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ABSTRACT The concept of smart cities is unique where the intelligent information technologies have
used to form a heterogeneous with the help of edge and fog networks. Edge Computing (EC) has gained
attention due to its distributive nature that brings computing resources closer to user devices for fast data
communications. These networks are vulnerable to a variety of cyber threats due open network design and
architecture and a lack of trusted computing resources. The Denial of Service (DoS) and Sybil attacks are
common in these networks and cause of services degradation.Whereas in a Sybil attack, a node illegitimately
claims multiple identities and escalate and launch more attacks in the networks. Identification and detection
of malicious nodes and evaluating their trustworthiness is a challenging task. This paper proposes a novel
Assertive Trust-based Efficient Technique (ATBET) for edge-based smart city networks by calculating
the direct, indirect, penalized and cumulative trust. The trust is evaluated by using packet drop rate and
the penalized over the transmission paths. The proposed solution detects the attacks and eliminates the
malicious or selfish nodes from edge-based networks. The experiment results are conducted in simulation
and compared proposed solution with state or the art solutions in terms of trustworthiness level, latency,
packet delivery ratio, and network life span.

INDEX TERMS Sybil, trust, DoS, direct trust, indirect trust, cumulative trust, total trust, assertive trust,
smart city networks, edge computing.

I. INTRODUCTION
Smart cities are based on new integrated Information and
Communication Technologies (ICT) for more feasible, eco-
nomical, and sustainable services. Cities have been changed
from traditional communication systems to new advance inte-
grated systems such as smart grids, smart homes, healthcare,
intelligent transportation systems, and other smart computer
technologies [1]. This concept has strengthened the datamon-
itoring, managing, recognizing, and analyzing processes. All
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data communication processes in smart systems are depen-
dent on local security measures by using appropriate security
methods. These methods secure the devices from unautho-
rized access and direct or indirect harm [2]. Likewise, Edge
computing (EC) networks are used to enhance computa-
tional capabilities and provide cost-effective and convenient
services for the users. EC entails faster and greater data col-
lection and provides better services for the users. Companies
have adopted EC networks due to the provision of resources at
the edge for quick processing. The EC networks also organize
75% of data at the edge side with low latency services and
reduce the computational stresses of cloud servers [3]. Due
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to several new security threats, EC devices are vulnerable
and compromised due to insufficient design and a lack of
trusted computing methods and lead to several data leaks,
rogue infrastructure, software and ICT based attacks [3].
The basic purpose of any security mechanism is to detect,
prevent, and recover networks from malicious attacks. The
security mechanism must fulfill the security requirements in
terms of Confidentiality, Integrity, and Availability (CIA).
The dynamics of EC-based smart city networks possess new
requirements and considerations for network security [4].
Dijkstra’s algorithm is used for pathfinding where nodes

transfer their data to neighbor nodes and considering them
trustworthy [5]. This type of solution reduces network delay,
increases network lifetime, and improve energy efficiency.
However, the weakness of these solutions is that they possess
a high false positive rate and low detection accuracy rate
for malicious nodes. The trust calculation is done through
the trust metrics which depend on the threshold and identi-
fication of the secure paths. Most of the time, the solutions
do not consider energy consumption and are prone to a
high rate of Distributed Denial of Service (DDoS) attacks
[6]. In DDoS, an attacker takes control of a tenant’s virtual
machine and disables another’s web server [7]. These types
of solutions are also unable to detect and eliminate multiple
malicious nodes in one iteration which makes it vulnerable
to attacks. These limitations lead to high computational com-
plexity and bandwidth consumption. The existing networks
have faced various challenges such as more computational
power, utilizing resources in bulk, and consumption of high
communication and storage resources. There is difficulty in
detecting, identifying, and recovering malicious nodes and
evaluating the trust among nodes for secure data transmission.

Sudden performance degradation of edge devices causes
system collapse and makes the services inaccessible, lead-
ing to information breaches. These networks face various
other external attacks like Sybil, impersonation, reflection,
and physical attacks [5]. Malicious nodes in the network
vary their behavior from time to time. It drops data pack-
ets and sometimes generates higher data delivery rates [8].
In a Sybil attack, an adversary tries to make a large num-
ber of nodes which operate as different nodes and may
or may not be produced randomly [9]. To address these
issues, there is a requirement to build a safe, resilient,
and detection-efficient technique for dealing with malicious
nodes in the network against cyber-attacks. Existing trust
evaluation and security solutions are not up to the stan-
dard to defend against recent internal and external threats
because these models are adopted as monitory measures
against probable internal/external attacks [8], [10], [11]. The
security-based evaluation approaches must provide depend-
ability and usability. If there is a hostile node, it may launch
more attacks to render the network vulnerable. To improve the
node’s degree of confidence in the network, a trust evaluation
strategy is necessary. The existing solutions have suffered
with high false positive rate and low detection accuracy rate
for malicious nodes. The existing solutions also suffered

with complexity issues due to intricate algorithms and poli-
cies which are challenging for administrators to configure
troubleshoot. The trust based mechanism consume signifi-
cant computational and network resources especially when
the malicious activities exist in networks and lead to high
operational costs and potential bottlenecks in network per-
formance.

This paper proposes an Assertive Trust-based Efficient
Technique (ATBET) to handle the identification, detection,
and separation of malicious and selfish nodes from trust-
worthy nodes under the DoS/DDoS, Sybil, On-Off, Bad
Mouthing attacks and computes trust evaluation metrics. The
proposed solution is using assertive trust mechanism that
detects more than one cyber attack and also the malicious
nodes prevailing in the network in one iteration. It also
detects and notifies more than one category of malicious
nodes like Sybil and DoS during performing the registration
in the network and also during data processing. The proposed
technique applies complex trust tentacles to achieve better
data threat detection accuracy and achieve the best worth-
while path. It increases the impact of the secure channels and
enhances the security and Quality of Service (QoS) provi-
sions in the smart city scenario. The other objectives of this
paper are as follows:

• To develop a trust-based mechanism for trust evaluation
of edge devices by identifying, notifying, and locating
the malicious nodes.

• To distinguish the trust in inter-edge devices scenario
using direct, indirect, penalized direct trust, cumulative
trust, and total trust by using the trust threshold.

• To detect of malicious and selfish nodes from trustwor-
thy nodes under the DoS/DDoS, Sybil, On-Off, Bad
Mouthing attacks and computes trust evaluation metrics.

The rest of the paper is organized as follows: Section II, dis-
cusses the literature review to find the problem background.
The design and development phases of the proposed solution
are discussed in Section III. Section III-A3.a contains dis-
cusses the findings and discussion. The paper concludes with
future direction.

II. RELATED WORK
Authors in [12], evaluated the nodes’ reliability and trustwor-
thiness in a distributive manner. The authors also proposed a
recommendation-based trust model to investigate the nodes
and share their trust tables regularly in the network. Node’s
trust values are obtained from neighbor nodes with a lower
trust score. In an Internet of Things (IoT) network, a node
updates trust scores by adding past trust scores to filtered
trust weights and comparing the results to the Direct Trust
(DT) value of the evaluating node. Based on the trust levels in
the surrounding area, it relies on weight recommendations for
trust evaluation to distinguish between malicious and honest
nodes. It uses a technique that matches the examining node
suggestion while seeking out differences between these rec-
ommendations, which is vulnerable to concerted attacks. This
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strategy uses a theory-based trust detection methodology in
the cloud, and it employs weight scores based on the service
requests of adjacent nodes. Its advantage is that it formulates
a generic framework for trust management that evaluates
participating nodes’ trustworthiness. However, the commu-
nication objects are avoided in diverse networks in this
technique. Perhaps the approach is kept unverified against
scalability to heterogeneous environments. It is unsuitable for
EC networks, especially where mobility is required. It has
moderate detection accuracy but has a loophole of detecting
only a few types of IoT internal/external attacks such as Bad
and GoodMouthing, DoS, Selected Forwarding, and On-Off.
However, no external attacks are considered.

Authors in [13], proposed a remote attestation technique
that depends on a trust mechanism-based cloud to certify
network authenticity and enable credible access management
among devices. This kind of technology ensures the node’s
credibility during data transmission over the internet in a
secure network environment by enabling dependable con-
nections between terminals and commanding server nodes.
It tells the verifying node about the evaluator node’s relia-
bility. After receiving it, the authenticating node checks the
status to make sure the sender is reliable and to see if the
pertinent nodes adhere to the communication standards. This
technique counters the Replay and On-Key attacks using
authentication and identity-based methods. This technique
is scalable and context-oriented to calculate trust level. The
nodes intentionally behaving maliciously are used for cal-
culating trust levels. This system improved the objectivity
compared to threshold models, but it increased the overhead
of the system.

