATKk=1[·] concatenates the outputs of the equation
in the bracket for k = 1 to K , W (k)

v ∈ Rd×h′

is a
learnable parameter matrix for the k-th attention head. If the
output dimension for GAT h′

× k is equal to that of GCN,
replacing one with the other becomes possible for any traffic
forecasting model.

B. BASE MODELS WITH DIFFERENT TEMPORAL
BUILDING BLOCKS
We studied the temporal building block characteristics using
RNN-based T-GCN [29], convolution-based Graph WaveNet
[55], and self-attention-based GMAN [68] and compared the
results by replacing spatial building blocks of these base

FIGURE 3. Architecture of T-GCN. The model extracts spatial features
from input graph signal using GNN layers. Then, the extracted features
are fed into GRU units to extract temporal features. The encoder-decoder
framework is implemented for generating multiple time-step predictions.
The GNN operation is GCN for T-GCN and GAT for T-GAT.

models with GCN and GAT. We first briefly explain the three
base models used in this study.

T-GCN [29] is a spatial-temporal traffic forecasting model
combining GRU [86] and 2-layer GCN for temporal and
spatial feature extraction, respectively. The update gate ut ,
reset gate rt , and outputs ht of the GRU units at time t on
input X t ∈ RN×C are defined as follows:

ut = σ (Wu [f (A,X t ),hh−1] + bu) , (5)

rt = σ (W r [f (A,X t ),hh−1] + br ) , (6)

ct = tanh (W c [f (A,X t ), (rt ⊙ ht−1)] + bc) , (7)

ht = ut ⊙ ht−1 + (1 − ut ) ⊙ ct , (8)

where ⊙ is the element-wise Hadamard product and
σ (·) is the sigmoid activation function, f (A,X t ) =

σ (ÂReLU(ÂX tW0)W1) is the 2-layer GCN model with
learnable parametersW0 ∈ RC×p andW1 ∈ Rp×d ,Wu,W r
, andW c ∈ Rd×dgru are learnable parameters, and bu, br ,
and bc are biases. Although the original TGCN adopted a
many-to-one structure, we implemented the encoder-decoder
framework for the multi-step prediction. In the following
discussions, we denote the encoder-decoder T-GCN model
as T-GCN, and T-GCN with GAT as T-GAT. Fig. 3 shows the
T-GCN and T-GAT architecture.

Graph WaveNet [55] model combines dilated causal
convolution [87] and convolutional GNN layers. Since the
convolution-based temporal feature extraction requires no
sequential computation, the model could overcome the
vanishing gradient problem. The Graph WaveNet adopts
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FIGURE 4. Illustration of dilated causal convolution (figure is adapted
from Fig. 3 of [87].

the Gated Activation Unit (GAU) [102] for dilated causal
convolution. The convolution with input H i

t−TC1V t ∈

RN×T×d at time t with T historical graph signals can be
defined as:

H ′

t−T+1:t = GAU ((01, 02) ∗conv H t−T+1:t)

= tanh(01 ∗conv H t−T+1:t ⊙ σ (02 ∗conv H t−T+1:t ), (9)

where ∗conv is the dilated convolution operation with
convolution kernels 01, and 02 ∈ Rp×d×d . For a node input
hit−1+T :t ∈ RT×d for node vi at time t with T historical node
signals, the dilated convolution with kernel for one output
channel γ ∈ Rp×d is defined as follows:

γ ∗conv hit−T+1:t

=

d∑
b=1

p∑
p=1

γ (p, b)hit−T+1:t (t − s× p, b), (10)

where the p and b inside the parenthesis in γ (p, b) are the
indices of the elements of kernel γ , and s is the dilation factor.
A dilated causal convolution layer is illustrated in Fig. 4. The
output of the dilated causal convolution and gated activation
unit is then fed to a spatial building block to generate the
layer output with dimension RN×(T−s×(p−1))×d . Note that the
temporal lengths of inputs for the later layers are shorter than
T .

Fig. 5 shows Graph WaveNet structure with the original
spatial building block replaced by GNN. In [55], the GNN
layer is implemented with a self-adaptive adjacency matrix
term added to diffusion convolution [16]. The dilated causal
convolution and GNN operation form a spatial-temporal
layer, with residual and skip connections added to prevent
information loss from stacking multiple spatial-temporal
layers. For a more detailed description of Graph WaveNet,
please refer to the original study [55]. This study replaces
the spatial building block with GCN and GAT. Hereinafter,
we denote the Graph WaveNet implemented with GCN and
GAT as GWNet-GCN and GWNet-GAT, respectively.