Authors in [5], proposed a Activation Function-Based
Trusted Neighbor Selection (AF-TNS), to identify malicious
nodes by using dual and single-based link technologies.
Nodes with dual links are more dependable, trustworthy, and
secure. It emphasized trust by calculating trust using weights
to identify malicious nodes. To accomplish this, each sensor
node records its local vicinity and sends the results to the
cluster for data aggregation. Then, using the majority voting
mechanism, the trustworthiness of corresponding readings
is measured as weights for significantly detecting hostile or
selfish nodes. This solution is unsuitable for real-time or
dynamic networks due to its single function.

The quantitative Trust Assessment (QTA) technique was
proposed in [14] by using a Bayesian method. Trust mea-
surements used are DT rate, statistical trust rate, and
suggestion-based trust rate. Four phases are used to determine
trust to identify and remove the malicious nodes from the
network. Every node has the experience, knowledge, and rec-
ommendation to calculate the trust score and then permits the
nodes in IoT-based networks. A Bayesian-based technique
is employed in the parent node for trust calculation. This
technique counters generic cyber-attacks along with direct
attacks. This technique is scalable for adopting more IoT
devices andmore data it is energy efficient and suitable for the

EC networks. However, it does not perform well on dynamic
and real-time trust analysis. Hence it can only be performed
in a static environment. It possesses high false rates and also
has a low detection rate in real-time analysis.

Authors in [15], presented the RealAlert policy-based
sensing technique for IoT-based networks. This technique
evaluates the node’s trustworthiness by using inconsistent
network knowledge and contextual information. The trust-
worthiness of various devices in various circumstances is
assessed by using policy foundation rules. Any new devices
that appear with distinguishing features, bearing distinctive
characters, or connecting differently are typically interpreted
as an attack by a malicious or self-centered user who is
maintaining an obsolete policy. It uses an approach based
on network policy to prevent bad-mouthing and On-off
attacks on IoT networks. This three-phased scheme detects
malicious nodes that cannot provide services or computing
resources to other network nodes. It only considers direct
recommendations for trust calculation. It does not consider
indirect recommendations and the context of service for cal-
culating trust scores. However, this solution produces high
false-positive rates and high latency rates.

Authors in [16], proposed an active trust acquisition mech-
anism to identify nodes’ credibility and data collection
reliability at a low cost. The receiver node sends informa-
tion back to the sender node to confirm whether the packet
is received or not. Information of multiple nodes at the
same time reduces energy costs. Encoding of the verification
explains which packet is received. The feedback mechanism
of data routing increases trust evolution accurately and is
swift. It is a robust technique that detects malicious entities
having a higher deception prevention rate. It is a robust
technique that quickly detects malicious nodes and has a high
deception prevention of malicious node behavior. It updates
latency due to Proof-of-Work and Proof-of-Stack. It counters
black hole attacks only. However, this solution has low traffic
prediction and detection accuracy not reported to the central
node.

Authors in [17], proposed a Cipher text-stealing (in the
case of any brief final layout data block) and Error Control
Mechanism (LETCE), solution. In this solution, man-in-the-
middle attacks related to unauthorized access are dealt with
by using AES encryption with an error-control algorithm.
Data is divided into blocks using Extended Tweaked Block
Chaining (X-TBC) and each block is encrypted. X-TBC has
a recursive nature, and each block depends on the previous
block for encryption. The original layout is deleted from the
computer if an attacker gets access to the computer; only an
encrypted graphical design systems file is found. Only parties
with the secret key can decrypt to attain the original graphical
design systems file. It uses an activation technique with an
error control mechanism. It exposes malicious nodes based
on authentication-based trust values and, further, after iden-
tifying such isolates them over a network. However, a single
activation function calculates trust levels in the unidirectional
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communication network. It does not employ the data aggre-
gation method for trust calculation and leads to high false
detection rates and low accuracy detection.

Authors in [10], suggested a useful trust assessment tech-
nique named the Belief-based Trust Evaluation Mechanism
(BTEM). It reduces internal security threats in Wireless Sen-
sor Networks (WSN) by raising the bar for trustworthiness
and dependability in data communication. The main fac-
tor considered when evaluating each communicating node
is to check the effectiveness of malicious node detection.
Each node uses more energy during the trust calculation
method since this protocol focuses on high communication
success rates. Eliminating rogue nodes and identifying DoS,
defamation, and on-off attacks creates a safe connection
between nodes. Values for Direct Trust (DT) Indirect Trust
(IDT) and Recommended Trust (RT) are computed by using
Bayesian estimation. The collected data is evaluated before
identifying the malicious nodes and ambiguous data. The
proposed framework uses three modules: firstly, the traffic
monitoring module perceives the neighboring node based on
its forwarding behavior by sending requests and response
packets. Secondly, the trust evaluation module calculates DT
and RT based on previous node interactions. Thirdly, the
decision-makingmodule compares the trust level of the nodes
to the threshold values and excludes the malicious nodes.
Simulation results showed a decrease in the delay and reduc-
tion of data throughput in detecting malicious nodes by using
BTEM.

Authors in [18], proposed the trust mechanism routing
protocol for Low power and Lousy Networks (LLN). The
CTrust-RPL model is based on three layers: device, sink, and
control. The device layer comprises sensor nodes and actua-
tors. Nodes are not only sensing data from surrounding but
also sensing data from neighboring devices in idle time and
checking if the node in forwarding received data correctly and
timely andmarking it as a positive or negative node according
to its behavior. The sink gets data from the device control
plane and forwards it without processing. The device layer is
provided with trust values obtained from the control layer.
This layer’s primary function is to propagate trust scores.
The control layer calculates, accumulates, and updates trust
values. Complex calculations of trust assessment are done
to minimize computational, memory, and energy overload.
This technique is resilient to bad-mouthing and advanced
attacks in the IoT. It performs well when 40% of malicious
nodes exist in the network, and it isolates them and gets
disconnected through the sink node. It is efficient and has a
high detection rate. However, once malicious nodes increase
the precision & recall scores it cannot detect the node as a
malicious node. It has high computational complexity and
leads to more energy consumption issues.

The authors in [8], presented a novel Cumulative Trust
(CT) and proposed an Analysis-based Economic Technique
(CTBET) by focusing on multiple aspects of implementation
and governance of safety in edge-based IoT networks. It is
based on CT, DT, and IDT values of the available chan-

nels between the sender and receiver nodes. It calculates
direct and IDT from corresponding nodes after focusing on
packet transfer and drop rate. It imposes proper procedures
for implementing the trust mechanism to improve the node’s
security and data privacy. It is capable of handling On-Off,
DoS, and Bad-Mouth attacks, as well as isolating malevolent
nodes in the network. A threshold is set according to which
the normal, hostile, and selfish nodes are detected. Malicious
nodes are isolated from a path, updated the routing tables.
System performance is assessed by using a simulator which
proves the metric node’s life span. The nodes became more
reliable, and the data delivery ratio improved i.e. metrics level
of trustworthiness and data delivery ratio have increased.
Furthermore, the end-to-end delay is decreased. This solution
has achieved high detection accuracy, high end-to-end life
span, and cost-effectiveness. However, the security calcula-
tion is done through the trust metrics where the identification
of the secure path is not considered and leads to energy
consumption, high computational complexity, and too much
bandwidth.

Authors in [19], presented a Blockchain (BC)-based
Multi-mobile Code-driven Trust Mechanism (BMCTM). Fog
Computing (FC) requires a distributed mechanism to assure
data security, privacy, transactions, and trust. The BC technol-
ogy provides a security solution for IoT systems. Consensus
runs among fog nodes for adding a new communication node
into a network or to detect a compromised and malicious
node and isolate it. The proposed system is based on two
main layers; the device layer containing sensor nodes that
communicate to exchange data to accomplish the desired
task and the fog layer comprising fog nodes responsible
for managing sensor nodes. A subjective Logic Framework
(SLF) is implemented to calculate trust value. Compromised
nodes are restricted and cannot update or edit the trust value
of a trusted node. It uses subjective logic to counter the Grey
and Blackhole attacks. It adopts an Open-source distributed
trust management simulator where data is provided in CSV
format for detailed analysis. Despite a high detection rate
and good QoS management, this technique cannot be applied
to other trust management attacks like ballot stuffing, and
badmouthing. Moreover, it only considers direct observations
to compute trust and does not consider the QoS factors to give
real-time trust scores.

Authors in [11], presented the Path Association-based
Trust Management (PATM) scheme for the IoT networks.
It is a trust management scheme that considers the history
of the link in the routing path from source to destination
while weighing the trust values of a given node. The node’s
trust value corresponded to the trust value of the link from
another node to that node. A link is discouraged from being
selected as part of a routing path if the history of the routing
path selection suggests its active selection. To achieve this,
the node DT value is weighted accordingly. The greater the
number of link selections in the previous cycles, the lesser
the weight given to the DT value of the corresponding node.
It aims to prevent the trustworthy nodes from overloading
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and protect them from potential DoS attacks. However, a high
false detection rate is observed in the first iteration.

Authors in [20], proposed a LightTrust management solu-
tion for Industrial IoT networks. LightTrust uses a centralized
trust agent to create and execute trust certificates that allow
nodes to communicate for a specific period without the need
for an execution trust calculation. To keep the current trust
level of aggregation/propagation, the trust agent has addi-
tionally kept a trusted database. The system handles trust
certificates without doing trust assessments to interchange
services across devices. This approach quantified additional
direct trust findings in terms of collaboration and compatibil-
ity. However, IDT is seen using trust recommendations. For
small cell networks, this technique provides a distributed fed-
erated trust algorithm based on merge-splitting criteria. The
trust connections between small cell networks are described
by the definitions. This connection is made possible through
a network of social trust, which is determined by determining
the shortest path.

Authors in [21], proposed Trust2Vec as a trust management
solution for extensive IoT networks. Large IoT systems can
manage trust relationships with the system’s help, and mali-
cious device assaultsmay beminimized. It employs a network
structure to establish trust between devices, and one of its
most important phases involves to identifying the device and
creating random walk algorithms. It uses trust connections in
clusters to find malicious nodes. The fundamental innovation
of the proposed system is a random-walk algorithm for nav-
igating trust connections and a parallelization approach for
attack detection. It uses a random-walk mobility technique to
navigate trust connections and a parallelization mechanism to
identify attacks. It is possible to expand the jobs by adding
the TM for data entities. In this technique, the large-scale
attacks against the trust launched by several hostile units are
repelled by it. To recognize attacks like self-promotion and
defamation, authors offered an embedding population identi-
fication approach that recognizes and blocks communities of
damaging nodes.

A. DISCUSSION AND FINDINGS
Various security schemes and solutions, including cryptogra-
phy, authentication, and trust evaluationmechanisms, provide
a certain level of security. Still, they lack true identification
of threats within the network due to weak design and high
computation complexities. Most techniques [16], [17], [18],
[19], [20], [21] do not emphasize DT and IDT based on
true network factors and possess increased communication
and computational costs. Hence, PATM [11], CTBET [8] and
BTEM [10] are effective for data integrity, using DT and
IDT methods considering essential network metrics serving
as a foundation for the proposed trust evaluation scheme at
edge nodes. This paper attempts to improve the security flaws
of these studies and offer optimal robust and more secure
solutions than these protocols. The solution will include an
effective trust evaluation mechanism at edge nodes to ensure

data integrity, usability, and secrecy by evaluating DT, IDT,
CT, and AT based on real-time complexity considerations to
identify selfish and malicious nodes. From problem investi-
gation, it is learned that different researchers in the field of
EC and Smart city networks promote the lifespan of edge
nodes and provide countless security but almost all schemes
are vulnerable to two or more attacks. These techniques
discussed in the literature review face challenges as all require
highly complicated computational power, utilize resources
in bulk, and consume high computation/communication and
storage resources to statically detect, identify, and recover
malicious nodes while countering external attacks and trust
evaluation, among nodes for secure data transmission against
internal/external attacks. Edge nodes are small, lightweight,
resource-restricted, and possess low computational power.
Hence, such technical limitation makes them unsuitable for
relying on several security mechanisms in trust and authenti-
cation. Despite being lightweight, some schemes offer static
time solutions but compromise on the intensity of secu-
rity. Hence, a real-time, advanced, and intelligent system to
tackle these threats/attacks and protect smart city networks
through the implementation of trust evaluation technique
for inter-node communication in edge-based smart cities to
maintain a steadiness between resource efficiency, power
computation, dynamicity, and security standards.

III. PROPOSED ASSERTIVE TRUST-BASED TECHNIQUE
This section elaborates proposed Assertive Trust-based Effi-
cient Technique (ATBET) to handle the identification, detec-
tion, and separation of malicious and selfish nodes from
trustworthy nodes under the attacks DoS/DDoS, Sybil, On-
Off, Bad Mouthing and computes trust evaluation metrics.
It calculates the assertive trust based on direct/indirect inter-
actions, employs penalty to enhance trust, processes Total
Trust (TT) to identify malicious /selfish nodes, and notifies
other network nodes to update their routing tables and remove
malicious nodes from the network.

A. COMPONENTS OF ATBET
ATBET is a trust management scheme that calculates a given
node’s trust values, considering the association history of its
connectivity in the network’s routing path from source to
destination. The purpose of ATBET is not only to prevent the
trustworthy nodes from being attacked and overloaded but
also to protect them from potential DoS, DDoS, and Sybil
attacks which makes them creating a flooded situation over
the network and also a breach of sensitive information being
transferred to the outside world, especially to hackers. The
node’s trust value corresponds to the trust value of the link
from another node in the network to that node. A link is
discouraged from being selected as part of a routing path if
the history of the routing path selection suggests its active
selection. The edge node’s Direct Trust (DT), Indirect Trust
(IDT), and Cumulative Trust (CT) are weighted accordingly.
Each node checks its successor node for connection to the
destination node by sending ‘Hello’ messages. In case of
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no direct connection to a destination node, successor nodes
search their successor nodes for the link with the destination
and routing table maintained.

Figure 1 illustrates connectivity among edge nodes, from
transmitter to receiver. nodes that are not linked to another
node are unable to communicate directly. The nodes’ trust
values determine the routing choice from source to desti-
nation. Beta reputation-based systems calculate node trust
value.

FIGURE 1. Network topology.

The probability density function of future events as a func-
tion of previous observation is known as reputation. Based
on historical trust values, trust-based systems employ rep-
utation models to calculate the predicted value and assess
the node’s belief in the other node. Due to the inference
of previous knowledge in posterior behavior prediction, the
beta reputation model effectively calculates the node’s trust
compared to the statistical models because of the inference of
prior information in posterior behavior prediction. Reputation
depends upon cooperative or non-cooperative transactions
among nodes.

1) TIER 1: ATTACKING MODEL
Sybil, DoS, DDoS, On andOff, and the BadMouthing attacks
are considered. In a DoS Attack,data in bulk is forwarded
by malevolent and selfish nodes, putting a strain on the
network resources handled [22]. Further, DoS is launched
through power depletion, in which the intruder constantly
demands packets from the nodes that intend to exhaust their
battery life [23]. In a DDoS attack, a group of nodes act
maliciously and block and jam the network. In a Sybil attack,
a single node assumes many identities to control other nodes.
An adversary’s duplication of edge nodes is known as a node
replication attack [24]. In a bad-mouthing attack, a node
gives the network’s neighboring nodes incorrect values and
recommendations. Collecting IDT via DT of neighboring
nodes is identified by communication parameters and miti-
gates this attack bymonitoring packet loss and delaying rates,
end-to-end latency, and trustworthiness level [25]. In a Replay
attack, nodes replay old data obtained by any node, get a
timestamp, and the nodes reject all messages arriving after

TABLE 1. Various scales of trust measurement.

a certain duration. This duration is a transmission time, the
maximum time the node takes to send the data. In an On-Off
attack, node behaviors are corrupted and provide unusually
erroneous DT values to mislead the communicating nodes
bearing malicious intent to create a network blockage. It is
mitigated by employing network lifetime span, level of trust-
worthiness, time-oriented packet delays, data drop rate, and
data rate characteristics. For miscellaneous like in conflict-
ing behavior attacks, malevolent nodes behave inconsistently
with other network nodes, causing other nodes to provide
contradicting suggested trust levels for the targeted node.