GMAN [68] is a self-attention-based model using spatial
and temporal attention modules to model traffic data. The
model extracts spatial and temporal features separately and
combines them using a gated fusion module. To impose
positional information on the nodes and time steps, the model
suggests spatial-temporal embedding, using time indicator
vectors and node embedding vectors obtained by node2vec
[99]. The temporal attention module of GMAN with input is

FIGURE 5. Architecture of GWNet. The model extracts temporal features
using dilated causal convolution and gated activation unit. Then, a GNN
module is implemented after the convolution to extract spatial features.
A spatial-temporal (ST) layer consists of a dilated causal convolution with
gated activation and a GNN module, and multiple ST-layers are stacked to
extract the final representation. The subscripts t in this figure indicate the
graph signals from time step t − T + 1 to t .

defined as:

ht (l)i,t = CATKk=1

∑
τ∈Nt

α
(k)
t,τ · f (k)0

([
h(l−1)
i,τ , ei,τ

])Wo + bo,

(11)

where ht (l)i,t is the temporal feature vector of the l-th layer for
node vi at time t , h(l−1)

i,τ ∈ Rd is the output of the previous
layer for node vi at time t , ei,τ ∈ Rd is the spatial-temporal
embedding vector, K is the number of head for multi-head
attention, α

(k)
t,τ is the attention score between the time step t

and τ for head k , Nt is a set of input time steps, and f (k)0 is
a non-linear projection defined as f (k)0 (x) = ReLU(xW + b)
with learnable parameters W ∈ R2d×d ′

and b ∈ Rd ′

, and
Wo ∈ RKd ′

×d and bo ∈ Rd are learnable parameters. Here,
the attention score α

(k)
t,τ can be obtained as

α
(k)
t,τ =

exp
(
s(k)t,τ
)

∑
t ′∈Nt

exp
(
s(k)t,t ′

) , (12)

where

s(k)t,τ =

〈
f (k)1

([
h(l−1)
i,t , ei,t

])
, f (k)2

([
h(l−1)
i,τ , ei,τ

])〉
√
d ′

(13)

where f (k)1 and f (k)2 are non-linear projections, and d ′ is the
dimension of each head. The gated fusion is implemented to
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FIGURE 6. The GMAN-GNN encoder. The model extracts temporal
features using the self-attention module and spatial features using GNN
modules. It can be regarded as a transformer [61] encoder expanded on
spatial dimension. By excluding the GNN module and making a residual
connection between the input and output of the attention layer, the
GMAN encoder can be transformed into a transformer encoder. The
subscripts t in this figure indicate the graph signals from time step
t − T + 1 to t .

combine the spatial features H (l)
S and temporal features H (l)

T
from the attention modules:

H (l)
= z⊙ H (l)

S + (1 − z) ⊙ H (l)
T , (14)

with

z = σ
(
H (l)
S W z,1 + H (l)

T W z,2 + bz
)

, (15)

where W z,1,W z,2 ∈ Rd×d , and bz ∈ Rd are learnable
parameters, and σ (·) is the sigmoid activation. While the
spatial attention layer to obtain spatial features H (l)

S is imple-
mented in a similar manner to the temporal attention layer in
the original work, we replaced the spatial attention module
with GCN and GAT, denoted GMAN-GCN and GMAN-
GAT (Fig.6). The transform attention layer is implemented
between the encoder and decoder to enable the multi-step
prediction and reduce error propagation in the prediction task.
GMAN can be regarded as a 2-dimensional expansion of the
original transformer [61]. Two parallel self-attention modules
are employed to extract features from both spatial and
temporal dimensions, whereas transformer only considers a
single dimension. To merge representations from two self-
attention modules, GMAN replaces the feedforward layer
in transformer with a feature fusion layer and makes one
residual connection between the input and output of an
encoder layer. For a more detailed description of GMAN,
please refer to the original study [68].

C. DATA
To analyze the performance of each model, we select
four real-world datasets with diverse characteristics, namely,
PeMS-Bay, METR-LA [16],1 Urban-core, and Urban-mix
[31].2

1PeMS-Bay and METR-LA datasets are available at
https://github.com/liyaguang/DCRNN

2Urban-core and Urban-mix datasets are available at
https://github.com/yuyolshin/SeoulSpeedData

PeMS-Bay is a widely used speed dataset for traffic
forecasting collected by California Transportation Agencies
(CalTrans) Performance Measurement System (PeMS). The
dataset contains six months of data ranging from January 1,
2017, to June 30, 2017, with a data frequency of 5 min.
Spatially, 325 sensors in the Bay Area are included.
The dataset examines the model performances for loop
detector-based highway speed forecasting.