In this network, malicious, bad, and selfish nodes are
kept static, capable of maligning the behavior of neighboring
nodes within the range of communication. The attacking
model avoids sending and forwarding data to the relevant
nodes and occasionally creates data flooding commands with
the bulk ofmessages or retransmits the same bulk ofmessages
to the targeted nodes to cause network link failure.We assume
that X(n) represents the node’s behavior as a random variable.
A malicious node is identified by frequent retransmission,
flooding, and packet loss:

X (n) =


1, if n relays packet where n ϵ N
0, if n drops packet
−1, if n compromise packet

3 States (Drop/Data rate) = −1/0/1

(1)

Different scales are used for trust measurement as shown in
Table 1 [26].
The values of edge nodes are calculated in each iteration

of the trust evaluation mechanism in which the commu-
nicating nodes assign the values to trust variables. During
trust evaluation, if trustworthy communication is detected
with collaborating nodes then depending upon the level of
trustworthiness a trust score from 0.5 to 1 is assigned where
1 is notified as a fully trustworthy interface. Correspondingly,
once a malicious node is detected in the neighboring nodes,
the trust-seeking edge node assigns a trust score between 0 −
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0.4 where 0 is considered a fully malicious interface whereas
0.4 donates a low middle level of mistrust. Trust scores are
assigned to trust variables that are considered for the calcula-
tion of direct, indirect, penalized, cumulative, and total edge
node trust over another corresponding and collaborative edge
node. Therefore, using total trust computation, malicious and
non-malicious nodes are classified based on the interactions
between each internal and exterior edge node [26].

a: NODE RELAYING OR RETRANSMISSION
Nodes that possess forwarding and relaying rates not exceed-
ing 0.5 are highly dependable when it comes to communica-
tion, whereas nodes crossing this threshold may be viewed as
malevolent or selfish causing their status to switch to 1.

b: NODE DROPPING PACKET
A node can be considered malevolent or selfish when its drop
rate exceeds 0.5 and its corresponding X(n) state is set to 0.
Communication can be done safely with nodes whose drop
rates are at or below 0.5 since they are deemed dependable.

Attack models for trust assessment are used to identify
malicious, compromised, selfish nodes capable of manufac-
turing and flooding bogus traffic throughout the network
and generating inaccurate trust values for malicious nodes.
Trust models are invented and built to improve and update
application security. Nodes, trust values, data items, and the
attacking and evaluation model are constantly threatened by
adopting attack types and related protection resiliency.

2) TIER 2: TRUST AND BEHAVIOR ANALYSIS MODEL
This tier deals with monitoring the data packet transmis-
sion/reception on multiple nodes. This tier is also recording
the behavior of nodes in terms of data rate/throughput, as well
as packet loss rate. Each node has a packet profiler that
records each node’s behavior and crucial Information Packet
Traffic (IPT) information. Furthermore, the examination of
the trustworthy data transfer path. Here, direct and IDT are
computed, and the two are combined to form forceful trust
i.e. AT(IDT,DT,CT,TT) BET.

a: ESTIMATION OF THE NODE’S TRUST
The trustworthiness of corresponding and neighboring nodes
is estimated based on data rate and packet drop rate in a
real-time domain. It evaluates the CT of participating nodes
by considering the node’s IDT as well as DT values, the
record and profile of IPT created and stored at each node,
and shared among each other in a specific time interval. This
is composed of various types of packet information such as
several Packets Sent (PS) from the transmitting node, Time
taken during Packets Sent (TPS) from the transmitting node,
and several Packets Received (PR) at the receiving node.
The trust levels of nodes influence routing choices from
the source to the destination. Beta reputation-based systems
calculate a node’s trust. The probability density function of
future events as a function of historical observation is called
reputation (R). Predicted value and node’s belief on other

nodes are calculated by reputation models in trust-based sys-
tems by using past trust values. The beta reputation model
effectively calculates the trust value of the nodes compared
to the simple statistical models because of the inference of
prior information in posterior behavior prediction. R depends
upon cooperative or non-cooperative transactions among the
nodes. Network topology is shown in Figure 2.

FIGURE 2. Initial stage for ATBET.

Trust establishes the reputation through an assessment
based on the network traffic parameters. Trust is a belief
or confidence in the reliability, integrity, and honesty of
a person, organization, or entity. It is the willingness to
rely on someone’s actions, decisions, and promises with the
expectation that they will act responsibly and dependably.
Reputation is the collective opinion or perception that others
have about a person, organization, or entity based on their
past actions, behavior, and interactions. It is an evaluation of
the trustworthiness, credibility, and competence of that entity.
Overall, trust and reputation are intertwined, and a positive
reputation is often the result of earning and maintaining trust
through reliable and ethical actions. Strong trustworthiness
fosters a positive perception and can lead to various benefits,
while a lack of trust can be detrimental to an individual’s
or organization’s standing in the eyes of others. Trust esti-
mated based on the QoS parameters identifies the real-time
trust established hence the trust creates reputation through
parametric estimation of any node through direct and indirect
estimations.

The risk of cooperation and noncooperation amongst nodes
varies from 0 to 1. Value 1 symbolizes the most coopera-
tive behavior, though value 0 represents the minor collective
behavior. A Bayesian framework revises transaction ratings
[27]. A Beta probability contains a density function repre-
senting binary event distributions of likelihood. It offers a
sound mathematical basis for integrating comments and rep-
resenting the system nodes’ reputation scores. The advantage
of the Beta reputation model is flexibility, simplicity, and its
foundation in the statistics theory. A and β represent the
two binary functions. The value of beta potability is always
between 0 and 1 [11]. Reputation (C) or Probability (p) of the
behavior of node B for node A is expressed as Rab = P =

Beta (α+1,β+1).
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In Equation 2, the Partial Trust (PAT) trust value of node
B is calculated by node A as equal to E(p) / E(Rab) or expec-
tation of probability of behavior. A is the number of cooper-
ative transactions, and β is the number of non-cooperative
transactions between the nodes. Every node in the sys-
tem saves the number of cooperative and non-cooperative
attributes of a reputation for all its successor nodes from
source to destination in its memory for each interaction [6],
[11].

PAT ab = E (p) = E (Rab)Beta (α + 1, β + 1)

=
α + 1

α + β + 1
+

(α − 1)
α2 + β2 + 2

(2)

DT is investigated and established between directly con-
nected nodes from node S to 3 and S to 2, based on various
network traffic metrics/analytical parameters between var-
ious destination and intermediate nodes. These analytical
parameters are defined as:
a. PR (Packets Received): Total number of packets a recip-

ient node receives.
b. PS (Packets Sent): Total number of packets a transmit-

ting node sends.
c. TPR (Time of Reception of Packets): Duration of a

receiving node’s packet reception from a transmission
node.

d. TPS (Time of Sending of Packets): Time taken to send
or forward packets to the receiver.

e. PDR (Packets Drop Rate). The proportion of packets
lost while transmitting from one node to another, i.e.
from transmitter to receiver.

f. PDtR (Packets Data Rate). A total number of packets
exchanged in a given period across a single node-to-
node link.

g. Communication Trust (COT). The ratio is the expected
value of the probability distribution describing the rep-
utation of communication between two nodes.

h. Data Trust (DAT). The ratio is the probability distri-
bution’s expected value describing the data’s reputation
between two nodes.

Communication Trust (COT) depends upon cooperative or
non-cooperative communication between two nodes. Attacks
on communication, such as selective forwarding attacks,
make the nodes act less cooperatively. Using the beta dis-
tribution, one may forecast cooperative and non-cooperative
behavior between nodes in time T which is given in
Equation 3. In this equation, αc is the number of cooperative
communications and βc is the number of non-cooperative
communications between nodes. The αc increments by 1,
with each cooperative communication, and βc increments
by 1, with each non-cooperative communication between
nodes [6].

COT ab = E (p) = E(Beta (α + 1, β + 1))

=
αc+ 1

αc+ βc+ 1
+

(αc − 1)
αc2+βc2 + 2

(3)

In Data Trust (DAT), if the nodes are operating in a
normal scenario, the perceptual information in the neigh-
borhood nodes stays constant and consistent. Data follows
Gaussian distribution. Data attacks compromise the nodes by
significantly differing data in neighborhood nodes. T-test is
performed for each 1t in T time to check whether the data
sequences of two nodes A and B are from the same population
or not. The similarity of data is checked by giving a threshold
value ρ = 0.05 in the T-test. If the result of the hypothesis is
less than 0.05, then the data is significantly different in nodes.
DAT is calculated by using beta distribution in Equation (4)
[10], [11].

DAT ab = E (p) = E(Beta (α + 1, β + 1))

=
αd + 1

αd + βd + 1
+

(αd − 1)
αd2+βd2 + 2

(4)

In Equation 4, the αd is the total number of times data is not
significantly different, and βd is the number of times data is
quite different between nodes. αd increments by 1, each time
the perceptual data is not significantly different between two
nodes, and βd increments by 1. These factors are used to build
trust and analytically evaluate the inter-node relationships’
trustworthiness. Path Detector (PD) is a structure that keeps
track of the node linkage entries. Each node’s trust value is
computed for determining DT by using path linkages from
PDs. The packet information profiler analyzes and records
analytical parameters and trust contributing parameters. The
IPT data structure contains the true behavior based on the
analytical parameters at each node. S assesses the trustwor-
thiness of nodes 2, 3, and 4 based on their packet data rates
and packet loss rates and then validates it by comparing the
results to the data contained in the IPT. If the comparison is
valid, the node is regarded as a trustworthy node. Next, the
node determines the degree of reliability of the nodes that are
directly connected to it. The alternate path is chosen once the
first path has been completed.

b: CALCULATION OF DIRECT TRUST (DT)
Six factors are calculated during packet transmission and
reception to evaluate each node’s trustworthiness. In addition,
an estimate is made of whether the node is likely to be
malevolent, self-centered, or trustworthy. Threshold values
i.e. TS and TR are maintained for each node, which is com-
pared to if a node successfully sends all or most of the packets
and the receiving node receives all or most of the packets.
When the PS exceeds the TS and the PR exceeds the TR,
nodes are deemed trustworthy, and their values are stored in
the IPT. When processing trusted path detection, other nodes
utilize these values to calculate or estimate the IDT based on
the DT values of other adjacent nodes. Similarly, a node is
labeled malevolent once the communicating node forwards
packets to another node that is less in amount than the TS or
TR threshold value. It implies that dropout packets are not
being transmitted due to the transmitter node’s ill intentions,
or that erroneous information about the packet flow in the
IPT has been recorded, indicating incorrect estimations of
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the number of packets received and stored in the IPT. These
indicators identify the transmitter node as a malicious node.

The packet sent and received times are considered by the
formula used to determine the distance between two nodes
(DT) [8], [11].

DT AB

=

(∣∣∣∣PRt−1 − PRt
PSt−1 − PSt

−
PDRt × TRt
PSt × TSt

+
PDRt−1 × TRt−1

PSt−1 × TSt−1

∣∣∣∣)
× (PAT + COT + DAT) (5)

where PDRt = (PSt – PRt), and PDRt−1 = (PSt−1– PRt−1),
and all the DTs are stored at each node and shared with the
IPT. PDRt is the Packet Drop rate for the current iteration,
whereas PDRt-1 is the Packet Drop Rate of the consecutive
previous transaction. It controls the extreme drop rates in
two different transactions, balances the DT calculation, and
avoids the negative trend.

c: CALCULATION OF THE PENALIZED DIRECT TRUST (PDT)
Over usage and overburdening edge, nodes are susceptible to
DoS/DDoS attacks. Hence, ATBET introduces a Penalizing
Factor named Penalized Trust (PDT) in the DT values of the
nodes. It encourages routing through alternative trustworthy
nodes based on the link association in the selected routing
path. It discourages and prevents a prolonged association of
a particular path over an extended period. A Sybil suffered
node creates multiple identities, and DoS suffered generates
attacks on the trustworthy nodes based on the internode path
association profile. Alternative paths are selected on historic
comparative trust values of corresponding nodes. Penaliza-
tion does not make nodes malicious. DT values of the nodes
are not penalized below or equal to a threshold of PTH =

0.625. Equation 6 presents the relationship between DT and
PDT [11].

PDT(n) = DT(n) (6)

If node DT value <= 0.625 (PTH) PDT = DT of cycle
(n)
If node DT value > 0.625 (PTH) Penalize or Regain

PDT
Two cases determine DT penalization or regain in PDT:
Case 1 (Penalizing the DT): A DT of a particular node

calculated by its predecessor node is penalized if its corre-
sponding path is present in the selected routing path, from
node S to D, in the previous cycle (n – 1). Penalization value
equals the number of cycles a particular path chooses for
routing between S and D. DT penalization [11] is given in
Equation 7.

PDT(n) = DT(n) − Kµ (7)

PDT in Equation 7 is equal to DT minus Penalizing Factor
Kµ in Equation 8. Penalizing Factor avoids overloading the
trustworthy nodes. Kµ temporarily decreases the node’s DT
value to select different paths. K is initialized by 0. If the
link exists in the selected routing path in the previous cycle,

K increases by 1 in its last value each time of its presence.
µ is the Penalizing Weight and has a constant value, which
remains the same in the penalization process. If PDT becomes
less than PTH = 0.625, then PDT is the value calculated in
the previous cycle [8], as given in Equation 8.

PDT(n) = PDT(n − 1) (8)

If DT is not penalized to the limit, PT reduces below
PTH = 0.625 (as PDT is 75% of the CT value of the node
(0.75×0.625= 0.54)). Equations (5) and (7) are used to avoid
falsely changing the status of nodes in any case. The packet
information profiler, IPTs, and PDs are updated accordingly.
Case 2 (Regaining the DT): Once the selected route path

from S to D modifies and the link is not part of the previous
cycle, nodes regain their trust values. Equation 7 is reused
with a variance in that the value of K decreases to restore
reduced DT values. In Penalizing Factor Kµ, the value of K
decreases by 1, from its previous value, in each cycle of the
link’s absence in the previously selected routing path. The
minimum value K can achieve is 0. This is useful for regain-
ing nodes’ trust values and their re-selection in the routing
path. The value of µ remains the same for regaining trust
as it is done in penalizing trust. Both the packet information
profiler and PDs are updated respectively.

d: CALCULATING THE INDIRECT TRUST (IDT)
The recommended trust for a subject node is gathered from
its neighboring nodes to calculate IDT. IDT has the tran-
sitive property and is situated between two less associative
nodes. The two nodes are transitively linked to recommender
nodes. For other nodes, the DT of one node equates to the
IDT. Due to two evident factors—first, a lack of knowledge
about the node’s behavior due to decreased communication
among sensors, and second, the need to combine recom-
mendations and DT scores to obtain a comprehensive trust
score—recommender nodes may necessitate IDT evaluation.
The advised trust [8], [26], i.e., IDT, is given in Equation 9.

IDT R =

∑H

k=A

(
n
k

)
PDTHxαn−kxβn−k−1 (9)

In Equation 9, n is the total number of nodes employed
in the network, k is the penalty constant already used in
Equation 7 and Equation 8, α is the number of cooperative
transactions, and β is the number of non-cooperative trans-
actions between the nodes. PDT is the DT calculated after
scrutiny for penalty trust.

e: CALCULATION OF THE CUMULATIVE TRST (CT)
CT integrates trust calculated by the nodes’ direct interaction
and the recommender nodes’ recommendations. CT ensures
that the trust value of the nodes is not solely dependent on
their direct interactions but also on the recommendations
received from commonly connected nodes. After success-
ful verification performed on PDTS,3 and IDTS,3 collectively,
CT is calculated among nodes i.e. nodes S and 3 through the
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TABLE 2. Direct/indirect paths between node S and D.

formula given in Equation 10.

CT(IDT,PDT)PDTS,3 =
PDTS, 3 + IDTS, 3

2
(10)

The computed CT(IDT,PDT)PDT is updated in IPT and dis-
tributed to all nodes nearby, whether directly connected to the
source node or not. The records at IPT have been updated for
estimation and confirmation during path identification and
selection, and all of these computations are being done for all
likely paths connecting nodes S and D. This process is carried
out up until node D when the CT is calculated. IPT updates
CT distributed among the network nodes. Because it depends
on the nodes’ direct interaction, the trust that depends on
the DT of the nodes carries more weight. Recommended
Trust is unavoidable as all recommendations are used without
filtering for holistic and accurate trust calculation. Nodes
without recommender nodes must have PT equal to PTH =

0.625 (0.625∗0.8+0) = 0.5 for them to be normal. Various
steps involved in calculating the five direct and four available
indirect paths are illustrated in Table 2 and displayed jointly
in Figure 3.