METR-LA traffic flow dataset contains data collected
from loop detectors on Los Angeles County highways and
is frequently used in traffic forecasting studies. The dataset
contains 5-min traffic flow data from 207 sensors, from
March 1, 2012, to June 30, 2012. The dataset analyses
differences in model performances on traffic speed and flow
datasets.

For the PeMS-Bay and METR-LA, we followed the
procedures in Li et al. [16] to process the dataset and generate
edges between traffic sensors. We construct the graphs and
build adjacency matrices based on the distances between
nodes and the threshold Gaussian kernel [103]:

aij =

 exp

(
−
d2ij
σ 2

)
, if exp

(
−
d2ij
σ 2

)
≥ ϵ and i ̸= j

0, otherwise

(16)

where dij is the distance between sensor vi and vj, σ is the
standard deviation, and ϵ = 0.1 is the threshold value.
Urban-core and Urban-mix are 5-min speed data for

road segments in the Seoul traffic network. Both contain
information for one month ranging from April 1, 2018,
to April 30, 2018. Urban-core includes 304 records of road
segments in Gangnam, Seoul, one of the regions with the
highest traffic and economic activities in the country. The
road segments have similar structural features, such as speed
limit, degree, and length.

Urban-mix is a spatial expansion of Urban-core and
has road segments with more heterogeneous characteristics.
It contains the inner-city highway connecting the East and
West ends of the city, urban arterials, alleys, bridges, and a
few intercity highway segments. The transportation network
graph of Urban-mix has 1,007 road segments. The edges of
transportation network graphs are set between road segments
that share endpoints.

When the four datasets are compared in terms of
complexity, the highway flow shows higher complexity
than highway speed and urban speed demonstrate higher
complexity than highway data as in Fig. 7. The approximate
entropy values [104] on average are 0.52, 1.20, 1.40, and
1.41 for PeMS-Bay,METR-LA, Urban-core, andUrban-mix,
respectively. Table 2 summarizes the datasets.

D. EXPERIMENTAL SETTINGS
We adopt mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE)
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TABLE 2. Summary of the datasets.

FIGURE 7. One day sample data from different datasets. (a) PeMS-Bay, (b) METR-LA, (c) Urban-core, and (d) Urban-mix. The traffic
flow data (METR-LA) shows higher entropy than traffic speed data (PeMS-Bay), and urban data (Urban-core and Urban-mix) show
higher entropy than highway data (PeMS-Bay).

as evaluation metrics for model performances.

MAE =
1

T ′N

N∑
i=1

T ′∑
j=1

∣∣∣ŷij − yij
∣∣∣ , (17)

RMSE =

√√√√√ N∑
i=1

T ′∑
j=1

(
ŷij − yij

)2
T ′N

, (18)

MAPE =
1

T ′N

N∑
i=1

T ′∑
j=1

∣∣∣ŷij − yij

∣∣∣
yij

, (19)

where T ′ is the total number of predicted time steps, N is the
number of nodes (sensors or road segments), and ŷij and y

i
j are

the predicted and actual values.

We calibrated each model hyperparameters as closely as
that in the original works [29], [55], [68]. We set the number
of hidden units to 64 for GMAN-GCN and GMAN-GAT
and 32 for T-GCN, T-GAT, GWNet-GCN, and GWNet-GAT,
batch size to 32, and learning rate to 0.001. For GAT, the
number of heads and dimensions of each head are 8. The
number of layers for GMANmodels was 3 except for those in
Urban-mix because of memory limitation and GMAN-GAT
in METR-LA because the model failed to converge with
3 layers. A 2-layer model was used in these cases. We trained
the models using the Adam optimizer, and L1 loss function.
The experiment was conducted on a single NVIDIA TITAN
RTX with 24 GB memory (GPU) and Intel(R) Xeon(R) CPU
ES-2630 v4 @ 2.20 GHz (CPU).3

3The source codes are available at
https://github.com/yuyolshin/STTFEvaluation
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TABLE 3. Model performance on traffic datasets.