FIGURE 3. Path S – D for trust calculation.

f: CALCULATING THE TOTAL TRUST (TT)
Nodes in a network are susceptible to change, therefore the
trust among nodes has to be re-evaluated in each cycle or
iteration. In every time slot/cycle, the trust values of the nodes
in a system are recalculated, and the previous trust value is
also considered. Equation 11 presents TT [11] or the node’s

trust value in the cycle.

TT(n) = (µn−1.TT(n − 1)+µn.CT(n)) + (µn−2.TT(n − 2)

+ µn−1.CT(n − 1))/2 (11)

TT refers to the total trust value achieved by a node in
consecutive running cycles. TT value in a cycle depends upon
the TT of the consecutive two previous cycles and CT of the
successive two cycles, including the current and last cycle.
In Equation 11, n = 1, 2,. . . , k is the number of time slots per
cycle.µn−1 is defined as the probability accuracy factor of the
node’s past iteration trust value, µn is a probability accuracy
factor of the current CT value for the current cycle, and µn−2
is the probability accuracy factor of the node’s consecutive
previous trust value, and µn−1 is the probability accuracy
factor of the successive last CT value for the current cycle.
The importance of CT values in the consecutive two cycles
starting from the current cycle is more than the TT or trust
value of the previous successive cycles.
The probability accuracy factor of µn−2 is θ , and µn−1 is

1- θ . µn is 2- θ . θ is defined as an Aging Factor that is used
to reduce and balance the previous trust values. The value of
θ is 0.1, so the previous consecutive trust values possess a
10% and 20% probability accuracy factor, whereas the new
and most recent trust has an 80% probability accuracy factor
[11]. The following are considered and enable the detection
of a malicious node in Figure 4:

FIGURE 4. Malicious node detection.

FIGURE 5. Malicious node removal.
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FIGURE 6. Balancing network.

In Figure 4, DoS/DDoS and Sybil attacks affect the perfor-
mance of node 5. node 2 calculates the TT of node 5, which
is less than 0.5. node 5 is marked as a malicious node, and
removed from the current routing table. Node 5 removal from
the network and the modified routing table are updated in the
IPT and PD structure. In Figure 5, node 5 is removed only,
but not it’s any other connective nodes like node 2. Node 2 is
not connected to D directly but it has a connection through
node 3, node 6, or node 7 to D. For the next trust evaluation
cycle, two possible direct connections to D will be attempted
by nodes 2 and 6 (being a Recommender Node) which are not
directly connected or linked with D. Further, two new routes
are being updated in IPT and PD Structure and duly notified
to all edge nodes shown in Figure 6 after completion of the
current complete cycle and will be considered in next phase.

3) TIER 4: ADDITIVE TRUST METRIC MODEL
This module uses regression factors to determine identifiers
and the ability to retain the more trustworthy path before
rectifying it. This approach uses additive metrics to corrob-
orate the projected probability of a path and performs risk
analysis to ensure error-free and successful packet delivery.
Therefore, the most optimized routing path is selected from
S to D after isolating and filtering malicious nodes. Path
selection depends upon the Additive PathMetric and Average
PathMetric. These parameters are added together with certain
weights to find the Composite Path Metric. The path bearing
the minimum Composite Path Metric is selected for routing.

a: CALCULATING THE ADDITIVE METRICS
This submodule initially finds the most optimized routing
path selected from node S to D after initial filtering/isolation
of malicious nodes. The path selection depends upon metrics
and further estimation of probability. The Composite Path
Metric is initially evaluated by estimating the AdditiveMetric
Count and Average Path Trust Metric. These parameters are
addedwith certain probability accuracy factors to find a Com-
posite Path Metric. The path with the minimum Composite
Path Metric is selected for initial routing.

i) ADDITIVE METRIC COUNT
Additive Path Metric (APM) is measured to find a path with
the nodes’ minimum hop count and high trust value. Equation
12 presents the APM of the path as used in [11].

APM =

∑m

Sn−1

√
1/TT (12)

In Equation 12, the APMof a path is equal to the sum of the
inverses of TT/trust values of the trustworthy nodes in a path.
Sn = 1,2. . . . M. Here, Sn is the number of trustworthy nodes
in a path ranging from 1 to m. Path with low trust value nodes
or a greater number of nodes yields a higher APM value and
is avoided for routing.

ii) AVERAGE PATH TRUST METRIC
An inverse of the average trust values of the nodes in a
particular path is considered for the selection of the best path
for routing. Average Path Trust Metric (APTM) is calculated
as in Equation 13.

APTM =

m∑
Sn−1

√
TT

m
(13)

This metric provides the inverse of the average TT/trust
value of the trustworthy nodes m in the path through standard
deviation. Such deviated average metric is considered so that
a path with additional hop counts scoring the highest values
of trust is taken into account for routing.

iii) ASSESSMENT OF COMPOSITE PATH
The assessment of Composite Path parameters (CptPM) is an
aggregate sum of APM and APTM [11] as given in Equation
14.

CptPM =
√

ϕ.APMγ. APTM (14)

The probable accuracy factor ϕ for APM and factor γ for
APTM have an equal value of 0.5. The selected routing path
in any cycle is the path with the minimum CptPM value. This
nominated routing path has the highest trust value and lowest
hop count. Trust values of the nodes in the system and CptPM
values of the routing paths from node S to D are re-calculated
per cycle. Paths are compared, and the path with the lowest
CptPM value is nominated for routing.

b: VERIFICATION OF IDENTIFIED PATHS AND FILTRATION
FOR NOMINATION
Furthermore, using regression factors, this module calculates
identities and capabilities to retain a more trustworthy path
and then corrects it. For error-free and successful packet
transmission, this method can employ additivemetrics to con-
firm the estimated path probability and perform risk analysis.

4) TIER 5: DECISION-MAKING MODEL
Records of packet profiler and further substantiated and ver-
ified results of an additive metrics module, including various
additive metrics components and its cross verification, with
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priority-wise nominated paths, are processed by this module
to conclude the probability of participating nodes whether
trust worthier, malicious, or selfish nodes. It compares the
trust values of DT, PDT, IDT, CT, and then TT of all partici-
pating nodes deployed on various possible paths are analyzed,
evaluated, and further verified while comparing with thresh-
olds. Normally, trust values range from 0 to 1; It is considered
trustworthy if the PDT-based TT is more than 0.5. If a node’s
trust value is equal to one, that node is regarded as the most
trustworthy. If a predicted trust value is less than 0.5, such a
node is considered selfish behavior that may lead to becoming
a malicious node in the future; if less than 0.3, nodes are
marked malicious; if equal to zero then the node is most
malicious node possessing worst behavior, or producer of
the most attacking packets and must be causing an unending
data flooding situation on the network, and such nodes must
be stopped functioning in the network and initially to be
removed from the routing table.

FIGURE 7. Nominating malicious node.

FIGURE 8. Elimination of the malicious nodes.

Further, this module detects the highest score TT and com-
pares it with the full path threshold ranging from 0 to 1 after
checking each node’s value on the different paths between
S and D. If TT is greater than or equal to 0.5, the path is
regarded reliable; otherwise, it is considered unsuitable for
transmission. Path trust values within IPT have beenmodified
and are ready for selection in the following module. Mali-
cious/misbehaving nodes are marked for partial or complete
network shutdown, termination, or elimination, and IPT is
updated for such bad and selfish nodes with consecutive low-
est trust score, complete cessation of any connectivity with

such node, including shutting down malicious or attacked or
attacker node.

ATBET detects more than 1 malicious node i.e. multi-
ple nodes using DT and IDT between two corresponding
nodes i.e. transmitter and receiver. Additionally, after scrutiny
from the DT and IDT calculations, the CT and TT filter out
and identify the malicious node again and those nodes are
marked malicious and eliminated from the Routing Table.
Other communication statistics, such as data rate and drop
rate based on the number of packets sent and received, and
the cost of time essential for both traffic metrics and related
features, are included in the trust evaluation. If a certain node
receives a communication request from another node in a
network, an edge node can calculate the trust value of the
requested node. ATBET calculates the possible trust paths
between any nodes naming them as Sender / Source and
Receiver/Destination. ATBET calculates in real-time paths
and further trust estimations between any nodes desirous to
perform any future transaction and identifies malicious nodes
while estimating trust.