V. RESULTS AND DISCUSSION
A. OVERALL PERFORMANCE
Table 3 shows the model performances in the four traffic
datasets for 15 min (3 steps), 30 min (6 steps), and 60 min
(12 steps) cases. When combined with the RNN model,
GAT-based spatial feature extraction yields more accurate
results than GCN, except for MAE on the 15-min forecast
in METR-LA. The convolution shows improved predictions
when combined with GCN except for RMSE in Urban-mix
for all prediction horizons. When using self-attention for
temporal feature extraction, GMAN-GAT consistently yields
improved results than the GCN counterpart on at least
one performance metric in all datasets except 15-min and
30-min predictions in METR-LA. Overall, the convolution
models yield the best performance among the comparative
models except in long-term (60-min) prediction in PeMS-Bay
and Urban-core. Although T-GAT produces fair prediction
outcomes, RNN shows no clear advantage over the other
building blocks for temporal feature extraction.

The three temporal building blocks methods show dif-
ferences in the gap between the forecasting accuracy on
the 15-min and 60-min predictions. The RMSE differences
between the two prediction horizons in PeMS-Bay are

70.6%, 63.7%, and 52.4% for the T-GAT, GWNet-GCN, and
GMAN-GAT, respectively. The differences in RMSE in all
datasets are presented in Table 4. The self-attention shows
robust performance against the increase in prediction horizon,
yielding a smaller gap between the 15-min and 60-min
prediction outcomes. This indicates possible advantages for
prediction horizons longer than one hour.

B. PERFORMANCE IN DIFFERENT TRAFFIC CATEGORIES
In this subsection, we analyze the performance of each
model in different traffic categories. We divided the traffic
states into unequal intervals, considering the range and
distribution of each dataset. In PeMS-Bay, we initially
divided the speed data with equal intervals of 10 mph.
However, we merged the five lower speed intervals because
each interval contained few observations, and merged the two
higher speed intervals for the same reason. Since the 60∼70
mph interval included nearly 80% of the data, we divided
the interval into two intervals of 5 mph. Finally, we have
five speed categories in PeMS-Bay: 0∼50 mph, 50∼60 mph,
60∼65 mph, 65∼70 mph, and 70∼90 mph.

Table 5 presents the results of the traffic forecastingmodels
in PeMS-Bay, across different traffic speed categories and
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TABLE 4. RMSE gap between the 15-min and 60-min prediction for all datasets. The attention-based GMAN models show smaller gaps compared to the
other models.

prediction horizons. The best performance is observed in the
65∼70 mph category, which contains the most observations.
In contrast, the largest errors are observed in the 0∼50
mph category, which is furthest from the high-speed, high-
frequency 65∼70 mph category. In categories with over
60 mph, the category-wise errors are smaller than the overall
performance. Similar to the overall performance evaluation,
the twomodels outperform the RNNmodel. The convolution-
based GWNet-GCN achieved high performances in the high-
frequency categories. For 60-min prediction, GWNet-GCN
produces more accurate predictions than GMAN-GAT in
60∼65, 65∼70, and 70∼90 mph categories. In contrast,
GMAN-GAT shows more robust performance across dif-
ferent traffic categories than GWNet-GCN. In PeMS-Bay,
the 0∼50 mph category MAE is 9.9 times larger than the
65∼70 mph category MAE for GWNet-GCN on 60-min
prediction. In contrast, the ratio is 7.9 for GMAN-GAT. The
ratios are 6.9 and 6.4 on 15-min predictions for GWNet-GCN
and GMAN-GAT, respectively. Similar trends are observed
in other datasets. In METR-LA, GWNet-GCN performs
better in high-frequency categories (60∼65 and 65∼75
veh/h), while GMAN-GAT shows higher performance in
low-frequency categories (30∼50 and 50∼60 veh/h). In the
0∼30 veh/h category, the self-attention model performance
decreases, and the convolution model performance improves.
For Urban-core, the distributions are right-skewed as opposed
to highway datasets. Therefore, convolution models are more
effective at low-speed categories, whereas self-attentionmod-
els are better suited for high-speed categories. In Urban-mix,
GWNet-GCN achieves the highest performance across all
speed categories and prediction horizons. The category-wise
performances forMETR-LA, Urban-core, andUrban-mix are
presented in Fig. 8.