Following are the steps for the ATBET algorithm:

Step 1: Determine the most likely pathways between nodes
S and D.

Step 2: Estimate each path that exists between S and D,
select a node, calculate DT

Step 3: Calculate PDT based on DT, and adjust DT
Step 4: Select neighboring nodes and compute IDT
Step 5: Compute CT based on DT and IDT of nodes in that

path
Step 6: Compute TT using CT for each path
Step 7: Review thresholds; if below a threshold, mark node

normal; alternatively, mark malicious, and update
IPT. Repeat steps 2–6 till all paths’ trust has been
calculated and IPT has been updated

Step-8: Nodes marked malicious based on TT are dis-
connected and eliminated from the routing table,
recalculate and sort the remaining paths based on
TT

Step 9: Calculate the additive metrics and calculate CPTM
Step 10: Thresholds are used for evaluating nodes; if they

are below a certain threshold, a node is considered
normal; otherwise, considered malicious, and IPT
is updated. Rep step 9 till all paths’ trust has been
calculated and IPT is updated.

Step 11: Notify S about the best paths available, and perform
the transaction after encryption and hashing of the
data packet.

Step 12: Removal of malicious node, IPT is updated, and S
will notify all nodes to update their routing tables.

IV. EXPERIMENT RESULTS OF ATBET
Experimental results are obtained in terms of duration,
period, malicious nodes linked to internal or external cyber-
attacks, rates of detecting malevolent nodes, rates of accurate
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FIGURE 9. Flow diagram of ATBET.

detection of malicious nodes, rates of identifying false posi-
tives against malicious nodes, average packet delays, average
data rates, an entire network’s many edge nodes, along with
their trust values with metrics. OMNET+ is used as a discrete
event simulator with a graphical user interface that repre-
sents the network nodes and their behavior. It is a free and
open-source program for modeling traffic, protocols, queues,
multiprocessors, distributive hardware, verifying hardware-
based designs, and evaluating performance attributes of
complex software-based networks. It is an object-oriented
integrated discrete event network.

Its comprehensive descriptive capacity to incorporate inter-
nal communication and detect different threats makes it suit-
able for evaluating smart city network trust [28]. OMNET++

provides efficient tools to define the structure of the exist-
ing smart city-based systems possessing characteristics that
include topology description language and hierarchically
assembled modules, where modules are instances of module
types and communicate with messages over channels con-

taining customizable module parameters. Tool models are
often named networks composed of systems and sub-modules
having recursive integration [29]. ATBET uses the Random
waypoint Model for mobility. Various mobility models can
be employed to simulate the movement of nodes (devices,
sensors, edge, fog, cloud, mobile, etc.) within the network.
Mobility models help researchers and developers understand
how nodes move and interact with each other in a simulated
environment, which is crucial for evaluating the performance
and effectiveness of trust mechanisms. In general, Two com-
mon mobility models are used in such scenarios which are
Random waypoint and Random walk models. The Random
Waypoint Model is a widely used mobility model in many
wireless and mobile networking simulations and is suitable
for edge computing environments [30].

The network layer is responsible for the best suitable route
selection based on the trust evaluation mechanism ATBET
being performed by the application layer in terms of differ-
ent network parameters by calculating DT and IDT values
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TABLE 3. Parameters for simulation in OMNET++.

with different mathematical verifications already discussed
in different tiers of the mechanism. The physical layer errors
do not hamper the trust model as the predictive model pro-
vides a reliable data packet via applying the encryption along
with the trusted path selected for ensured establishment of
communication countering the effects of DDoS / DoS, Sybil,
Bad Mouthing, and On-Off attacks. Table 3 describes the
simulation parameters.

A. ASSUMPTIONS
The following are the assumptions for the deployment of
ATBET in edge-based smart city networks: All nodes have
stable links. Nodes are static. Trust propagation is decentral-
ized. Basic information about successor nodes is stored in
the routing table. Initially, nodes are assigned a trust value
equal to 0.5 in cycle 0 or the 1st cycle. A node becomes
malicious when the trust value is below 0.5. Trust is updated
in each cycle based on time. Alternate paths with trustworthy
nodes are present in the network. Only DoS, DDoS, and
Sybil attacks are considered in this paper. These attacks
are simulated on the node part of the selected routing path
in the previous cycle. Network topology remains the same
throughout all the cycles. The weights of all the parameters
can change with the environment and applications.

B. PERFORMANCE EVALUATION
Performance parameters used to evaluate the proposed mech-
anisms are as follows: -

• Impact of Trustworthiness level of a Node: It shows an
accurate detection percentage of malicious/false report-
ing/selfish nodes after processing through ATBET.

• Impact of Detection Rate: It presents several detected
malicious nodes in ratio instead of in percentage.

• Impact of Detecting Accuracy: It indicates the correct
detection percentage of malicious nodes based on the
number of false positive recommendations.

• Detection of False Positive Rate: It is calculated by
dividing the number of false positive outcomes by the

total number of negatives. The best false positive rate is
zero, while the worst is one.

• Impact on Entire Network Lifetime: This metric eval-
uates how long an edge-based network remains opera-
tional and alive. It counts the number of times a node
consumes its energy, stops working, or enters a deadlock
condition.

• Impact of Average Throughput: This metric analyzes
the packet data rate (total payload over the entire ses-
sion divided by total duration) of communicating nodes
coexisting with hostile nodes in the network.

• Delay Analysis: It examines the technique’s end-to-end
latency and measures the time packets take from node S
to D in the presence of hostile nodes.

• Impact of Average Packet Delay: It analyzes persistent
packet delay among communication nodes in the exis-
tence of malicious nodes during network transmission.

C. TRUSTWORTHINESS LEVEL OF A NODE
This parameter exhibits the accuracy percentile of malevolent
nodes. It is based on data collected at specific observation
intervals of simulator execution changing from 100s to 1000s,
between the trust threshold values of 0.5 and 1.0. A per-
centage increase is used to calculate the ratio of erroneous
reporting nodes while comparing threshold values. In the first
experiment, the trustworthiness of reliable nodes is compared
to malicious nodes among the current edge nodes.

The results of ATBET are compared with BTEM [10],
CTBET [8], and PATM [11] and it is illustrated in the graph
in Figure 10. ATBET, with several edge nodes coexisting
with hostile nodes, shows a positive inclination in comparison
with the other three techniques, and as the period increases,
In ATBET, a higher trust level was gained as a result of its pre-
dictive behavior and avoidance of harmful nodes right after
timely detection. It also studies erroneous reporting; faster
and more accurate identification of malicious/selfish nodes
provides more trustworthiness than its five competitors.

In an alternative scenario, a network’s proportion of mali-
cious nodes among total edge nodes is used to measure the
system’s trustworthiness. It estimates that the average rise
of the malicious nodes is close to 15%, with the proportion
of edge nodes found malicious ranging from 10 to 50%.
Time intervals ranging from 100 to 1000 seconds are used
to monitor various sets of nodes.

D. IMPACT OF DETECTION RATE
This parameter displays the proportion of malicious nodes
discovered instead of considering in percentage. The pro-
posed design is used to simulate DoS, DDoS, Sybil, Bad-
mouthing, and On-Off attacks with varying proportions of
malicious nodes, from 10% to 50% with upholding 10%
increments, demonstrating a positive trend in the ratio of
the detection of trust. In a different scenario, the network
of edge nodes’ rate of malicious node identification among
trustworthy nodes has been simulated. Compared to other
mechanisms, the ATBET mechanism achieves a high rate of
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FIGURE 10. Trustworthiness with advancement in time.

FIGURE 11. Trustworthiness as untrustworthy/selfish nodes increase.

success in identifying harmful and hostile nodes and identify-
ing trustworthy nodes, as shown in Figure 11, which depicts
the trust detection rate in the presence of malicious nodes.
With a 5% annual growth rate, the fraction of malicious
nodes ranges from 5 to 50 percent. ATBET is in comparison
to BTEM [10], CTBET [8], and PATM [11]. It shows that
ATBET produces more detection rate of trust in nodes than
its counterparts 26%, 29%, and 35% due to its ability to
track data delivered, received, and transferred information
while assessing the trustworthiness of each packet of data.
It establishes that the number of malicious nodes is closely
correlated with the number of false positives, demonstrating
that the ratio of malicious nodes increases as the number of
nodes increases. Therefore, as the number of edge nodes in
smart city networks increases, it becomes harder to detect
malicious nodes.

E. IMPACT OF DETECTING ACCURACY
This metric presents the percentage of malevolent nodes
being accurately identified after using the indicated strategy.
based on a few suggestions that turn out to be false positives.

FIGURE 12. Detection rate of malicious nodes against internal and
external attacks.

Edge nodes network analyzes the precise rate of detection of
malevolent and selfish nodes in the network. It is built on a
predetermined number of false positive predictions. Figure 13
depicts that ATBET is a mechanism that is more efficient in
comparison with BTEM [10], CTBET [8], and PATM [11]
in percentages 38%, 42%, and 48%, respectively. It is factual
that this metric assesses the accuracy while considering trust
built and enhanced collaboration among interacting nodes
with the lowest packet loss rate.

F. DETECTION OF FALSE POSITIVE RATE
This parameter measures the frequency of false positive
attacks. It is a measure obtained as the sum of all the neg-
atives divided by total false positive outcomes. Value 0.0 is
considered the best false positive rate, whereas 1 is consid-
ered the worst respectively. The impact of the trust levels of
trustworthy and malicious nodes on the proportion of false
positives that are examined against attacks like DoS/DDoS,
Sybil, Bad Mouthing, and On-Off creates a different situa-
tion. When compared to alternative trust systems, the False
Positive detection rate for malicious nodes is greater while
that for trustworthy nodes is less valuable like BTEM [10],
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FIGURE 13. Rate of accurate detecting of malicious nodes against internal
attacks.

CTBET [8], and PATM [11] in percentages 34.21%, 41.67%,
44.52%, and 53.56 %, respectively, shown in Figure 20.

G. IMPACT ON THE ENTIRE NETWORK LIFETIME
This metric examines the operational and life duration of
an edge-based smart city network. Any edge node’s first
energy drain, which prevents it from being able to transmit
the packet, is measured. The network is impacted by the loss
of resources and services when a node due to excessive use
faces drainage of energy and switches off. The lifespan of a
networkmay be determined by testing the effects ofmalicious
nodes that quickly deplete the energy of edge nodes, which
can result in a network jam and stop all network activity.
Nodes in a network use less energy than equivalent systems,
which increases the network’s lifespan. Figure 14 displays the
results of evaluating the network lifespan across 20 malicious
nodes within the network, with a proportion of 301 seconds
being shown in BTEM [10], 325 seconds in CTBET [8],
and 385 seconds in PATM [11], ATBET preserves time is
446 seconds.

FIGURE 14. Network lifetime (seconds).

H. IMPACT OF AVERAGE PACKET DELAY
It examines packet delays that continue to occur between
communication nodes when malicious nodes are present

TABLE 4. Performance of ATBET against viable protocols with increasing
or decreasing trend.

during transmission over the network. It evaluates the effec-
tiveness of ATBET considering the decrease in packet latency
while coexisting with malicious nodes.

The average packet delay across numerous malicious
nodes is examined differently. This parameter evaluates how
well the suggested scheme performs when malicious nodes
intrude and disrupt communication in the network since there
is less packet latency. This plan, nevertheless, has a greater
throughput than comparable trust schemes. i.e. like, BTEM
[10], CTBET [8], and PATM [11], respectively shown in
Figure 17, though investigating an increase from 5 to 50%
in the volume of malevolent nodes. This method takes into
account each node (both trustworthy and monovalent nodes)
participating in the networks and their amount of energy.

I. DELAY ANALYSIS: END-TO-END
This parameter examines the suggested approach’s end-to-
end latency in the presence of selfish/malicious nodes. The
amount of time a packet needs to travel across a linked
network from host to destination is also known as one-way
delay (OWD). Different numbers of malicious nodes are used
to compute end-to-end delay and one-way packet delay also
called latency. It figures out how long it typically takes for
node D to receive a packet sent from a host node S. When
this parameter is compared to other competing trust tech-
niques, it is discovered that while the first 10% of malicious
nodes demonstrate the same performance levels, there is a
difference as the number of malicious nodes approaches 20%.
Figure 18 depicts a significant difference due to the ability
and capacity of ATBET, to choose the trustworthy nodes pos-
sessing a high level of energy i.e. bearing lower consumption
of energy and less computational complication), and further
avoid malicious nodes while communicating in smart city
networks.

Table 4 clearly shows that an ATBET outperforms the
benchmark protocols by achieving an increase of 213% in
throughput, 345 seconds in network lifetime, 38% in the rate
of detection, 48% in detection accuracy, 47% in the rate of
false positive rate, and decrease by 45% in delay rate in the
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FIGURE 15. Rate of false positive between 5 to 150.

FIGURE 16. Ratio of average delay in nodes between 5 and 150.

FIGURE 17. Average data rate ratio between nodes 5 and 150.

comparative techniques BTEM [10], CTBET [8] and PATM
[11] respectively.
The proposed ATBET achieved the better performance in

terms of malevolent nodes detection, identification of false
positive rate against malicious nodes, average packet delays,

average data rates along with their trust values with met-
rics. The simulation is used for evaluation where proposed
solution has achieved a higher rate of data transmission and
low rate of packet delay and better performance in the pres-
ence of malicious nodes. Results further demonstrated that
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FIGURE 18. Delay analysis: End-to-end delay.

a proposed solution has a lower false positive detection rate
while somewhat raising trustworthiness in the presence of
Sybil, DoS, On-Off, Bad Mouthing based attacks, compared
to the BTEM, CTBET and PATM.

V. CONCLUSION
An Assertive Trust-Based Efficient Approach (ATBET) for
smart city networks is presented in this research. The
main challenges in designing efficient, stable, robust total
trust-based techniques capable of enhancing any network’s
security features have been addressed and determined.
ATBET is an attempt to find the solutions to the techni-
cal issues and gaps discussed in related work and enhance
the trust technique performance compared to the existing
techniques. The interaction quality measure is used to col-
lect direct and indirect (DT and IDT) trust values of the
edge-based nodes to correlate the data over time, pick the
trustworthy nodes, and further the trustworthy channel for
data transfer. It also identifies and detects the malicious nodes
twice in a single iteration and further successfully elimi-
nates them from routing tables, and all nodes are updated
to disconnect from that malicious node. ATBET is simulated
using OMNET++, and the performance of several aspects is
compared to existing trust evaluation-based methodologies.
Simulation results depict that ATBET has achieved a higher
rate of data transmission, achieve a low rate of packet delay
and better performance is achieved in the presence of mali-
cious nodes than all communicating edge nodes in the smart
city. Results further demonstrate that a proposed approach has
a lower false positive detection rate while somewhat raising
trustworthiness, proving that this method is more resistant to
Sybil, DoS, On-Off, Bad Mouthing based attacks, compared
to the BTEM [10], CTBET [8] and PATM [11]. ATBET has
been verified and our simulation results illustrate that the
system works effectively in a hostile environment and that
ATBET promptly converges towards sound trust values in
comparison to the conventional trust calculation techniques.

The proposed approach will be refined in the future to
identify various internal and external attacks that cause nodes

to be malevolent, selfish, and inadequate/ contradictory, such
as mouthing, Routing, Ballot Stuffing, Conflicting Behavior,
Routing attacks, Camouflages rivals, and wormhole attacks.
ATBET is a robust technique and is capable of evaluating the
trust dynamically but still has the potential limitation for some
routing points that may exist in the various interconnected
networks, Hence, for future work, the optimized routing
mechanism will be employed to enhance this trust evaluation
mechanism and will be deployed on the fog environment.
In addition, this approach will be evaluated using time-based
analysis for various service composition applications to weed
out service-oriented attacks and architectural attacks. ATBET
will assure reliable remote connectivity, prevent rogue nodes,
and function effectively with fewer resources. Another future
path is to take into account other QoS characteristics, such
as latency in high-speed networks, storage for restricted EC
devices, and energy restrictions, to confirm the relevance of
the ATBET. Additionally, the number of edge nodes, as well
as their respective servers and intermediate nodes, will be
examined using these attributes.
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