We also analyze model performances in conditions where
traffic states experience transitions. We denote the condition
where the speed increases or decreases more than 30 mph
in 90 min (18 time steps) in PeMS-Bay as speed increase
and decrease transitions, respectively, and compare the
60-min prediction results. During transitions, the model
performances differ from the overall performances. Whereas
GWNet-GCN yielded lowMAE andMAPE overall, GMAN-
GAT outperformed GWNet-GCN in all performance metrics
in increasing and decreasing transitions. Table 6 presents

TABLE 5. Performance in MAE by traffic speed categories in PeMS-Bay.
GWNet-GCN presents high performances in high-frequency categories,
while GMAN-GAT performs better in low-frequency categories.

TABLE 6. Prediction results of 60-min during traffic transitions.

the performance of 60-min forecasting outcomes during
traffic transitions for all datasets. The results on the other
datasets show similar trends as for PeMS-Bay. The RNN and
self-attention models show advantages over the convolution
model except in the Urban-mix. The traffic transition
conditions in the other datasets are defined if the states
change by 30 veh/h, 10 km/h, and 20 km/h for METR-LA,
Urban-core, and Urban-mix, respectively.
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FIGURE 8. Performance by traffic flow and speed categories on (a) METR-LA, (b) Urban-core, and (c) Urban-mix. The line
graphs are the MAE of each model in each traffic category, and the red histogram in the background is the ratio of each
category in each dataset. Among the three models, GWNet-GCN achieves the best performance in categories with high
observation percentage, and GMAN-GAT generally achieves the best performance in categories with low observation
percentage.

C. ROBUSTNESS AGAINST OUTLIERS
Another characteristic observed is robustness against outliers
in the labels. As in Figs. 9(a), (d), 10 (a) and (d), RNN
and convolution-based temporal feature extractions show
delayed reactions to outliers, causing large errors within
a few time steps. While GWNet-GCN shows the highest
overall accuracy in most datasets and prediction horizons
as presented in previous sections, the self-attention model
is more robust against outliers than the other models.
In addition, the attention-based GAT models also show more
robustness than GCN models for spatial feature extraction,
as shown in Fig. 11.

D. ADAPTIVE MODEL EVALUATION
The model performance was found to change by traffic state
categories. In this section, we evaluate the models adaptively
by selecting the model depending on the prediction horizon
and traffic category-wise performance on validation sets. For
adaptive evaluation, we first make pseudo-labels Ŷ (p)l for

each prediction horizon l by averaging the two candidate
models, G1 and G2, as follows:

Ŷ (p)l
=

1
2

(
G1(X )l + G2(X )l

)
, (20)

where Xval is the input data of validation sets, and (G(Xval)l
is the output of the model G for prediction horizon l. The
pseudo-labels are necessary to distribute the test sets in which
category they should be evaluated. For each traffic category s,
we compare the loss for the two models and make predictions
Ŷtest l,s as follows:

Ŷtest l,s =


α ∗ G1(X s

test )
l
+ (1 − α) ∗ G2(X s

test )
l

if L(G1(X s
val)

l,Y (p)l,s

val ) > L(G2(X s
val)

l,Y (p)l,s

val )
(1 − α) ∗ G1(X s

test )
l
+ α ∗ G2(X s

test )
l

if L(G1(X s
val)

l,Y (p)l,s

val ) < L(G2(X s
val)

l,Y (p)l,s

val )

(21)
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FIGURE 9. 60-min prediction labels (blue) and outcomes of T-GAT (orange), GWNet-GCN (green), and GMAN-GCN (red)
in METR-LA for sample nodes. In (a) and (d), the RNN and convolution models show delayed reactions to outliers.
While the convolution model shows the highest overall accuracy for 60-min prediction in METR-LA, the attention
model shows more robustness against outliers.

FIGURE 10. 60-min prediction labels (blue) and outcomes of T-GAT (orange), GWNet-GCN (green), and GMAN-GAT
(red) in Urban-core for sample nodes. In (a) and (d), the RNN and convolution models show delayed reactions to
outliers. In Urban-core, the attention model achieves more robustness against outliers compared to the other models
along with the highest accuracy for 60-min prediction.

where α is a predefined value between 0.5 and 1, Y (p)l,s is
the pseudo-label for prediction horizon l included in category
s, and X s is the corresponding pseudo-label Y (p)l,s . For the
final prediction, we calculate Eq. (21) for all categories and
aggregate the category-wise results. In this experiment, α is
set to 0.7. The concept of this adaptive model evaluation
framework is visualized in Fig. 12. The adaptive evaluation
framework achieved higher performance on at least two

performance metrics in all datasets and prediction horizons
as shown in Table 7. For 60-min prediction in PeMS-Bay, the
performance gain is the largest, outperforming the previous
state-of-the-art GMAN and GWNet by 3.7%. When the
Diebold-Mariano test is conducted for 60-min forecasts,
forecasts on 57.5%, 44.4%, 31.3%, and 56.8% of nodes are
statistically significant (α = 0.1) in PeMS-Bay, METR-LA,
Urban-core, and Urban-mix, respectively.
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FIGURE 11. Robustness against outliers by different spatial feature extraction methods. GAT models show more
robustness against GCN models for all T-GCN, GWNet, and GMAN models.

FIGURE 12. Adaptive model evaluation framework. It adaptively selects which model to conduct prediction for different
traffic categories based on the performance on validations sets. As a result, the prediction can be made with multiple
models, improving the utility of each model.

TABLE 7. Performance of adaptive model evaluation framework.

E. DISCUSSION
An extensive and multi-faceted evaluation of six traffic
forecasting models was conducted to characterize and
understand the deep learningmodel building blocks for traffic
forecasting. The convolution models showed the highest
forecasting power overall among the three temporal feature
extraction methods. This supports the current practice in
which most deep learning-based traffic forecasting models
are built with convolution-based temporal feature extraction.

For temporal building blocks, the self-attention models
demonstrate competitive long-term predictions, but the RNN
models show no advantages in any task. The results do not
imply that convolution and self-attention are superior to RNN
but that they have clear advantages over RNN in traffic
forecasting. When pairing the spatial and temporal feature
extraction methods, improved performances are noticed
when convolution is combined with convolutional GNN and
self-attention with the attentional GNN except in METR-LA.
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We infer that these paired methods are similar in extracting
information from input data.

Further assessments reveal that the models show differ-
ent performance sensitivity to traffic state changes. The
convolution model performed well in high-frequency traffic
categories, and the self-attention model showed robust
performances even in low-frequency traffic categories and
with outliers. In addition, during the traffic transitions, the
self-attention, and RNN models show advantages in long-
term prediction. The attention-based methods in spatial
and temporal dimensions demonstrated improved robustness
with outliers. Overall, the convolution model achieves more
performance gain for the short-term (15-min) prediction
and high-frequency traffic categories. In contrast, the
self-attention model has more advantages in prediction for
less-informed conditions such as longer prediction horizons,
low-frequency traffic categories, and outliers.

In addition, we suggest a framework that adaptively selects
a model for each category to make predictions based on the
validation set performance. The results reveal that the simple
implementation of an adaptive evaluation framework could
improve the performance of the previous state-of-the-art by
3.7% at most. This framework enhances traffic forecasting
performance using the existingmodels rather than developing
more sophisticated models.

VI. CONCLUSION
In this study, we investigated the characteristics and evaluated
the performance of building blocks of spatial-temporal deep
learning models for traffic forecasting. We implemented six
spatial-temporalmodels using two spatial building blocks and
three temporal building blocks and conducted a multi-faceted
experiment analyzing the overall performance, category-
wise performance, and robustness against outliers. The
models were tested on four real-world datasets with diverse
transportation networks. While GWNet-GCN demonstrated
the most accurate overall performance in most datasets
and prediction horizons, GMAN-GAT showed a similar
performance level with GWNet-GCN for 60-min prediction
in PeMS-Bay and outperformed GWNet-GCN for 60-min
prediction in Urban-core. Further investigations revealed
that the self-attention model had stronger robustness against
data imbalance and outliers than the RNN and convolution
models. GAT models showed more robustness than GCN
models amongst spatial feature extraction methods. Finally,
an adaptive model evaluation framework demonstrated the
enhanced performance of the existing models without
sophistication in model architecture.

In the future study, we aim to expand the scope of this
comparative study on building blocks to include sensitivity
analysis of the hyperparameters and impact analysis of
different input features such as daily and weekly trends,
and multi-channel inputs. Also, revealing characteristics of
additional spatial feature extractionmethods such as diffusion
convolution [16], traffic graph convolution [15], and adaptive
graph convolution [44], [55], [57] can be another objective.

Sophisticated state-of-the-art models could be investigated
to discover whether the model characteristics would persist.
Explainable artificial intelligence techniques [105], [106]
could also be adopted to explore the deep learning-based
traffic forecasting model characteristics. These techniques
have been rarely used in traffic forecasting studies [107]
and could give a new direction if implemented appropriately.
Moreover, the adaptive model evaluation framework will be
refined to include predictions during transition states and
against time-series anomalies.
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